Regresión polinomial localizada
• loess(vx, vy, span) o loess(Mx, vy, span): Permite devolver un vector que interp utiliza para buscar el conjunto de polinomios de segundo orden que mejor encaje en el entorno de los valores de datos x e y en vx y vy en el sentido de los mínimos cuadrados. El tamaño del entorno se controla con span. También se puede utilizar la función loess para la regresión multivariada, donde una matriz Mxy de k variables independientes y un vector de valores dependientes, vy, se utilizan para ajustar las superficies polinomiales de segundo orden en k dimensiones.
La implementación de loess en PTC Mathcad es una variación (con algunas aproximaciones destinadas a mejorar la velocidad) del algoritmo que se describe en Smoothing by Local Regression: Principles and Methods, W. S. Cleveland and C. L. Loader (1996).
Argumentos
• vx, vy son vectores de valores de datos reales con la misma longitud.
• span es un número real positivo que especifica el tamaño del entorno de los datos. Utilice los valores mayores de span cuando los datos se comporten de manera muy diferente en distintos rangos de x. Un buen valor por defecto es span = 0.75. A medida que span aumenta, loess pasa a ser equivalente a un polinomio de segundo orden.
• Mx es una matriz de valores de datos reales. Existe una columna para cada variable independiente (k columnas). rows(Mx) = rows(vy).