Functions > Statistics > Probability Distributions > Example: Cauchy Distribution
Example: Cauchy Distribution
1. Show the definition of the Cauchy distribution:
Click to copy this expression
Where:
l is the location parameter (mean)
s is the scale parameter (square-root of variance), s > 0
2. Define three sets of location and scale parameters, then calculate the amplitude, or height, of the curve with location and scale parameters l0 and s0:
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
3. Use the dcauchy function to get the probability density for value x using different values of location parameters and a fixed scale parameter:
Click to copy this expression
Different values of location parameters shift the curve along the x-axis.
4. Plot the dcauchy function using a fixed location parameter and different values of scale parameters:
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Different values of scale parameters change the height of the curve.
5. Plot the dcauchy function using different values of location parameters and scale parameters:
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Different values of scale and location parameters shift the curves and change their height.
6. Plot the pcauchy function using different values of location parameters and a fixed scale parameter:
Click to copy this expression
Different values of location parameters shift the curve along the x-axis.
All y values of pcauchy are between 0 and 1.
7. Plot the pcauchy function using a fixed location parameter and different values of scale parameters:
Click to copy this expression
Click to copy this expression
Click to copy this expression
Different values of scale parameters flatten the curve horizontally, but all curves cross at y=0.5.
All y values of pcauchy fall between 0 and 1.
8. Plot the qcauchy function using different values of location parameters and a fixed scale parameter:
Click to copy this expression
Different values of location parameters shift the curve along the y-axis.
All x values of qcauchy fall between 0 and 1.
9. Calculate the rcauchy function using fixed location and scale parameters:
Click to copy this expression
Click to copy this expression
Click to copy this expression
Function rcauchy returns a vector of m random numbers having the Cauchy distribution.
10. Plot the random numbers returned by the rcauchy function.
Click to copy this expression
Recalculating the worksheet causes function rcauchy to return a new set of random numbers, and the plot gets updated accordingly.
Was this helpful?