Functions > Graphing > Coordinate System Mapping Functions
Coordinate System Mapping Functions
xy2pol(x, y) or xy2pol(v)—Converts the rectangular coordinates of a point (x, y) to polar coordinates (r, θ).
pol2xy(r, θ) or pol2xy(v)—Converts the polar coordinates of a point (r, θ) to rectangular coordinates (x, y).
xyz2sph(x, y, z) or xyz2sph(v)—Converts the rectangular coordinates of a point (x, y, z) to spherical coordinates (r, θ, φ).
sph2xyz(r, θ, φ) or sph2xyz(v)—Converts the spherical coordinates of a point (r, θ, φ) to rectangular coordinates (x, y, z).
xyz2cyl(x, y, z) or xyz2cyl(v)—Converts the rectangular coordinates of a point (x, y, z) to cylindrical coordinates (r, θ, φ).
cyl2xyz(r, θ, z) or cyl2xyz(v)—Converts the cylindrical coordinates of a point (r, θ, z) to rectangular coordinates (x, y, z).
Each function returns a three-element column vector with the new coordinates. Angles are given in radians.
The sph2xyz and cyl2xyz functions are useful as the last argument to CreateMesh and CreateSpace.
Arguments
x, y, z, r, θ, φ are real numbers. If you do not add the degree operator, the angle θ is interpreted to be an angle in radians.
v is a two or three-element vector giving the coordinates to transform in the alternate argument structure of these functions.
Was this helpful?