함수
>
데이터 분석
>
평활
> 예제: 적응 평활
예제: 적응 평활
supsmooth
함수를 사용하여 데이터 집합을 평활합니다.
1.
코사인 곡선을 손상시켜 구름 형태의 데이터 집합을 만듭니다.
M
0.0153449
0.0159473
0.0188398
0.0200937
0.0207407
0.0279934
0.0313075
0.0337235
0.0367756
0.0368341
0.0477188
0.0596322
0.0615252
0.0667264
0.0880314
0.106212
0.114755
0.125734
0.13098
0.132615
0.140181
0.148275
0.149904
0.159996
0.160516
0.167491
0.16885
0.17534
0.176078
0.18147
0.183209
0.184511
0.184658
0.193931
0.194955
0.196857
0.202522
0.202817
0.202906
0.206095
0.20889
0.2126
0.231719
0.238448
0.248565
0.249411
0.251845
0.25575
0.255797
0.264038
0.265081
0.26639
0.269569
0.270734
0.272782
0.273339
0.282613
0.28308
0.298869
0.306302
0.312885
0.317558
0.328889
0.335665
0.353001
0.36245
0.384043
0.39164
0.399816
0.402863
0.404053
0.407062
0.410934
0.411243
0.419991
0.421003
0.421682
0.426531
0.437504
0.441372
0.441428
0.444045
0.446305
0.450196
0.457477
0.45838
0.458494
0.459455
0.465547
0.479552
0.48511
0.487262
0.490441
0.490987
0.501704
0.502471
0.507845
0.51288
0.529488
0.532308
0.533466
0.538114
0.542486
0.544422
0.551945
0.555954
0.557206
0.558411
0.568034
0.57018
0.575202
0.58187
0.581879
0.58521
0.587525
0.588322
0.595793
0.596795
0.599668
0.602293
0.606112
0.607896
0.610287
0.614921
0.618878
0.618902
0.620651
0.625041
0.629672
0.630129
0.632975
0.640243
0.644181
0.649321
0.659726
0.677411
0.685766
0.690693
0.70673
0.719525
0.723285
0.727836
0.728325
0.731006
0.734309
0.745897
0.749087
0.756801
0.759002
0.76048
0.768052
0.776034
0.780772
0.795684
0.796558
0.797546
0.802986
0.814864
0.817652
0.817679
0.819415
0.819679
0.82515
0.829128
0.830828
0.833046
0.841903
0.842515
0.849444
0.85415
0.855304
0.864224
0.866884
0.873448
0.878346
0.884444
0.889699
0.895217
0.901946
0.905032
0.905797
0.913767
0.923016
0.923481
0.937554
0.940958
0.944426
0.946524
0.954684
0.955284
0.959511
0.959696
0.961372
0.961457
0.973549
0.977677
0.988453
0.996967
0.997996
0.998413
-0.996292
-0.978358
-0.969115
-1.01191
-0.905724
-0.972392
-0.951489
-0.946647
-1.01098
-0.868515
-0.80683
-0.881267
-0.78137
-0.744788
-0.690646
-0.517013
-0.3218
-0.254435
-0.177192
-0.0558737
-0.149357
0.136379
-0.603297
-0.042565
-0.0782242
0.297834
-0.127587
-0.276848
0.0000615187
-0.00559782
-0.155011
-0.159369
0.193051
0.287207
-0.263845
-0.257829
0.517697
0.691028
0.622757
0.9498
0.61179
0.587528
0.373018
1.14451
0.872233
0.78026
0.578715
0.458164
0.722291
0.799332
1.5497
0.771772
0.567623
0.68592
0.058429
0.79593
0.753613
0.626745
1.14836
0.6821
1.06349
1.27522
1.66686
0.578128
0.862488
0.272926
2.21376
0.171188
0.956173
-0.301753
0.982612
0.478152
1.59155
0.861657
0.921545
1.49595
0.838622
0.599754
-0.265972
0.111032
1.26982
1.73324
-0.174144
-0.176507
1.212
-0.792555
1.12532
0.546594
-0.00422573
-0.233727
0.614337
-0.883268
0.934717
-0.0466867
-0.621937
-0.0154291
0.410488
0.397052
-0.639838
-0.381434
-0.371741
-0.656548
-0.820955
-1.3625
-0.352109
-0.203967
0.22387
-1.13266
0.732541
0.631979
-0.406171
-0.843796
-0.204535
0.405871
-1.26086
-1.2001
-0.999837
-0.777015
-2.04931
-1.82392
-0.831366
-0.570121
-2.71776
0.474745
-0.589162
-1.56846
-0.569274
-0.446521
-1.63746
-0.633207
-1.89787
-1.13509
0.314736
-0.656269
-0.648352
-0.203041
0.644692
-0.484623
0.257156
-0.775555
-1.37259
1.08853
-1.33202
1.01296
-0.981973
-0.529366
-2.06288
0.606313
-0.192775
-0.751089
-1.23622
-2.41014
0.964837
-1.46657
-0.88541
0.780182
-0.311908
1.79398
0.417421
-0.0618658
-0.319801
-1.70874
-0.633363
-0.740354
1.9078
1.37731
-1.62781
0.802843
-0.270086
-0.891523
-0.940725
0.293748
0.227838
-0.909272
0.23305
-0.419934
-0.406553
2.5743
-1.16072
-0.0613312
-0.631524
1.94684
1.65556
-0.831856
0.401844
0.793753
0.647058
1.26345
-0.261144
1.42894
0.649288
-0.132032
-0.663229
2.04889
0.860219
1.29241
0.475458
-0.430081
1.26762
3.51077
X
M
0
Y
M
1
2.
supsmooth
함수를 사용하여 데이터 집합에 대해 적응 평활을 수행합니다.
Yss
supsmooth
X
Y
3.
ksmooth
함수를 사용하여 데이터 집합에 대해 커널 평활을 수행합니다.
i
0
last
X
Yks
ksmooth
X
Y
0.1
4.
평활 전과 후의 데이터 집합을 도표화합니다. 슈퍼 평활한 데이터 집합과 커널 평활한 데이터 집합을 비교합니다.
lines
lines
lines
11
X
11
Y
Yss
Yks
식 복사
관련 항목
적응 평활
도움이 되셨나요?
이 사이트는 JavaScript를 사용할 때 가장 잘 작동합니다.