関数 > データ解析 > 曲線適合 > 例: 有理関数回帰 2
  
例: 有理関数回帰 2
rationalfitnp - 極なし
rationalfit関数と rationalfitnp関数を使用して有理関数回帰を実行します。rationalfit 関数ではなく rationalfitnp 関数を使用した場合、従来の最小二乗問題の解で適合区間内に分母の根があるかどうか調べられます。極がない場合、生成された適合が返されます。極がある場合、非線形最適化問題に追加の制約条件が追加されます。
1. x の逆関数に若干の修正を加えることでデータセットを定義します。
クリックしてこの式をコピー
クリックしてこの式をコピー
クリックしてこの式をコピー
2. 有理関数の分子と分母の次数を指定します。
クリックしてこの式をコピー
クリックしてこの式をコピー
適合関数の形式は次のとおりです。
クリックしてこの式をコピー
3. 信頼限界および標準偏差のベクトルを定義します。
クリックしてこの式をコピー
クリックしてこの式をコピー
4. rationalfit 関数と rationalfitnp 関数を呼び出します。
クリックしてこの式をコピー
クリックしてこの式をコピー
クリックしてこの式をコピー
クリックしてこの式をコピー
param1param2 では、1 列目にパラメータが格納され、以降の列には上記で定義した信頼限界における各パラメータの下限と上限が格納されます。
5. データセットと 2 本の回帰曲線をプロットします。
クリックしてこの式をコピー
クリックしてこの式をコピー
クリックしてこの式をコピー
rationalfitnp 関数で極が除去されています。その分母の多項式は次の形式をとります。
クリックしてこの式をコピー
極が生じないようにするため、次の制約条件が追加されています。
クリックしてこの式をコピー
クリックしてこの式をコピー
クリックしてこの式をコピー
クリックしてこの式をコピー
クリックしてこの式をコピー
LeastSquaresFit
rationalfitnpLeastSquaresFitから返された適合曲線を比較します。LeastSquaresFit 関数は rationalfitnp と同じアルゴリズムを実行しますが、推定値と信頼限界をパラメータとして指定する必要があります。この関数は、定数項を分母ではなく分子に入れる場合に実行する必要があります。
1. 適合関数を定義します。
クリックしてこの式をコピー
2. パラメータの推定値を定義します。
クリックしてこの式をコピー
3. パラメータの下限と上限を定義します。
クリックしてこの式をコピー
4. LeastSquaresFit 関数を呼び出します。
クリックしてこの式をコピー
5. データセット、および rationalfitnpLeastSquaresFit それぞれから返された適合曲線をプロットします。
クリックしてこの式をコピー
クリックしてこの式をコピー
* 
有理関数適合を実行する前に、データを直線に偏らせる任意のフィルタ手法やデータ変換手法を実行することで、rational 関数での収束速度が大幅に向上し、場合によっては不要な極が取り除かれます。