
Creo Elements/Direct
Drafting Writing Macros
Creo Elements/Direct Drafting 20.4.4.0

Copyright © 2023 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

Copyright for PTC software products is with PTC Inc. and its subsidiary companies (collectively “PTC”), and
their respective licensors. This software is provided under written license or other agreement, contains
valuable trade secrets and proprietary information, and is protected by the copyright laws of the United States
and other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or
used in any manner not provided for in the applicable agreement except with written prior approval from
PTC. More information regarding third party copyrights and trademarks and a list of PTC’s registered
copyrights, trademarks, and patents can be viewed here: https://www.ptc.com/support/go/copyright-and-
trademarks

User and training guides and related documentation from PTC are also subject to the copyright laws of the
United States and other countries and are provided under a license agreement that restricts copying,
disclosure, and use of such documentation. PTC hereby grants to the licensed software user the right to make
copies of product documentation and guides in printed form, but only for internal/personal use and in
accordance with the license agreement under which the applicable software is licensed. Any copy made shall
include the PTC copyright notice and any other proprietary notice provided by PTC. Note that training
materials may not be copied without the express written consent of PTC. This documentation may not be
disclosed, transferred, modified, or reduced to any form, including electronic media, or transmitted or made
publicly available by any means without the prior written consent of PTC and no authorization is granted to
make copies for such purposes.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

https://www.ptc.com/support/go/copyright-and-trademarks
https://www.ptc.com/support/go/copyright-and-trademarks

Contents

Preface ..9

What is a Macro? ..17
Why Use a Macro? ...18
Creating a File for Your Macros..19
Storing Your Macro ...19
Deleting Your Macro ...20
Running Your Macro ...20
Debugging Your Macro..20
Stopping a Macro ...23

Using the Editor to Write a Macro ...25
Using the Keyboard Editing Keys ...26
How to Enter and Leave the Editor ...26
Using EDIT_PORT to Enter the Editor Quickly ...26
How to Set and Use Markers ...27
Copying Text ..28
Using the Editor Commands ..29
Using EDIT_MACRO ..33

Macro Basics ..35
What Does a Macro Consist Of? ..36
Minimum Macros ..38
Syntax Diagrams ..39
Explaining Local Variables...40
Why Use Local Variables?...45
Do We Declare Variable Types?...46
Using Control Statements..47
Using Parentheses ...50
Using the Trace Facility ...52
Indenting the Lines of a Macro ...56
Defensive Programming..56
Macro Commands ..58
Built-in Operations ..58

Inquiring about the Environment and Elements..61
Using INQ_ENV ..62
Using INQ_ELEM ..63
Using GETENV ..64
Using Other Inquiries ..64

Quick Review of Points and Vectors..65
Points ..66

5

Vectors ..67

Writing Geometry Macros ..71
The Arrowhead Macro...72
The Panel Macro ..75

File Input/Output and Text Strings...81
What the Macro Will Do...82
Analyzing the Macro ...83
Calling a Macro from within a Macro...90
Passing Parameters to a Macro ...92

Using Dimensions Stored in a Data File ..95
What the Macro Will Do...96
Describing the Spigot ..96
Vector Analysis...98
Describing the Data File ..99
Analyzing the Macro ...99
Refining the Macro.. 101

Useful Macros... 103
Drawing Construction Lines at Angles to Existing Lines 104
Splitting a Line into Equal Segments .. 104
Drawing a Round-Ended Slot... 105
Drawing Regular Polygons .. 106
Fitting text around a circular object ... 107
Showing the Different Z-Levels of a Hidden-Line Drawing 107

Recording the System Operation .. 109
The ECHO Function ... 110
Using ECHO for Creating Macros .. 111

Using the Interface to Find a Command .. 113
What Command Will You Use? .. 114

Customizing.. 117
What Is the Creo Elements/Direct Drafting Environment? 118
Customizing the Creo Elements/Direct Drafting Environment 119
How Screen Menus are Created .. 119
Customizing the Screen Menus ... 124
Customizing for Local Directories... 124
Customizing the Keyboard .. 127
What is a Text Font? ... 129
How to Create a Text Font ... 134
Customizing the Startup Procedure.. 137
Customizing the Hatch Patterns... 140
The Keyboard Input Characters ... 142
The Keyboard Input Characters ... 143

Brief Description of Commands and Functions .. 145

Appendix A.Logical and Display Tables ... 191

6 Creo Elements/Direct Drafting Writing Macros

What are Logical and Display Tables? .. 193
Logical Table Access Functions ... 196
Display Table Functions .. 203
User Table Functions .. 219
Using Logical and Display Tables—Example 1.. 225
Using Logical and Display Tables—Example 2.. 229

Index.. 237

Contents 7

Preface

Creo Elements/Direct Drafting is a versatile 2D design and drafting system for
optimizing each stage of the design process. Using Creo Elements/Direct Drafting
you can quickly and easily create and modify 2D drawings.
The purpose of this manual is to explain how to write macros for use with Creo
Elements/Direct Drafting. Macros can speed up and automate many of your day-
to-day tasks.

9

Who Should Use This Manual
Read this manual if you are:

• A Systems Administrator

You are an experienced systems administrator, with experience in managing
UNIX-based and Windows-based operating systems. You are familiar with
startup files and customization files. You will use macros to simplify
customizing procedures for use by your group.

• Designer or Draftsperson

You are an experienced Creo Elements/Direct Drafting user. You perform
many repetitive tasks manually, and you want to know how to write macros to
automate these tasks. You do not need previous programming experience.

10

Purpose of this Manual
This manual gives information on how to do the following:

• Create geometry.
• Extract specifications from data files.
• Communicate with engineering program languages such as Pascal or C to

make complex calculations. (UNIX-Based Systems Only)
• Label drawings.
• Create parts lists.
• Customize startup procedures.
• Control screen menu display and function.
• Customize the keyboard.
• Customize text fonts.

11

How to Use This Manual
Systems Administrator
Here are some suggestions on how you should use this manual:

1. Read Chapters 1 through 4 for general information on writing macros.
2. Read Chapter 12 if you want to relate a macro command or function to a task

that you do manually with the user interface.
3. Read Chapter 13 for information on customization.
4. Refer to Chapter 14 for a brief description of a command or function.
5. Read Appendix A for information on logical and display tables.
Designer or Draftsperson
Here are some suggestions on how you should use this manual:

1. Read Chapters 1 through 4 for general information on writing macros.
2. Read Chapter 5 to refresh your memory on vectors.
3. Read Chapters 6 through 11 for specific details on tasks that you will use in

your normal work.
4. Read Chapter 12 if you want to relate a macro command or function to a task

that you do manually with the user interface.
5. Read Chapter 13 if you want to try customizing your own environment.
6. Read Chapter 14 for a brief description of a command or function.

12

How This Manual is Organized
Chapter 1 What is a Macro? contains an introduction to macros, and

shows you how to store, run, and debug your macro.
Chapter 2 Using the Editor to Write a Macro explains how to

use the built-in editor to write your macros.
Chapter 3 Macro Basics gives information on how to use syntax

diagrams, local and global variables, control statements,
parentheses, and defensive programming.

Chapter 4 Inquiring about the Environment and Elements
shows you how to access environment information such as
current units and current linetype, and how to restore any
environment information you change during the operation of
your macro.

Chapter 5 Quick Review of Points and Vectors brings you up
to the level of knowledge you need for macros.

Chapter 6 Writing Geometry Macros shows you how to do the
initial vector analysis and how to incorporate the analysis into
your macro.

Chapter 7 File Input/Output and Text Strings shows you
how to handle string data and how to extract strings from
ASCII files.

Chapter 8 Using Dimensions Stored in a Data File shows
you how to create geometry using tabulated data from files.

Chapter 9 Useful Macros gives a selection of macros you can use in
your everyday work.

Chapter 10 Recording the System Operation shows you how to
record the activities of Creo Elements/Direct Drafting
operations, and how to use the record to help you write a
macro.

Chapter 11 Using the Interface to Find a Command shows you
how to relate a macro command to a task that you perform on
the user interface.

Chapter 12 Customizing shows you how to customize such things as
startup, the environment, the keyboard, and text fonts.

Chapter 13 Brief List of Commands and Functions gives a 1-
line or 2-line description of each command and function.

Appendix A Logical and Display Tables provides you with the
information needed to use logical and display tables.

13

Online Help
For complete descriptions and syntax of all commands and functions, use the
online help facility.
For example, to get help on the MODIFY command, enter at the applications
command line:
help modify

The screen will clear and Creo Elements/Direct Drafting will display further
information about modifying your drawing.

14

Typographical Conventions
This manual uses the following typographical conventions:

Table 1. Conventions Used in This Manual

Convention Represents
Bold Menu paths, dialog box options, buttons, and

other selectable elements from the user interface.
For example: LINE GRID, SHOW LAYER, ZOOM,
and so on.

Courier User input, system messages, directories, and
file names.

15

1
What is a Macro?

Why Use a Macro? ..18
Creating a File for Your Macros ..19
Storing Your Macro..19
Deleting Your Macro ..20
Running Your Macro ..20
Debugging Your Macro ..20
Stopping a Macro ..23

This chapter gives a brief introduction to macros, and shows you how to store,
run, and stop a macro.

17

Why Use a Macro?
A macro is a quick and easy method of executing a sequence of commands
automatically. Little or no user input is required. You should consider writing a
macro for any sequence of commands that is frequently used by ME-CAD users.
For example, at least once a day you log out from your workstation. Before you
log out, you store your drawing and then type exit confirm on the command
line.
You can automate this procedure using the following macro, called Quit:
DEFINE Quit
{###}
{## This macro stores your current ##}
{## drawing in 'filename', then ends ##}
{## your ME-CAD session. ##}
{###}

STORE ALL DEL_OLD 'filename'
EXIT CONFIRM

END_DEFINE

You can see that the macro contains the sequence of commands that you enter
before you log out. The comments at the start of the macro help a user to
understand the macro.
The commands are stored in a file and executed when the macro is run. You run
the macro by typing the macro name on the command line, or by picking a slot on
screen menu.
Some major applications for macros are as follows:

• Creating geometry.
• Making calculations.
• Labeling drawings.
• Creating parts lists.
• Controlling screen menu display and function.
Before we discuss macros in detail, we will show you how to type your macros in
the built-in editor, and how to store macros.
You can create macros in two ways:

• With your favourite editor.
• With the screen editor that is built into your ME-CAD system software.
The built-in editor is similar to PC-based editors. All the examples in this chapter
will be done with the built-in editor.

18 Creo Elements/Direct Drafting Writing Macros

Creating a File for Your Macros
Before you write a macro, you must first create a file to store it. For example, you
might want to create a file called cad_mac.m. From within the ME-CAD
environment you type on the command line:
EDIT_FILE 'cad_mac.m'

If this file already exists, the system displays the file and you can add your macro.
If the file does not exist, the system creates an empty file. You type in your macro
as described later in Using the Editor to Write a Macro on page 25.

Storing Your Macro
To store your macro, and return to the ME-CAD screen, press [Ctrl] [D]. The
file is stored on your system disk. This is shown by the following message at the
bottom of your screen:
writing 'cad_mac.m'

If you list your current directory, 'cad_mac.m' appears in the list.
If you alter your file in the editor, you might decide that you don't want to keep
the changes. Hit [ESC] or [Break] to exit from the editor, and the changes will
not be written to disk.
You can add as many macros as you want to a file. The sequence of the macros in
the file is not important. But placing the macros in alphanumeric sequence by
name makes it easy to find a macro.
When you are writing and debugging a new macro, you may want to write this
new macro at the beginning of the file. The first page of a file is displayed when
you enter the editor using the EDIT_FILE command, so you don't need to scroll
through the file to find the macro. Later, when the macro is completely debugged,
you can move it to its correct alphabetical position in the file.
Another way to write and debug a new macro is to create a separate file for the
new macro. When the macro is fully debugged, you can append it to your normal
macro file. This method has two advantages:

• When you use the EDIT_FILE command, your text is displayed faster.
• The INPUT command executes faster. (The INPUT command compiles and

loads your macro, and is discussed in the next section).
It is advisable to keep separate files for each macro. You can then give the file the
same name as the macro. If your macro calls other macros, you may have to input
these other macros separately.
There is another method for storing less frequently used macros. Group similar
macros in one file. For example, all bolt macros could be stored in the file
'bolt.m', flange macros in 'flange.m'. Use macro names that are common
to all files. For example, the first bolt macro and the first flange macro are both

What is a Macro? 19

called macro1, the second bolt macro and the second flange macro are both
called macro2, and so on. Load each file as it is needed. Each time a file is
loaded, macros of the same name are overwritten. For example, the bolt macro1
overwrites the flange macro1, and so on. This means that valuable memory
space is not used by infrequently-used macros.
When you use the INPUT command within a macro, it must be used with the
qualifier IMMEDIATE, see also INPUT on page 38.

Deleting Your Macro
You can delete an individual macro from RAM using the DELETE_MACRO
command. This command can be useful if you need more memory space to load a
large drawing. For example, if you want to delete the macro called Quit, use the
following command:
DELETE_MACRO Quit

Running Your Macro
A macro must be compiled and loaded in RAM before you can run it. You
compile and load the macro by typing on the command line:
INPUT 'cad_mac.m'

Now that you have input the file, there are two ways to run a macro from this file.
These two methods are described now.

Running a Macro from the Command Line
You can run any macro by typing the macro name on the command line. If the file
cad_mac.m contains the macro Quit, you can run the macro by typing on the
command line:
Quit

The macro is executed line by line. The commands and statements are checked as
they are executed. This is similar to "interpreted" versions of the Basic
programming language. If an error is found, execution stops and a message is
displayed.

Debugging Your Macro
If the macro does not run, you must edit the macro with the editor. The procedure
for editing a macro is the same as for creating a macro: use EDIT_FILE to enter
the file, and then make alterations.

20 Creo Elements/Direct Drafting Writing Macros

When the file is displayed in the editor, you will see the first page of the file. Use
the arrow keys to scroll to the macro you want to alter. Examine the macro line by
line until you find the error. Most errors are simple, such as missing parentheses
and missing underscores.
If you cannot find the error quickly, debug your macro using the BREAKPOINT
function. Insert a BREAKPOINT in desired position in macro code. This can be
done either by editing the file on disk or by using EDIT_MACRO function. When
the code reaches a BREAKPOINT, the system goes into debug mode.
The breakpoint function is enabled by default. If you find that it is not working,
check that ENABLE_BREAKPOINT is set to ON.
To enable the BREAKPOINT function in Creo Elements/Direct Drafting:

• Click Miscellaneous and then, in the System group, click the Breakpoints
check box.

When you use a breakpoint and they are enabled, the system will display a
parameters table.
If already in debug mode and you have moved forward at least one token using
debugger command, BREAKPOINT keyword will set a breakpoint in current
position.
If you insert a BREAKPOINT between PARAMETER and LOCAL in a macro, the
debugger will break before the first command in macro.
Note that the breakpoint will be set for the current OSD session only, it will not be
added to correspondent file on disk.
Once in debug mode, use the following commands to step through your macro and
isolate the area where it is not working:

• STEP_NEXT: Use this action to step through macro code one token at the
time.

• STEP_OUT: Step out of current macro function.
• STEP_OVER: Step over the next token even if it is a macro function.
• STEP n: Step over several tokens in one step.
• SKIP n: Skip current token several times.
• CONTINUE: Continue with macro execution until the next breakpoint.
• GO: Execute the rest of the code disregarding all breakpoints.
• REMOVE_BREAKPOINT: Remove current breakpoint.
• ENABLE_BREAKPOINTS: Enable all breakpoints.
• LIST_BREAKPOINTS: List all breakpoints in an editor.
When you debug with BREAKPOINT, be aware of the following:

What is a Macro? 21

• Use the DISPLAY command to see variable values as you step through your
macro.

• Any Creo Elements/Direct Drafting function can be executed while in break
state.

• Creo Elements/Direct Drafting commands will interrupt the macro.
• When any macro in the call stack is modified, due to INPUT, EDIT_

MACRO, DELETE_MACRO, or DEFINE commands, the debugger will also
be interrupted.

• The debugger does not include a user interface. See the command prompt for
additional information, such as current command, last token, next token, and
next command.

• The debugger does not include a viewer for your code. To see your code as
you debug, use an external viewer.

When you have found the error and corrected it, press [Ctrl] D to return to the
ME-CAD screen. The new version of the file overwrites the old version on the
disk.
The compiled version of the file in RAM remains unchanged. The only way you
can alter the compiled version is to load the new version of the file into RAM
using the INPUT command. A common error is to edit the file and then run the
macro without using the INPUT command. This runs the old version of the
macro.
Input the file again by typing:
INPUT 'cad_mac.m'

Note
If you want to repeat commands you have typed previously, press the [PgUp]
key. If you want to enter a command that is similar to a previous command, press
[PgUp] key, and then edit the command.

The contents of cad_mac.m are reloaded from the disk and overwrite the old
copy in RAM. You can now re-execute the macro. A macro can be executed as
often as you like after the file is loaded.
To summarize, when you are writing and debugging a macro called Quit in a file
called cad_mac.m , use three steps:
EDIT_FILE 'cad_mac.m '
INPUT 'cad_mac.m '
Quit

There is a trace facility that is useful for debugging macros. This is described in
Using the Trace Facility on page 52.

22 Creo Elements/Direct Drafting Writing Macros

Stopping a Macro
If you want to stop your macro for any reason, such as an endless loop, use the
[Ctrl] [Break] key. The effect of [Break] depends on your operating
environment.

Note
If you press [Break] or [Again] when starting Creo Elements/Direct Drafting
with your workspace menu or when you are in the graphics screen, the interrupt
will not take effect until the system is ready to accept input.

For more information, refer to your Windows documentation.

What is a Macro? 23

2
Using the Editor to Write a Macro

Using the Keyboard Editing Keys..26
How to Enter and Leave the Editor..26
Using EDIT_PORT to Enter the Editor Quickly..26
How to Set and Use Markers ..27
Copying Text ...28
Using the Editor Commands...29
Using EDIT_MACRO...33

This chapter shows you how to use the built-in text editor to write your macros.
You will learn how to:

• Copy blocks of lines from one part of a file to another.
• Load from other files into the current file.
• Find the next occurrence of a string.
• Replace all occurrences of a text string with another text string.
• Right justify text.

25

Using the Keyboard Editing Keys
The simple editing keys on your keyboard can still be used within the editor.
These keys include the following:

• [Insert char] or [Ins]
• [Delete char] or [Del]
• [Clear line] or [Alt] [Del]
• [Clear display] or [Control] [Del]
• Arrow keys: [<] [>] [^] [v]

How to Enter and Leave the Editor
You can only enter the editor while you are in an ME-CAD environment. To enter
the editor, type EDIT_FILE followed by the name of the file you want to edit, in
single quotes. For example, if you want to edit a file called 'macros', type on
the command line:
EDIT_FILE 'macros'

If the file exists, it will be displayed on the editor screen. If it does not exist, the
editor screen will be blank.
If you want to leave the editor, and save the changes to the file, press [Ctrl]
[D]

If you want to leave the editor, but you do not want the changes to be written to
disk, press [ESC] or [Ctrl] [Break]

Using EDIT_PORT to Enter the Editor
Quickly
The EDIT_PORT command causes a small viewport to be opened on your ME-
CAD screen. This viewport is used by the editor and only appears when you
invoke the editor. The smaller you make the viewport, the faster you can enter and
leave the editor, because screen redraw times are less.
To use the command, type EDIT_PORT on the command line. You will see the
prompt:
Enter background color or border width or corner of new port

Pick the top left hand corner of your ME-CAD screen, followed by the diagonally
opposite corner of the required viewport.

26 Creo Elements/Direct Drafting Writing Macros

To test the result, type EDIT_FILE on the command line, followed by any file
name in single quotes. If the viewport is not the correct size, try again. The
viewport sizes remain in effect until you change them with another EDIT_PORT
command, or until you terminate your ME-CAD session with EXIT CONFIRM.
The next time you use your ME-CAD system, you must use EDIT_PORT again.
EDIT_PORT is useful when adding text to drawings. Such text is normally only a
few words. If you make a tiny viewport 8 cm wide by 2 cm high in the top left
hand corner of your ME-CAD screen, you will notice very fast redraw times.
Note that HELP_PORT works the same way. HELP_PORT speeds up access to the
help file by using a small viewport to minimize screen redraws.

How to Set and Use Markers
Many editor commands described later will not work properly without markers.
For example, if you want to copy a block of text from one part of your file to
another, you must mark either the beginning or the end of the block.
A marker is a character that identifies a line, but remains invisible in the file. The
system sets some markers automatically.
The following table shows the characters that are used as markers:

Markers Use
^ Set by the system to mark the first line of a file.
! Set by the system to mark the last line of a file.
0 . . . 9 Set by the user to mark any line of a file.

Let's try using some markers. From within your ME-CAD screen, create a new
file by entering on the command line:
EDIT_FILE 'markers'

Type some lines in the file, as follows:
AAAAAAAAA
BBBBBBBBBBBB
CCCCCCCCCCCC
DDDDDDDDDDDD
EEEEEEEEE
FFFFFFFFF

We have made the lines of Bs, Cs, and Ds longer than the other lines for easy
identification later.
Now try using the system-defined markers to move to the beginning and end of
the file. Here's how to do it.
Type $ (do not press [Enter]). The cursor moves to the bottom of the screen
with the $ symbol in front of it. The $ is the default escape character, which must
be typed before any of the editor commands can be typed.

Using the Editor to Write a Macro 27

Now type ^ and press [Enter]. The cursor moves to the first line of the file.
Type $! and press [Enter]. The cursor moves to the last line of the file.
You can set markers at any line in this file. Place the cursor on the line you want
to mark and enter:
$sm n

The $ symbol is the default escape character. sm is the set marker command. n is
a number from 0 through 9. The blank between sm and n is optional. The line will
be marked with that number, but the mark will not appear on the screen.
As an example, let's set marker 1 at the line of Ds. Move the cursor within the line
of Ds, then enter the following:
$sm1

Now move the cursor to another line and enter:
$1

The cursor jumps to the line of Ds.

Copying Text
Now let's try copying a block of text. We want to copy the three lines of Bs, Cs,
and Ds and place these three lines after the line of Es. Here's how to do it:

• To define the block of three lines, you can mark the line of Bs and then place
the cursor on the line of Ds. Or you can mark the line of Ds and then place the
cursor on the line of Bs. We already have marker 1 on the line of Ds, so let's
use this marker.

• To insert the text after the line of Es, set a marker at the line of Es. Move the
cursor within the line of Es, then enter the following:
$sm2

• Place the cursor anywhere on the line of Bs.
Remember that the markers are invisible. But if we could see the markers, the file
might look like this:
AAAAAAAAA
BBBBBBBBBBBB * (cursor line)
CCCCCCCCCCCC
DDDDDDDDDDDD 1 (marker)
EEEEEEEEE 2 (marker)
FFFFFFFFF

Just to remind you: we want to copy the lines of Bs, Cs, and Ds and place these
three lines after the line of Es. Now enter the following:
$c12

The block of text from the current cursor position to marker 1 will be copied after
marker 2. The file now looks like this:
AAAAAAAAA

28 Creo Elements/Direct Drafting Writing Macros

BBBBBBBBBBBB
CCCCCCCCCCCC
DDDDDDDDDDDD
EEEEEEEEE
BBBBBBBBBBBB
CCCCCCCCCCCC
DDDDDDDDDDDD
FFFFFFFFF

Using the Editor Commands
This section describes all the editor commands. The following terminology is used
in the descriptions:

• An item enclosed in square brackets [. . .] is optional.
• An item enclosed in single quotes '. . .' means the string you type must be

enclosed in single quotes.
• An item in italics is a generic description of the item to be typed. For example,

the command:
$marker

means that you must type a numeric value for marker, such as 2.

As another example, the command to load a file is:
L 'filename'

This means you must type the name of a file (in single quotes) after the L. So,
if the file to be loaded is cad_mac.m, you must type:
L 'cad_mac.m'

• The current line is the line containing the cursor.
The next table shows the full set of editor commands. Before typing any editor
command, you must type $. The cursor moves to the bottom of the screen with the
symbol $ in front of it. Remember that $ is the default escape character.

Command Effect of Command
marker Moves the cursor to the line containing the specified

marker. For example, entering $ 4 moves the cursor to
the line containing marker number 4.

'string' Moves the cursor to the next occurrence of the specified
string. For example, entering $ 'SolidDesigner'
moves the cursor to the next occurrence of the string
SolidDesigner.

? ['keyword'] This displays the system help file at the section
describing the keyword. If you enter ? without a
keyword, the section explaining the screen editor is

Using the Editor to Write a Macro 29

Command Effect of Command
displayed. To return to your file press [Ctrl] [D].

AC Adjust Center. For each line of a paragraph, this
command centralizes the text between the margins.

AF Adjust Fill. This command flows a paragraph between
the margins. The left edge is justified and the right edge
is ragged.

AJ Adjust Justify. This command flows a paragraph between
the margins. Left and right edges are justified. This
means that the spacing between words will vary.

Note
Do not use AF or AJ to edit macros as each line will be joined to the end of the
previous line. These commands should be used only for editing text.

Command Effect of Command
C marker1 marker2 Copy. Copies all text lines between the

current line and marker1 (inclusive)
and inserts them after marker2. For
example, entering $C34 will copy all
the text between the current line and
marker 3 and insert it after marker
4.

D marker Delete. Deletes all text lines between
the current line and the marker
(inclusive).

H ['keyword'] Help. This is the same as the ?
command.

L 'filename' Load. Copies all text lines from the
specified file and inserts them after the
current line. For example, entering $L
'cad_macros' will load the file cad_
macros after the current line.

M marker1 marker2 Move. Moves all text lines between the
current line and marker1 (inclusive)
and inserts them after marker2.
Source and destination must not
overlap. For example, entering $M67
will move all text between the current

30 Creo Elements/Direct Drafting Writing Macros

Command Effect of Command
line and marker 6 and place the text
after marker 7.

N Next. Repeats the last string search.
O 'filename' [marker] Overwrite. Copies all text lines between

the current line and the marker
(inclusive), and writes them to a file
with the specified name. If no marker is
specified, the cursor position is ignored
and the whole file is copied. Any
existing file with the specified name is
overwritten. For example, entering $O
'cad_macros' ! will copy the text
between the current line and the last
line (inclusive) into a file called cad_
macros. If you omit the !, the whole
file is copied.

Command Effect of Command
R [V] ['string1']
['string2'] [marker]

Replace. Replaces all occurrences of
string1 with string2 between the
current line and the marker (inclusive). The V
lets you verify each change of string. If
you omit the marker, only one replacement is
made. If either string is omitted, the default is
taken as the corresponding last-used
string. For example, if you enter
$RV 'black' 'white' !

the cursor moves to the next occurrence of
black. You then have the option of
replacing it by white, or moving to the next
occurrence of black:
R replaces,
' ' does not replace,
S aborts.
Pressing R replaces the black by white.
Pressing the space bar moves to the next
occurrence of the black. Pressing S aborts
the operation.

SE 'character' Set Escape. Redefines the escape character.
This character causes the cursor to jump from

Using the Editor to Write a Macro 31

Command Effect of Command
your file to the editor command line. The
default escape character is $.
You can use any character except 0 ... 9, A
... Z, a ... z, ... ! and ?. A new
escape character remains in force until
redefined or until the system is switched off.
If you wish to define the escape character as
#, enter
$ SE '#'

SL Set Left margin. Sets the left margin to the
current cursor position.

SM n Set Marker. Sets the marker specified at the
current line. n can have any value from 0
through 9. The space between SM and n is
optional. For example, entering $ SM7 sets
the marker 7 at the current line.

Command Effect of Command
SR Set Right margin. Sets the right margin to the

current cursor position.
W 'filename' [marker] Write. Copies all text lines between the

current line and the marker (inclusive) and
writes them to a file with the specified name.
If no marker is specified then the whole file
is copied. If a file with that name already
exists then the operation is aborted. For
example, to copy the text between the current
line and marker 6 to a file called cad_
macros, enter the following:
$ W 'cad_macros' 6

Note
SL, SM and SR will not adjust the text until you use AF or AJ. Remember that AF
and AJ are not normally used with macros.

32 Creo Elements/Direct Drafting Writing Macros

Using EDIT_MACRO
In this chapter, all our work on macros has been done using EDIT_FILE. The
EDIT_FILE command is useful because you can examine any file using this
command; the file need not contain a macro.
The EDIT_MACRO command can be used only for macros.
We will first explain the EDIT_MACRO command, and then compare it with
EDIT_FILE. After that, you can decide which command you want to use with
your macros.
Before you can use the EDIT_MACRO command, the macro must already exist in
RAM. There are two ways to put a macro in RAM. We will discuss each of these
methods in the next few paragraphs.

Using the INPUT Command with an Existing File
You are already familiar with this method, since this is the method we have used
throughout this chapter.
When you use the INPUT command within a macro, it must be used with the
qualifier IMMEDIATE, see also INPUT on page 38.

Typing the Macro on the Command Line
With this method, you type DEFINE followed by the name of the macro. For
example, if your macro is called Slot_mac, then type:
DEFINE Slot_mac

The system responds with the prompt:
Enter macro definition

Now type in the remaining lines of your macro, one at a time. Each time you press
[Enter], the system responds with the prompt:
Enter macro definition

You can now run the macro by typing the name of the macro on the command
line. Note that with this method you do not have to use INPUT.
When a macro is in RAM, you can edit the macro by typing EDIT_MACRO on the
command line, followed by the name of the macro. For example, you can type:
EDIT_MACRO Slot_mac

The macro will appear in the editor, and it can be edited as if you had used the
EDIT_FILE command. To leave the editor, press [Ctrl] [D]. To run the
macro, type the macro name on the command line. You do not have to use the
INPUT command.

Using the Editor to Write a Macro 33

Note that if you enter the editor using EDIT_MACRO, the macro is not saved by
pressing [Ctrl] [D]. To save the macro, type SAVE_MACRO on the command
line, followed by the name of the macro.
The system responds with the prompt:
Enter SCREEN, DEL_OLD, APPEND or 'file name'

Type SCREEN if you want to view the macro in the editor. Type DEL_OLD to
overwrite an existing file of the same name. Type APPEND to add the macro to the
end of an existing file. For a new file, type the 'file name'.

Comparison of EDIT_FILE and EDIT_MACRO
EDIT_MACRO is superior if you need several attempts to debug a macro, because
you do not have to use INPUT after each time that you make changes.
The disadvantage of EDIT_MACRO is that the macro is not automatically saved
when you use [Ctrl] [D] to exit from the editor. If you leave your Creo
Elements/Direct Drafting environment using EXIT CONFIRM, your macro may
be lost.

34 Creo Elements/Direct Drafting Writing Macros

3
Macro Basics

What Does a Macro Consist Of?...36
Minimum Macros...38
Syntax Diagrams...39
Explaining Local Variables ...40
Why Use Local Variables? ...45
Do We Declare Variable Types? ...46
Using Control Statements ..47
Using Parentheses ..50
Using the Trace Facility..52
Indenting the Lines of a Macro..56
Defensive Programming ..56
Macro Commands ...58
Built-in Operations...58

This chapter describes the structure of a macro, shows the differences between
local and global variables, explains when to use parentheses, and shows you how
to use the trace facility to debug your macros.

35

What Does a Macro Consist Of?
A macro can consist of six sections as follows:

• DEFINE macroname
• Parameters
• Local Variables
• User Input
• Macro Body
• END_DEFINE
A macro need not contain all of these sections. In the following example, you can
see each of the six sections:
DEFINE Circle_mac

PARAMETER P2
LOCAL P1

READ 'Indicate center of circle' P1

CIRCLE CENTER P1 P2 END

END_DEFINE

This macro is activated by typing Circle_mac on the command line, followed
by a value for the radius of the circle. This is obviously not a very useful macro,
but in only a few lines we can show all the parts of a macro.

DEFINE
This line always starts with the word DEFINE, followed by the name of the
macro. In our example, the name of the macro is Circle_mac:
DEFINE Circle_mac

Note the use of upper and lower case when writing macros. We use upper and
lower case to differentiate between macro names and variables, and commands
and functions.
Keywords such as commands and functions are all upper case. For example,
DEFINE, LOCAL, and END_DEFINE are keywords.
The system accepts a keyword typed in upper case or lower case, but not mixed
case. For example, the system accepts DEFINE or define, but not Define,
dEFINE, DeFiNE, or any other mixed case version.
The first letter of a macro name is normally upper case. So if a term such as
Circle_mac appears in a macro listing you will know that Circle_mac is a
macro and not a keyword.

36 Creo Elements/Direct Drafting Writing Macros

We will always use upper and lower case correctly in this chapter, but you are free
to type whatever is easier. For example, we may ask you to type on the command
line:
EDIT_FILE 'cad_macros'

Here, you can type:
edit_file 'cad_macros'

Note
Any string in single quotes must be typed exactly as shown.

Parameters
This section defines variables that are passed to the macro as arguments. If there is
more than one parameter, they must be listed in a specific sequence. For more
information on parameters, refer to File Input/Output and Text Strings on page 81.
There is only one parameter statement in our example macro:
PARAMETER P2

Local Variables
Variables that exist only within the macro are defined here. Any variables that
appear in the user input section of the macro, or the body of the macro, are
normally defined as local variables. We will discuss local variables in more detail
later in this chapter. There is only one local variable in our previous example:
LOCAL P1

User Input
Variables that are unknown to the processor at compile time must be supplied by
the user at run time. In the following example, the value for P1 is supplied by the
user:
READ 'Indicate center of circle' P1

The system displays the prompt:
Indicate center of circle

The next value entered by the user will be assigned to the variable P1. The user
can type in the x,y coordinates of the point, or pick the point. In either case, the
coordinates are assigned to the variable P1.
Local variables must be defined at the beginning of the macro. However, a
programmer might prefer to define these variables after writing the rest of the
macro.

Macro Basics 37

Macro Body
The body of the macro contains the executable code. This is where the work gets
done. The start of each line contains a command or function followed by options,
expressions, or operators. These terms will be discussed later in this chapter. Here
is the body of our example macro:
CIRCLE CENTER P1 P2 END

END_DEFINE
This statement marks the end of the macro.

INPUT
When you use the INPUT command within a macro, it must be used with the
qualifier IMMEDIATE, for example:
DEFINE xyz
LINE 0,0 1,1 END
INPUT IMMEDIATE 'filename'
....
....

END_DEFINE

Minimum Macros
We have seen that a macro can consist of six sections. But not all macros need six
sections. If the macro does not accept arguments, there will be no PARAMETER
section. If the macro does not use variables, there will be no section defining local
variables. There may be no user input section.
The absolute minimum macro cannot have less than three sections:

• DEFINE
• Body
• END_DEFINE
The macro at the beginning of this chapter is an example of a minimum macro.
Here it is again:
DEFINE Quit

{###}
{## This macro stores your current ##}
{## drawing in 'filename', then ends ##}
{## your ME-CAD session. ##}
{###}

STORE ALL DEL_OLD 'filename'
EXIT CONFIRM

38 Creo Elements/Direct Drafting Writing Macros

END_DEFINE

Note that we write statements on separate lines to make them easier to understand.
The computer understands the macro even if you write it as:
DEFINE Quit STORE ALL DEL_OLD 'filename' EXIT CONFIRM END_DEFINE

Syntax Diagrams
This is a good time to introduce you to syntax diagrams. It will help you
understand why the computer does not care whether you write a sequence of
commands on separate lines or all on the same line.
If you study the syntax diagram for DEFINE, you can see why the computer
understands the macro. The syntax diagrams for all commands and functions are
in the online help. For convenience we have included the diagram for DEFINE:
DEFINE function

|
v

(DEFINE)
|
v

|macro name|
|
v
+---------------<-----------------,
| |
v |
+-->(PARAMETER)-->|param. name|-->'
|
v
+----------------<-----------------,
| |
v |
+-->(LOCAL)-->|local macro name|-->'
|
v
+-----<-------,
| |
v |
+-->|token|-->'
|
v

(END_DEFINE)
|
v

After the DEFINE statement, the computer expects to see:

Macro Basics 39

• the keyword PARAMETER,
• the keyword LOCAL, or
• a token.
If the computer sees any of these three items, it continues to the next statement.
Otherwise the macro stops.
Look under TOKEN in the online help, and you see that a command is an
acceptable token.
Now look at the syntax diagram for STORE:
STORE command

->(STORE)-->+------>+-+--->(ALL)---->+->+-------------+->|file name|->
| | | | | |
`-(MI)->' `->|partname|->' `->(DEL_OLD)->'

First of all, notice that STORE is a command, so STORE can be used as a token.
After STORE, we must have either the keyword MI, or the keyword ALL, or the
name of a part. We have ALL.
After ALL, we must have DEL_OLD or a filename. We have DEL_OLD first, and
then a filename in single quotes.
You can verify that EXIT must be followed by CONFIRM.
Now try the macro without ALL:
DEFINE Quit STORE DEL_OLD 'workfile' EXIT CONFIRM END_DEFINE

You will get the message:
Enter option or 'part_name'

The computer is confused, because it expects MI, ALL, or a part name.
So you see that writing your macros line by line helps human readers, but the
computer relies on algorithms such as syntax diagrams for its understanding.

Explaining Local Variables
Local variables are known only to the current macro, or any macro called by the
current macro. Variables that are not defined as local are automatically global.
Global variables are visible to all macros. In general, you should localize all
variables. Global variables can be dangerous and you should avoid using them.
To understand the difference between local and global variables, type the
following three macros into a file. The three macros are very similar, so type the
first macro and then use block copying for the other two. You can omit any
comments.
DEFINE Outer_macro

{##}

40 Creo Elements/Direct Drafting Writing Macros

{## This macro shows the use of ##}
{## global variables ##}
{##}

LET X 5 {initialize the variable "X"}
DISPLAY_NO_WAIT ('outer X = '+STR(X))

{display a message on the
command line }

WAIT 3 {allow time to read the message}
Middle_macro {call another macro }
DISPLAY_NO_WAIT ('outer X = '+STR(X))
WAIT 3

END_DEFINE

DEFINE Middle_macro
DISPLAY_NO_WAIT ('middle X = '+STR(X))
WAIT 3
Inner_macro
DISPLAY_NO_WAIT ('middle X = '+STR(X))
WAIT 3

END_DEFINE

DEFINE Inner_macro
DISPLAY_NO_WAIT ('inner X = '+STR(X))
WAIT 3
LET X 20
DISPLAY_NO_WAIT ('inner X = '+STR(X))
WAIT 3

END_DEFINE

Note the use of comments enclosed in braces {}. Anything enclosed in braces is
ignored by the compiler. Comments help other readers understand your macro. If
your macro is very complex, comments may help you understand it—especially
six months later!
Your comments should explain the purpose of the command. The user can use the
syntax diagrams to understand the command. A comment such as:
{allow time to read the message}

is more revealing than:
{wait approximately 3 seconds}

Note
Comments cannot be nested. This means that if a section of code contains
comments, you cannot "comment out" this code during debugging.

You can see that outer_macro calls middle_macro, which in turn calls
inner_macro. This is an example of nested macros.

Macro Basics 41

None of the macros use local variables, so the variable X is a global variable. This
means that X is available to all three macros.
Input the file containing the three macros, then type on the command line:
Outer_macro

The command line output should be, in sequence:
'outer X = 5'
'middle X = 5'
'inner X = 5'
'inner X = 20'
'middle X = 20'
'outer X = 20'
Enter command

Before discussing global variables, let's have a quick look at some of the macro
statements.
DISPLAY_NO_WAIT is used to display a message on the command line. After
the message is displayed, no user action is required. This function differs from
DISPLAY, which requires the user to press a key in order for the macro to
continue.
DISPLAY_NO_WAIT will first print:
outer X =

What does STR(X) do? X is a NUMBER with some kind of internal machine
representation using bits "set" or "cleared". Only ASCII characters can be
displayed using the DISPLAY_NO_WAIT statement. STR(Age) converts the
internal representation of X to an equivalent ASCII string, so that it can be
displayed.
When used with strings, the + symbol concatenates the strings. For example, let's
assume String1 is 'to', String2 is 'get', and String3 is 'her'. Then
String1+String2+String3 is together. Any blanks inside the single
quotes are also displayed.
WAIT 3 makes the system wait for approximately three seconds after the message
is displayed. This gives you time to read the message.
The Middle_macro statement calls another macro that must be known to the
system at run time. Since our three macros are all in the same file, the system can
find Middle_macro when required.
Now, back to global variables. You can see that the value of X equal to 5, defined
in Outer_macro, was known to the middle and inner macros. In Inner_
macro, we changed the value of X to 20. This was known to the middle and
outer macros.
Now add a line to the middle macro, after the DEFINE statement, as shown in the
following example:
DEFINE Middle_macro
LOCAL X {added}

42 Creo Elements/Direct Drafting Writing Macros

DISPLAY_NO_WAIT ('middle X = '+STR(X))
WAIT 3
Inner_macro
DISPLAY_NO_WAIT ('middle X = '+STR(X))
WAIT 3

END_DEFINE

Input the file, and type Outer_macro on the command line. The output should
be:
'outer X = 5'
***The macro X is not defined

The system is indicating that it does not know the value of X. This is because X is
now a local variable in Middle_macro. Other variables of the same name in
any outer macro are not known to Middle_macro.
To make the macro run, add another line to the middle macro as shown:
DEFINE Middle_macro
LOCAL X
LET X 10 {added}
DISPLAY_NO_WAIT ('middle X = '+STR(X))
WAIT 3
Inner_macro
DISPLAY_NO_WAIT ('middle X = '+STR(X))
WAIT 3

END_DEFINE

Input the file, and type Outer_macro on the command line.
Now the output is:
'outer X = 5'
'middle X = 10'
'inner X = 10'
'inner X = 20'
'middle X = 20'
'outer X = 5'
Enter command

Here's what has happened:

• The LOCAL X statement in Middle_macro makes Middle_macro a
watertight shell. Values of X cannot penetrate this shell. This means that values
of X cannot be passed inwards from Outer_macro to Middle_macro, or
outwards from Middle_macro to Outer_macro. But X can be passed
inwards to any macro called by Middle_macro, unless any of these inner
macros is also watertight to X.

• When X is set equal to 10 in Middle_macro, this value can then be passed
to Inner_macro.

Macro Basics 43

• When X is set equal to 20 in inner_macro, this value can be passed
outwards to Middle_macro.

• Since X is a local variable in Middle_macro, Outer_macro does not
know the value of X from Middle_macro. The value of X is the same value
that was originally set in Outer_macro, which is 5.

Finally, let's make X a local variable in all three macros:
DEFINE Outer_macro
LOCAL X {added}
LET X 5
DISPLAY_NO_WAIT ('outer X = '+STR(X))
WAIT 3
Middle_macro
DISPLAY_NO_WAIT ('outer X = '+STR(X))
WAIT 3

END_DEFINE

DEFINE Middle_macro
LOCAL X
LET X 10
DISPLAY_NO_WAIT ('middle X = '+STR(X))
WAIT 3
Inner_macro
DISPLAY_NO_WAIT ('middle X = '+STR(X))
WAIT 3

END_DEFINE

DEFINE Inner_macro
LOCAL X {added}
LET X 15 {added}
DISPLAY_NO_WAIT ('inner X = '+STR(X))
WAIT 3
LET X 20
DISPLAY_NO_WAIT ('inner X = '+STR(X))
WAIT 3

END_DEFINE

Input the file and type Outer_macro on the command line. The output is
follows:
'outer X = 5'
'middle X = 10'
'inner X = 15'
'inner X = 20'
'middle X = 10'
'outer X = 5'
Enter command

Do you understand the output?

44 Creo Elements/Direct Drafting Writing Macros

Why Use Local Variables?
One important reason for using local variables is to make our macros as watertight
as possible to avoid "side effects". Side effects occur when a variable is
accidentally influenced by a variable of the same name in an inner macro.
Your office macros library may contain a useful macro that is exactly what you
need to avoid writing a large block of code in your macro. You want to call this
macro from your macro without worrying whether the called macro uses variable
names that conflict with your variable names. The called macro may call another
macro, which in turn calls a third macro, and so on. You don't want to read every
line of code in these macros to find conflicting variables. If the writer of these
macros has used local variables, you don't have to worry.
As an example, the following macro may not behave in the way the programmer
intended:
DEFINE Outer_loop
LOCAL X
LET X 1 {initialize the loop counter}
WHILE (X < 3) {while X is less than 3,

execute the code up to the next
END_WHILE statement}

DISPLAY_NO_WAIT ('outer X = '+STR(X))
WAIT 3
Inner_loop
LET X (X+1) {increment the loop counter}

END_WHILE
END_DEFINE

DEFINE Inner_loop
LET X 1
WHILE (X < 4)

DISPLAY_NO_WAIT ('inner X = '+STR(X))
WAIT 3
LET X (X+1)

END_WHILE
END_DEFINE

Will the macro give the following output? If not, why not?
'outer X = 1'
'inner X = 1'
'inner X = 2'
'inner X = 3'
'outer X = 2'
'inner X = 1'
'inner X = 2'
'inner X = 3'
Enter command

Now that you are an expert on local variables, you know what the output should
be.

Macro Basics 45

Since variables such as X,I, and N are so commonly used as counters in loops,
you can see how important it is for the programmer to shield these values from
other macros.

Do We Declare Variable Types?
Those of you with some knowledge of programming know that in most
programming languages variables must be declared. For example, in Pascal we
have variables such as integer, real, and char. In C we have int, float, char, and so
on.
Declaring a variable means that a memory location of the correct size is reserved
for that variable.
In our macros, we do not formally declare variables.
The nearest we come to declaring a variable is when we use a READ statement.
The read statement produces a command line prompt for the user to provide some
input. Here are some examples:
DEFINE Read_test
READ STRING 'Enter file name' File

{The string 'Enter file name'
appears on the command line. You must
enter a string is single quotes. The
string is assigned to the variable,
"File"}

READ NUMBER 'Enter your age' Age
READ PNT 'Enter a point' P1
READ PNT 'Digitize a point' RUBBER_LINE P1 P2
DISPLAY_NO_WAIT ('File = '+File)
WAIT 3
DISPLAY_NO_WAIT ('Age = '+STR(Age))

{"Age" is converted to an ASCII
string, then printed after 'Age = ' }

WAIT 3
DISPLAY_NO_WAIT ('P1 = '+STR(P1))
WAIT 3
DISPLAY_NO_WAIT ('P2 = '+STR(P2))
WAIT 3

END_DEFINE

To save typing, we have not used local variables.
Look at the first READ statement:
READ STRING 'Enter file name' File

When you run the macro (try it!), the prompt appears on the command line:
Enter file name

46 Creo Elements/Direct Drafting Writing Macros

You must now enter a string in single quotes. If you forget the single quotes, the
system again displays the same prompt. This is the advantage of stating the type
of variable immediately after the READ statement: if you provide the wrong type
of input, the system re-executes that macro line until the input matches the type
specified.
For the second READ statement, if you try to enter a number in single quotes, or
enter a point instead of a number, the prompt is again displayed. So you are
alerted if you try to enter values that do not satisfy the type NUMBER.
It is possible to use READ statements without specifying the type, such as
STRING or NUMBER. Then the system accepts any incorrect data while the READ
statement is being executed. The system will not complain until the point in the
macro where it uses the data. In our macro, this would be during the DISPLAY_
NO_WAIT statement. Try removing one of the type statements after a READ
statement. Run the macro, and then supply some deliberately incorrect data.
Did you notice that we used STR(Age) and STR(Point), but not
STR(File)? Remember that STR(Age) converts the internal representation of
Age to its ASCII equivalent, so that it can be displayed. STR(Point) does the
same thing. File is already an ASCII string, exactly as entered by the user, so it
does not need conversion.
The following example shows how to feedback an existing/calculated value to the
screen. The DEFAULT option evaluates it's parameter and puts the result into the
user input line. Pressing [Return] will then enter the (possibly edited) value to
satisfy the READ request.
DEFINE Test
LOCAL Value
LET Value (100/2)
READ NUMBER 'Current value is:' DEFAULT Value Value
DISPLAY (STR Value)
END_DEFINE

Using Control Statements
We do not always want macro statements to be executed in the sequence that they
appear in the macro. We may want some statements to be executed several times.
We may want some statements to be executed only if a specific condition is true.
Control statements are used to alter the way a macro executes.

WHILE ... END_WHILE
We used a WHILE statement in an earlier section, "Why Use Local Variables?"
Part of the macro is repeated here:
DEFINE Outer_loop
LOCAL X
LET X 1 {initialize the loop counter}

Macro Basics 47

WHILE (X < 3) {while X is less than 3,
execute the code up to the next
END_WHILE statement}

DISPLAY_NO_WAIT ('outer X = '+STR(X))
WAIT 3
Inner_loop
LET X (X+1) {increment the loop counter}

END_WHILE
END_DEFINE

As long as X is less than 3, the code between WHILE and END_WHILE is
executed. Before the WHILE statement, X is set to 1, and X is incremented by one
each time the loop is executed. So this loop should execute twice (not three
times!). In fact, because of side effects caused by global variables in the inner
macro, this loop only executed once.
You can see that a WHILE ... END_WHILE construct is used to control the
number of times a loop executes. An important feature of this construct is that the
loop need not be executed even once. If the condition after the WHILE statement
is false at entry to the loop, the loop will never be executed. Later, we will look at
the REPEAT ... UNTIL construct, which produces a loop that must be executed
at least once.

LOOP... EXIT_IF ... END_LOOP
We saw that the WHILE ... END_WHILE construct makes a conditional test at
the beginning of the loop. In the LOOP ... EXIT_IF ... END_LOOP
construct, the conditional test can be done at any point in the loop.
In the following code fragment, the user is prompted for a value. If the user does
not supply the correct value, the prompt is displayed again until the correct value
is entered.
LOOP
READ NUMBER 'Enter a fractional value for the split' Fract

EXIT_IF ((Fract>0)) AND (Fract< 1))
END_LOOP

Any number of EXIT_IF statements can be used in the body of the loop, as
shown in the following outline:
LOOP
...
...

EXIT_IF
...
...

EXIT_IF
...
...

END_LOOP

48 Creo Elements/Direct Drafting Writing Macros

If no EXIT_IF statement is used, the macro only stops when the user enters END
or begins a command. Here is an example:
DEFINE Circ_rad

{Create several circles with the same }
{radius, or several circles passing through the same peripheral}
{point }

{ local variables here }

READ 'Indicate peripheral point or enter radius or END' P2
LOOP
READ 'Indicate center of circle' P1
CIRCLE CENTER P1 P2
END

END_LOOP
END_DEFINE

What happens if we put the first READ statement inside the LOOP ... END_
LOOP construct? Here is the altered macro:
DEFINE Circ_rad
LOOP
READ 'Indicate peripheral point or enter radius or END' P2
READ 'Indicate center of circle' P1
CIRCLE CENTER P1 P2
END

END_LOOP
END_DEFINE

The LOOP ... EXIT_IF ... END_LOOP construct is very useful because the
loop can be terminated at any point, not just the beginning or end. Also, as we
have seen, the user can terminate the macro by entering END.
Note that if the user enters END, the complete macro is terminated, not just the
loop. Do not expect the macro to jump out of the loop and continue executing
statements after the END_LOOP.

REPEAT ... UNTIL
This construct is similar to the LOOP ... EXIT_IF ... END_LOOP construct
with the EXIT_IF statement placed just before the END_LOOP. Since the
conditional test following the UNTIL is not made until the end of the loop, this
loop will always be executed at least once.

IF ... ELSE_IF ... ELSE ... END_IF
The IF family of statements are used to make decisions. Depending on the
decision, some parts of the macro will be executed and other parts will not.

Macro Basics 49

In the following code fragment, users are being asked whether they want a
construction line to be horizontal, vertical, or perpendicular to an existing line:
READ "ENTER 'H' FOR HORIZ, OR 'V' FOR VERT, OR 'P' FOR PERP" Q
IF (Q='H')
C_LINE HORIZONTAL P2 {if Q='H', only this statement}

{is executed}
ELSE_IF (Q='V')

C_LINE VERTICAL P2 {if Q<>'H', but Q='V', only these}
LET X 3 {two statements are executed}

ELSE
C_LINE PERPENDICULAR P1 P2 {if Q<>'H', and Q<>'V',}

{but Q='P', only this statement is}
{executed}

END_IF

The conditions are evaluated from the top downwards, in the form of a ladder. As
soon as a true condition is found, the statements associated with the condition are
executed, and the rest of the ladder is ignored.
You can use as many ELSE_IF statements as you need, or none at all. You can
have only one ELSE statement, and it must come at the end. The final ELSE is the
default condition. In other words, if all other conditional tests fail, then the last
ELSE statement is executed. If the final ELSE is not present, and if the other
conditions are false, then no action is taken. Sometimes the final ELSE is used in
defensive programming to handle errors.
The absolute minimum IF statement has no ELSE_IF or ELSE. For example:
IF (X = 4)
LET P2 P5

END_IF

IF statements can be nested, but each IF must have its own END_IF. We can
expand the previous example:
IF (X < 6)
IF (X = 4)

LET P2 P5
END_IF
LINE TWO_PTS P1 P2 END

END_IF

Using Parentheses
One problem with any programming language is when to use parentheses. The
following guidelines may give some help.

Boolean Expressions
Always use parentheses with boolean expressions.

50 Creo Elements/Direct Drafting Writing Macros

A boolean expression, sometimes called a conditional expression, is any
expression that has the value true or false.
Boolean expressions are used in the test part of the four major constructs:
IF (boolean expression) ... END_IF
LOOP...EXIT_IF (boolean expression) ... END_LOOP
REPEAT ... UNTIL (boolean expression)
WHILE (boolean expression) ... END_WHILE

Arithmetic, Algebraic, and Trigonometric
Expressions
Always use parentheses when an expression is used as a token.
Examples of expressions are as follows:

• X + Y
• X - 5
• X - 5.147
• X * 312
• X/312
• X DIV Y
• Point1 + 4.29,3.42
• SIN 30
• SIN (Angle3 + 30)
• SQRT 16.238
• SQRT (X + 16.238)
• LEN 'Have a nice day!'
See the online help for a complete list of possible tokens. If the syntax diagram
requires a token, and any of the above expressions are used, then the expression
must be enclosed in parentheses. For example:
LET Radius1 (X + Y)
LET Radius1 ((X + Y) * COS 60)
LET Point2 Point1
LET Point2 (Point1 + 4.29,3.42)
DISPLAY_NO_WAIT Point2
DISPLAY_NO_WAIT (Point1 + 4.29,3.42)

The above examples show some interesting points. Lets look at these examples
one by one.
Look at the syntax diagram for LET in the syntax chapter. You see that LET is
followed by the name of a variable, and then by a token. In the first example, X +
Y is an expression used as a token, so it must be enclosed in parentheses.

Macro Basics 51

Now look at the second example. Here the expression is
(X + Y) * COS 60

In this expression, we need the parentheses to force the correct order of
evaluation. If this expression, including parentheses, is used as a token then a
further set of parentheses is necessary.
The third example shows that a simple token does not require parentheses:
LET Point2 Point1

If this simple token is modified so that it becomes an expression, then parentheses
are necessary:
LET Point2 (Point1 + 4.29,3.42)

Note that the following statement is perfectly acceptable:
LET Point2 (Point1)

Look at the syntax diagram for DISPLAY_NO_WAIT in the syntax chapter and
you will see that DISPLAY_NO_WAIT must be followed by a token. The
examples for DISPLAY_NO_WAIT are similar to the last two examples for LET.
You can see from the previous examples that a LET statement sometimes requires
the token to have parentheses, and sometimes not. A good rule in the early days of
your macro writing might be: Always use parentheses with a LET statement.

Using the Trace Facility
Trace is a useful debugging tool. We want to introduce you to Trace at

this point because you can see how boolean expressions and other expressions are
evaluated.
Here is the macro we are going to trace:
DEFINE Parenth
LET P1 (0,0) {parentheses not necessary}
LET P2 (10,0) {parentheses not necessary}
LET X (1) {parentheses not necessary}
WHILE (X < 5) {parentheses necessary}

LET P1 (P1 + 0,10) {parentheses necessary}
LET P2 (P2 + 0,10) {parentheses necessary}
LINE TWO_PTS P1 P2 END
LET X (X + 1) {parentheses necessary}

END_WHILE
END_DEFINE

The macro will draw four lines. When X equals 1, a line is drawn from 0,0 to
10,0. When X equals 2, a line is drawn from 0,10 to 10,10, and so on.
We have noted where parentheses are necessary and where they are not.

52 Creo Elements/Direct Drafting Writing Macros

This macro demonstrates an important principle. Look at the syntax diagram for
LINE TWO_PTS in the Creo Elements/Direct Drafting Programing Reference
Guide. In a macro, the recursive loop shown can be ended only by an END
statement. This is a general rule: when a syntax diagram ends with a recursive
loop, use an END statement to get out of the loop.
Look at the diagram for LINETYPE. This diagram does not end with a recursive
loop. No END statement is required in a macro.

Now let's use Trace on our macro, and store the results in a file called trace.

Before using Trace, change the second line in parenth from this:
LET P1 (0,0)

to this:
LET P1 0,0

Type the following in the user input line and press ENTER after each command:
input 'parenth'

trace

parenth

When the macro ends, disable Trace:

1. Click Miscellaneous and then, in the System group, click Trace.

2. Click Off.

in the status bar indicates that Trace is inactive.

Note
If your trace file is unexpectedly empty or incomplete, you may have

forgotten to disable Trace.

If you want to append the results of a Trace operation to an existing file:

1. Click Miscellaneous and then, in the System group, click Trace.

2. Click On.

3. Click Append.

in the status bar indicates that Trace is active.

Macro Basics 53

If you want a clean file for each run:

1. Click Miscellaneous and then, in the System group, click Trace.

2. Click On.

3. Click New.

in the status bar indicates that Trace is active.

To view the results of the Trace operation:

1. Click Miscellaneous and then, in the System group, click Trace.

2. Click Edit.

The results of the Trace operation are displayed in the standard text editor.
Here is the trace file for parenth:
Parenth
LET P1 0,0
LET P2 (10,0) 10,0
LET X (1) 1
WHILE (X 1 < 5) 1
LET P1 (P1 0,0 + 0,10) 0,10
LET P2 (P2 10,0 + 0,10) 10,10
LINE TWO_PTS P1 0,10 P2 10,10
END
LET X (X 1 + 1) 2
END_WHILE (X 2 < 5) 1
LET P1 (P1 0,10 + 0,10) 0,20
LET P2 (P2 10,10 + 0,10) 10,20
LINE TWO_PTS P1 0,20 P2 10,20
END
LET X (X 2 + 1) 3
END_WHILE (X 3 < 5) 1
LET P1 (P1 0,20 + 0,10) 0,30
LET P2 (P2 10,20 + 0,10) 10,30
LINE TWO_PTS P1 0,30 P2 10,30
END
LET X (X 3 + 1) 4
END_WHILE (X 4 < 5) 1
LET P1 (P1 0,30 + 0,10) 0,40
LET P2 (P2 10,30 + 0,10) 10,40
LINE TWO_PTS P1 0,40 P2 10,40
END
LET X (X 4 + 1) 5
END_WHILE (X 5 < 5) 0
TRACE

54 Creo Elements/Direct Drafting Writing Macros

The first line of trace
LET P1 0,0

is the same as in our macro.
The second line is different. Here, the "expression" within the parentheses has
been evaluated. The result 10,0 is shown immediately after the expression.
Now look at the boolean expression:
WHILE (X 1 < 5) 1

The current value of X is 1. This is shown immediately after X. The boolean
expression (1 < 5) is true, so the value 1 appears immediately after the
expression.
Note that WHILE never appears again in trace, but the value of the boolean
expression appears after END_WHILE. Look at the last boolean expression after
the last END_WHILE. Here, the current value of X is 5. The boolean expression is
(5 < 5), which is false, so the value of the expression is 0.
The following macro will work:
DEFINE Parenth_2
LET P1 (0,0) {parentheses not necessary}
LET P2 (10,0) {parentheses not necessary}
WHILE (1) {parentheses necessary}

LET P1 (P1 + 0,10) {parentheses necessary}
LET P2 (P2 + 0,10) {parentheses necessary}
LINE TWO_PTS P1 P2 END

END_WHILE
END_DEFINE

Now the expression after the WHILE is always true. This macro will continue
drawing lines until there is a power failure or until you press [Break].
This macro was included deliberately to show that a boolean expression always
needs parentheses, even if a simple token is being used. If you don't believe it, try
changing WHILE (1) to WHILE 1.
Change WHILE (1) to WHILE (TRUE) and it still works.
The following macro shows that a boolean expression is true if it has any non-zero
value:
DEFINE Parenth
LET P1 0,0
LET P2 (10,0)
LET X (5)
WHILE (X)

LET P1 (P1 + 0,10)
LET P2 (P2 + 0,10)
LINE TWO_PTS (P1) (P2) END
LET X (X - 1)

END_WHILE
DISPLAY_NO_WAIT 'something has changed'
WAIT 3

Macro Basics 55

LET X (X - 1)
WHILE (X)

LET P1 (P1 + 0,10)
LET P2 (P2 + 0,10)
LINE (TWO_PTS) P1 P2 END
LET X (X + 1)

END_WHILE
END_DEFINE

Indenting the Lines of a Macro
You have probably noticed that some lines of a macro are indented. This
indentation is ignored by the processor, but helps a reader to understand the flow
of logic.
Conventionally, the lines following a boolean expression are indented. In the
previous example, the lines following each WHILE statement are indented. The
closing statement of the WHILE construct is END_WHILE, and this statement
appears in the same column as the WHILE. The result is that the keywords of the
construct act visually like markers. A reader can immediately see where each
section of the code begins and ends. This makes debugging much easier.
Similarly, indentation is used for the following constructs:

• IF ... ELSE_IF ... ELSE ... END_IF

• LOOP ... EXIT_IF ... END_LOOP

• REPEAT ... UNTIL

Each keyword of a construct starts in the same column. The statements following
a keyword are indented.
Nesting of any of these constructs requires a further level of indentation.

Defensive Programming
You can avoid many common bugs by programming defensively and trying to
allow for all eventualities. Here are some guidelines:

• Use consistent indentation. We discussed this in the previous section.
• Use descriptive variable names. Radius1 or Rad1 is easier to understand

than S. You might accidentally write TAN(S), but you would immediately see
the error in TAN(Radius1).

• Write simple code. The following two code fragments produce identical
results. Which is easier to understand?

Fragment 1:
LET P3 (P1 - (PNT_RA O.5*(D2 - D1) ANG(P2 -P1)))

56 Creo Elements/Direct Drafting Writing Macros

Fragment 2:
LET Shoulder (O.5*(D2 - D1)
LET Angle (ANG(P2 - P1)
LET Vect_S (PNT_RA Shoulder Angle)
LET P3 (P1 - Vect_S)

If there is a bug in any of the previous code fragments, which would you
rather debug?

• Don't worry about efficient code while you are writing the macro. If your final
macro is too slow, then you can concentrate on areas where greater speed may
be possible.

• Avoid writing long macros. Prefer to use several shorter macros. Each macro
can be debugged separately.

• Try to screen out bad user input. We looked at the following code fragment
when discussing IF statements:
READ "ENTER 'H' FOR HORIZ, OR 'V' FOR VERT, OR 'P' FOR PERP"
IF (Q='H')

C_LINE HORIZONTAL P2 {if Q='H', only this statement}
{is executed}

ELSE_IF (Q='V')
C_LINE VERTICAL P2 {if Q<>'H', but Q='V', only these}
LET X 3 {two statements are executed}

ELSE
C_LINE PERPENDICULAR P1 P2 {if Q<>'H', and Q<>'V',}

{but Q='P', only this statement is}
{executed}

END_IF

This example is fine for demonstrating IF statements, but not very good for
demonstrating defensive programming. What happens if the user accidentally
enters, for example, 'Y'? Or enters 'v' instead of 'V'?

Here is a rewritten version, designed to trap accidental user errors:
LOOP
READ STRING "ENTER 'H' FOR HORIZ, OR 'V' FOR

VERT, OR 'P' FOR PERP" Q
EXIT_IF ((Q='H') OR (Q='h') OR (Q='V') OR

(Q='v') OR (Q='P') OR (Q='p'))
END_LOOP

IF ((Q='H') OR (Q='h'))
C_LINE HORIZONTAL P2

ELSE_IF ((Q='V') OR (Q='v'))
C_LINE VERTICAL P2

ELSE
C_LINE PERPENDICULAR P1 P2

Macro Basics 57

END_IF

• If your macro fails when the user enters numbers that are too high, too low, or
negative, try to trap these numbers with statements such as:
LOOP

READ NUMBER 'Enter number of sides' Num_sides
EXIT_IF ((Num_sides > 0) AND (Num_sides < 20))
END_LOOP

Macro Commands
All the commands listed in the online help can be used in the macro body. Some
commands and statements are very useful in macros. Here are some examples:
DISPLAY P1 Displays the X, Y coordinates of point P1 and waits

for a user response.
BEEP Emits a short fixed-frequency/amplitude tone on the

system loudspeaker.
IF (M>N) ... ELSE ...
END_IF

Executes all lines before ELSE if M>N. Otherwise
executes all lines between ELSE and END_IF. Any
number of ELSE statements can be used.

LET D (L1 + 5) Defines D as equal to the sum of L1 and 5.
LOOP ... EXIT_IF (N >
50) ... EXIT_IF (M < 7)
END_LOOP

Executes all lines before END_LOOP repeatedly in
sequence, until N > 50 or M < 7. Any number of
EXIT statements can be used. If no exit statement is
used, then the loop will repeat endlessly until END or
another command is selected.

READ PNT P8 Stops system until point P8 is entered by the user.
REPEAT ... UNTIL
(N>10)

Executes all lines repeatedly in sequence until N is
greater than 10.

TONE 256 2 0.5 Emits a 256 Hz tone of 2 seconds duration and of
relative amplitude 0.5 on the system loudspeaker.

WHILE (N< 20) ... END_
WHILE

Executes all lines after WHILE repeatedly in sequence
while N is less than 20.

Expressions are enclosed in parentheses. An expression usually contains
arithmetic, trigonometric, or relational operations as in the previous examples.
There are also some special operations that we can use. These are explained in the
next section.

Built-in Operations
Here are examples of some useful built-in operations that can be used within
expressions:

58 Creo Elements/Direct Drafting Writing Macros

ANG P6 Calculates the angle between the vector
P6 and the X axis.

LEN P4 Calculates the length of the vector P4.
PNT_XY 20 65 Defines a vector with origin at X0, Y0

and head at X20, Y65.
PNT_RA 16 38 Defines a vector with origin at X0, Y0,

of length 16 and at an angle of 38 to
the X axis.

ROT P2 45 Defines a vector of the same length as
the vector P2, at an angle of 45
degrees to P2, in a counterclockwise
direction.

SQR 15 Calculates the square of 15.
SQRT 15 Calculates the square root of 15.
X_OF P1 Calculates the X coordinate of the point

P1.
Y_OF P6 Calculates the Y coordinate of the point

P6.

Macro Basics 59

4
Inquiring about the Environment

and Elements
Using INQ_ENV...62
Using INQ_ELEM...63
Using GETENV...64
Using Other Inquiries ...64

When writing macros, it is often necessary to know about the current
environment. What are the current units? Inches or millimeters? Is the current line
color white or some other color? Is the scale 1:1 or 2.5:1?
As an example, you may want to use a macro to draw a yellow line using dot-
center lines. It's easy to change the color and linetype. But after your macro has
finished, you should change the color and linetype back to their original values.
The user of your macro should not have to reset these values.
Your macro must store the current color and linetype, and then retrieve these
values before the macro ends. This chapter shows you how to use the INQ_ENV
and INQ_ELEM functions to store information in the system array, and how to use
INQ to interrogate the system array. INQ is an abbreviation for inquire.

61

Using INQ_ENV
The following macro demonstrates the use of INQ_ENV and INQ:
DEFINE Env_check
LINE HORIZONTAL 0,0 300
INQ_ENV 3 {load information in system array}
LET Col (INQ 201) {save color information}
LET Ltype (INQ 301) {save linetype information}
INQ_ENV 2 {load window position in system array}
LET Lower_left (INQ 101) {save lower left point of}

{current window}
LET Upper_right (INQ 102) {upper right point}
YELLOW {new color}
DOT_CENTER {new linetype}
LINE HORIZONTAL 0,50 300
COLOR Col {reset to original color}
LINETYPE Ltype {reset to original linetype}
LINE HORIZONTAL 0,100 300 END
DISPLAY_NO_WAIT ("Look at the OLD window")
WAIT 5
WINDOW -10,-10 350,150 {create a new window}
DISPLAY_NO_WAIT ("Now look at the NEW window")
WAIT 5
WINDOW Lower_left Upper_right
DISPLAY_NO_WAIT ("Back to the OLD window")
WAIT 5

END_DEFINE

The second line of the macro draws a line using the current color and linetype.
The remaining lines of the macro are discussed in the following paragraphs.
INQ_ENV 3

If you study the INQ_ENV function in the online help, you see that INQ_ENV
inserts data into a section of the system array. The section of the array is specified
by the number that follows INQ_ENV. For example, section 0 contains
information of the software version number and version string. Section 1 contains
information on the current viewport, and so on.
We are interested in section 3, which contains information on catch range,
geometry, construction data, text data, and so on.
Each time you use INQ_ENV you overwrite the previous data in that section of
the system array.
LET Col (INQ 201)

INQ interrogates the section of the system array that was last written to using
INQ_ENV. In our example, the last INQ_ENV wrote to section 3, so INQ
interrogates section 3. The specific information depends on the number following
INQ.
Look again at the INQ_ENV function in online help, and you see that INQ 201
returns the current geometry color. This value is assigned to the variable Col.

62 Creo Elements/Direct Drafting Writing Macros

LET Ltype (INQ 301)

The current geometry linetype is assigned to the variable Ltype.
INQ_ENV 2

Information about the current window is inserted in section 2 of the system array.
LET Lower_left (INQ 101)
LET Upper_right (INQ 102)

The lower left point and the upper right point of the current window are assigned
to variables.
The next three lines of the macro change the color and linetype, and then draw a
line to show the effects of the changes.
COLOR Col
LINETYPE Ltype

The original values for color and linetype are restored. The macro draws another
line to show the effects of the changes.
The last few lines of the macro change the coordinates of the current window, and
displays this window for approximately five seconds to allow you to see the
change. The original coordinates are then restored.

Using INQ_ELEM
INQ_ELEM is similar to INQ_ENV, and also places data into the system array.
The data depends on the element that exists on your drawing at the specified
point. For example, if the element is a circle, data about the circle is placed in the
array.
If you pick an element, you can find out what type of element it is by using INQ
403. In your macro, you may want the user to pick a circle. You can use INQ
403 to verify that it's actually a circle rather than, for example, a rectangle.
The following code fragment shows an example:
LOOP
READ PNT 'Digitize a circle' P
INQ_ELEM P
EXIT_IF (INQ 403 = CIRCLE)

END_LOOP

In this fragment, INQ_ELEM reads information about the digitized point into the
system array. Refer to the INQ_ELEM function in the online help, and you see that
INQ 403 returns the element type. If the type is a circle, the macro exits from the
loop and continues with the next section of the macro.
If you want to know the radius or center point of the circle, you can then use:
LET Rad (INQ 3)
LET Cen_pt (INQ 101)

Inquiring about the Environment and Elements 63

Note that if no element is found at the digitized point, INQ 403 returns END. You
may want to build in a check on the catch mode before prompting again.

Using GETENV
GETENV retrieves the settings for the current environment. For example, to
retrieve the setting for the variable MEDIR, enter the following on the command
line:
display (getenv('MEDIR'))

Creo Elements/Direct Drafting returns the current setting.

Using Other Inquiries
The use of other inquiries such as HL_INQ_Z_VALUE and HL_INQ_FACE_
COLOR is similar to the use of INQ_ENV and INQ_ELEM. In each case, values
are written to the system inquiry array, and retrieved using INQ.
For an example of a macro using HL_INQ_Z_VALUE, see Useful Macros on
page 103.

64 Creo Elements/Direct Drafting Writing Macros

5
Quick Review of Points and

Vectors
Points...66
Vectors ...67

Most people reading a manual such as this will be familiar with points and
vectors. However, it may be a few years since you last used them. This very brief
chapter is intended to refresh your memory before you read Writing Geometry
Macros on page 71.

65

Points
A point is defined by an X-coordinate and a Y-coordinate. Look at the points in the
next figure:

Figure 1. Representation of Points

The X-axis and the Y-axis intersect at the point (0,0). This point is referred to as
the origin. At the origin, the X-coordinate is 0 and the Y-coordinate is 0.
You can see that the other points are identified by writing the X-coordinate
followed by the Y-coordinate.
In a macro, if you have a point and you need to know the X-coordinate or Y-
coordinate of the point, use the X_OF or Y_OF operators. For example:
LET X1 (X_OF P1)
LET Y1 (Y_OF P1)

Let's assume that P1 is (3,2). Then X_OF P1 is 3 and Y_OF P1 is 2.
If you have two numbers, you can make a point from these numbers using the
PNT_XY operator. For example, with the numbers 3 and 2:
LET P1 (PNT_XY 3 2)

This will produce the point (3,2).
In the general case:
LET P1 (PNT_XY X Y)

produces the point (X,Y).

66 Creo Elements/Direct Drafting Writing Macros

Vectors
Avector has length and direction. In the next figure, the vector A represents a line
from the origin (0,0) to the point (3,2). The vector B represents a line drawn from
the origin (0,0) to the point (1,4).

Figure 2. Vectors Originating at the Origin

If vectors originate at the origin, as in the previous figure, then we can refer to
vector A as (3,2) and vector B as (1,4). In the geometry macros described in
the following chapters, all vectors originate at the origin.

Addition of Vectors
Vector A can be added to vector B to give vector C. In the next figure, you can see
that C represents a line drawn from the origin to the point (4,6). The X-coordinate
represented by C is obtained by adding the X-coordinate s of (1,4) and (3,2), which
gives 4. Similarly, the Y-coordinate is found by adding the Y-coordinates of these
two points, which gives 6.

Quick Review of Points and Vectors 67

Figure 3. Addition of Vectors

Here is another way to visualize the addition of vector A to vector B. First, move
vector B to a new position B' attached to the end of vector A, as shown in the next
figure. Remember that a vector is defined by a length and a direction, so the new
vector B' is identical to the old vector B.

Figure 4. Visualization of Vector Addition

Now start at the origin and move 3 units in the X-direction and 2 units in the Y-
direction Then move 1 unit in the X-direction and 4 units in Y-direction. You
arrive at the same point if you start at the origin and move 4 units in the X-
direction and 6 units in the Y-direction. This proves that C = A + B.
In addition of vectors, A + B is the same as B + A.

68 Creo Elements/Direct Drafting Writing Macros

Subtraction of Vectors
To subtract vectors, you subtract their X and Y-coordinates. The order of
subtraction is important. The next figure shows the result of A - B and B - A.

Figure 5. Subtraction of Vectors

You can see that, as in normal arithmetic, the vector A - B is not the same as the
vector B - A. The vectors are the same length, but in opposite directions.
As for addition, you can visualize the subtraction of vectors by moving one of the
vectors and attaching it to the end of the other vector. The next figure shows the
effect of A - B:

Figure 6. Visualization of Vector Subtraction

Quick Review of Points and Vectors 69

6
Writing Geometry Macros

The Arrowhead Macro ...72
The Panel Macro...75

This chapter shows you how to write geometry macros. You will probably use
geometry macros more often than any other type of macro. If you find that you are
frequently drawing the same type of shape, using either fixed dimensions or
varying dimensions, you should write a macro to do the job for you.
The chapter gives detailed instructions on how to write an arrowhead macro and a
panel macro.

71

The Arrowhead Macro
The macro will draw the arrowhead shown in the next figure:

As well as drawing the basic shape, the macro must do the following:

• The arrowhead must lie between any two points picked from the screen. The
first point will be the tip of the arrow. The second point will be at the center of
the tail.

• The arrowhead proportions must be constant.
• The macro must repeat operation until canceled by another command.
Several ways of writing a macro will meet these requirements. There are no rules
about which method to use. Choose the one that suits you best.
In the method we are going to use, points are treated as vectors. This is a good
method for those who are familiar with simple vector handling.

Writing the Arrowhead Macro
Here is the step-by-step sequence:

1. Draw the arrowhead at any angle to the axes and annotate all the points. The
points to be picked from the screen are P1 and P2. Draw in any point for the
origin (0,0).

72 Creo Elements/Direct Drafting Writing Macros

2. Work on the macro body first. For a geometry macro this is the part that does
the drawing. Assume that the points P1 and P2 are defined and that they each
represent the head of a vector drawn from the origin as shown in the previous
figure.

3. The barbs of the arrowhead are a certain proportion (let's use 60%) of the total
length along the centerline (from the arrowpoint). Define a vector with this
length between P1 and P2 in the direction of P2 and call it H. Like all other
vectors, H originates at 0,0.
LET H (0.6 * (P2 - P1))

4. The barbs are a certain proportion (let's use 30%) of H away from the
centerline. Define a vector of this length normal to H and call it W.
LET W (0.3 * (ROT H 90))

5. The half-thickness of the tail is a certain proportion (let's use 40%) of W.
Define a vector of this length in the direction of W and call it T.
LET T (0.4 * W)

6. Now the points can be defined. Add H and W to P1 to define the point P3 as in
the next figure.

Writing Geometry Macros 73

LET P3 (P1 + H + W)

7. Define the other points in exactly the same way.
LET P6 (P1 + H - W)
LET P4 (P1 + H + T)
LET P5 (P1 + H - T)
LET P8 (P2 + T)
LET P9 (P2 - T)

8. Join the points to create the arrowhead shape.
LINE POLYGON P1 P3 P4 P8 P9 P5 P6 P1

The macro body is finished, and now we can move on to handling the points P1
and P2, which are picked from the screen. The READ command allows the user to
enter the coordinates of P1 and P2:
READ PNT 'Pick the arrow point' P1

READ PNT tells the system that a point is going to be input. The system displays
the message Pick the arrow point. When the user enters a point, it is defined as P1
and the next line of the macro is executed.
READ PNT 'Pick the tail centerpoint' RUBBER_LINE P1 P2

In this line, the RUBBER_LINE command draws a line between P1 and the
cursor as it is moved across the screen. This is useful for sizing the arrowhead.
When the next point is entered it is defined as P2 and the next line is executed.
This next line is the start of the macro body.
Now enclose the READ statements and the macro body in a loop, using LOOP and
END_LOOP. This allows the user to create several arrowheads during the same
operation. Specify LINETYPE and COLOR outside the loop, so that they can be
altered during operation if required. Define all the macro variables as LOCAL.

74 Creo Elements/Direct Drafting Writing Macros

Here is the completed macro:
DEFINE Arrow_head
LOCAL P1
LOCAL P2
LOCAL P3
LOCAL P4
LOCAL P5
LOCAL P6
LOCAL P8
LOCAL P9
LOCAL H
LOCAL W
LOCAL T

COLOR WHITE
LINETYPE SOLID

LOOP
READ PNT 'Pick the arrow point' P1
READ PNT 'Pick the tail centerpoint' RUBBER_LINE P1 P2
LET H (0.6 * (P2 - P1))
LET W (0.3 * (ROT H 90))
LET T (0.4 * W)
LET P3 (P1 + H + W)
LET P6 (P1 + H - W)
LET P4 (P1 + H + T)
LET P5 (P1 + H - T)
LET P8 (P2 + T)
LET P9 (P2 - T)
LINE POLYGON P1 P3 P4 P8 P9 P5 P6 P1
END

END_LOOP
END

END_DEFINE

Remember that there are many ways of writing a macro to do the job. An
alternative method is to turn the axes to the required angle before establishing the
points and drawing the shape. This method would use commands such as CS_
SET, CS_ROTATE, CS_REF_PT, CS_AXIS.

The Panel Macro
The aim is to write a macro to draw a front panel like the one shown here. The
panel is designed to fit a standard 19-inch rack.

Writing Geometry Macros 75

The macro must do the following:

• Position the panel by picking one of the bolt holes in the left hand upright of a
rack.

• Determine the height of the panel by giving the required U value (the width is
constant).

• Keep the orientation of the panel the same as that of the ruler axis.
The geometry of the front panel is mainly fixed, so it's possible to define the
construction points using coordinates instead of vectors.

Writing the Panel Macro
Draw out the front panel at a fixed angle (0 degrees is the easiest) and annotate all
the coordinates involved.

76 Creo Elements/Direct Drafting Writing Macros

As with the arrowhead, start work on the macro body first. Assume that the vector
P has been defined, and that the specifications for the front panel are as shown in
the diagram. M and Q are variable parameters.
Define all points by their coordinates from the end point of the vector P. P is
considered to have the coordinates (0,0). These coordinates can then be added in
turn to the initial vector P to create the panel. The diagram below shows the
coordinates of some of the panel features:

Continuing this process around the panel gives all the coordinates of the features
and they can be defined as follows:
LET A (PNT_XY -9 (7.5/2))
LET B (PNT_XY -9 (Q))
LET C (PNT_XY (483-9) (Q))
LET D (PNT_XY (483-9)(7.5/2))
LET F (PNT_XY (465-1.5)(7.5/2))
LET G (PNT_XY (465-1.5-(7.5/2)) 0)
LET H (PNT_XY (465-1.5)(-7.5/2))
LET J (PNT_XY (483-9)(-7.5/2))
LET K (PNT_XY (483-9)(-M+(7.5/2)))
LET F1 (PNT_XY (465-1.5)(-M+(7.5/2)))
LET G1 (PNT_XY (465-1.5-(7.5/2)) (-M))
LET H1 (PNT_XY (465-1.5)(-M-(7.5/2)))
LET A2 (PNT_XY (483-9)(-m-(7.5/2)))
LET B2 (PNT_XY (483-9)(-M-Q))
LET C2 (PNT_XY -9(-M-Q))
LET D2 (PNT_XY -9(-M-(7.5/2)))
LET F2 (PNT_XY 1.5(-M-(7.5/2)))
LET G2 (PNT_XY (1.5+(7.5/2))(-M))
LET H2 (PNT_XY 1.5(-M+(7.5/2)))
LET J2 (PNT_XY -9(-M+(7.5/2)))
LET K2 (PNT_XY -9(-7.5/2))
LET F3 (PNT_XY 1.5(-7.5/2))
LET G3 (PNT_XY (1.5+(7.5/2)) 1.5)

Writing Geometry Macros 77

LET H3 (PNT_XY (1.5)(7.5/2))

To complete the macro body, connect all the points to create the front panel. This
is done using the LINE and ARC commands, and can be done in any order. The
order used here is from point (P+H3) to point (P+G3), giving:
LINE POLYGON (P+H3) (P+A) (P+B) (P+C) (P+D) (P+F)
ARC THREE_PTS (P+F) (P+H) (P+G)
LINE POLYGON (P+H) (P+J) (P+K) (P+F1)
ARC_THREE_PTS (P+F1) (P+H1) (P+G1)
LINE POLYGON (P+H1) (P+A2) (P+B2) (P+C2) (P+D2) (P+F2)
ARC THREE_PTS (P+F2) (P+H2) (P+G2)
LINE POLYGON (P+H2) (P+J2) (P+K2) (P+F3)
ARC THREE_PTS (P+F3) (P+H3) (P+G3)

The macro body is now complete. To make the macro operational we must
localize the vector point P, and allow for the input of data. READ statements are
used for data input. The READ statements are implemented as shown below:
READ NUMBER "Enter the required height of the front panel" U
READ "Identify the position of the top left bolt hole" P

Now localize the vector point P, as shown:
READ NUMBER "Enter the required height of the front panel" U
READ "Identify the position of the top left bolt hole" P

The macro is now operational, but it is still very basic. It does not specify the
linetype, line color, when the macro ends, any constraints on the input value, or
how to convert this value into the actual height of the panel. These refinements
determine how user-friendly the macro will be.
You can specify the linetype and color within the macro. For example, the
following can be used:
COLOR YELLOW
LINETYPE SOLID

It is also simple to specify where and when the macro should complete operation.
This is done by inserting END before END_DEFINE in the macro. If an END
statement is not used, the system shows the prompt of the command that was
being performed before the macro was called.
You can specify constraints for the U value in more than one way. In this example
the LOOP...EXIT_IF...END_LOOP construction in conjunction with
IF...END_IF was chosen to check the input of U. Three constraints are
imposed upon the U value for this macro:

• It must be an integer value.
• It must be greater than 0.
• It must be less than 17.
The loops are used in the following manner:
IF ((FRACT U <> 0) OR (U>16) OR (U< 1))
LOOP

READ NUMBER "Please re-enter an integer value between 1 and 16"

78 Creo Elements/Direct Drafting Writing Macros

EXIT_IF ((FRACT U=0) AND (U>0) AND (U< 17))
END_LOOP

END_IF

This loop will be executed until the value of U meets the conditions above.
When the value has been checked, it must then be converted into a form that is
more usable to the macro. At the moment the value is integer and represents the
unit height of the panel, therefore it must be converted into the actual height. This
is done by the final IF...END_IF loop in the macro. Before the loops are
defined, the U value is converted by LET N (((U-1)*44.45)+43.6) to
create an N value that indicates the actual height of the panel. This value is then
used to define the variables M and Q. The variable M defines the vertical distance
between the slots and Q defines the vertical distance between each slot and a
horizontal edge, where M is variable over the complete range of U, and Q is fixed
at separate values for:

• U less than 3 but greater than 0.
• U less than 17 but greater than 2.
Here is the completed macro:
DEFINE Tline
LOCAL P

READ NUMBER 'Enter the required height of the front panel' U

COLOR YELLOW
LINETYPE SOLID

IF ((FRACT U <> 0) OR (U>16) OR (U< 1))
LOOP
READ NUMBER "Please re-enter an integer value between 1 and 16" U
EXIT_IF ((FRACT U=0) AND (U>0) AND (U< 17))

END_LOOP
END_IF

LET N (((U-1)*44.45)+43.6)
IF (U< 3)

LET M (N-11.9)
LET Q 5.95
LET M (N-75.4)

ELSE
LET Q 37.7

END_IF

READ "Identify the position of the top left bolt hole" P

LET A (PNT_XY -9 (7.5/2))
LET B (PNT_XY -9 (Q))
LET C (PNT_XY (483-9) (Q))
LET D (PNT_XY (483-9) (7.5/2))

Writing Geometry Macros 79

LET F (PNT_XY (465-1.5) (7.5/2))
LET G (PNT_XY (465-1.5-(7.5/2)) 0)
LET H (PNT_XY (465-1.5) (-7.5/2))
LET J (PNT_XY (483-9) (-7.5/2))
LET K (PNT_XY (483-9) (-M+(7.5/2)))
LET F1 (PNT_XY (465-1.5) (-M+(7.5/2)))
LET G1 (PNT_XY (465-1.5-(7.5/2)) (-M))
LET H1 (PNT_XY (465-1.5) (-M-(7.5/2)))
LET A2 (PNT_XY (483-9) (-M-(7.5/2)))
LET B2 (PNT_XY (483-9) (-M-Q))
LET C2 (PNT_XY -9 (-M-Q))
LET D2 (PNT_XY -9 (-M-(7.5/2)))
LET F2 (PNT_XY 1.5 (-M-(7.5/2)))
LET G2 (PNT_XY (1.5+(7.5/2)) (-M))
LET H2 (PNT_XY 1.5 (-M+(7.5/2)))
LET J2 (PNT_XY -9 (-M+(7.5/2)))
LET K2 (PNT_XY -9 (-7.5/2))
LET F3 (PNT_XY 1.5 (-7.5/2))
LET G3 (PNT_XY (1.5+(7.5/2)) 1.5)
LET H3 (PNT_XY 1.5 (7.5/2))

LINE POLYGON (P+H3) (P+A) (P+B) (P+C) (P+D) (P+F)
ARC THREE_PTS (P+F) (P+H) (P+G)
LINE POLYGON (P+H) (P+J) (P+K) (P+F1)
ARC THREE_PTS (P+F1) (P+H1) (P+G1)
LINE POLYGON (P+H1) (P+A2) (P+B2) (P+C2) (P+D2) (P+F2)
ARC THREE_PTS (P+F2) (P+H2) (P+G2)
LINE POLYGON (P+H2) (P+J2) (P+K2) (P+F3)
ARC THREE_PTS (P+F3) (P+H3) (P+G3)
END

END_DEFINE

80 Creo Elements/Direct Drafting Writing Macros

7
File Input/Output and Text Strings

What the Macro Will Do ...82
Analyzing the Macro ..83
Calling a Macro from within a Macro ...90
Passing Parameters to a Macro..92

This chapter shows you how to extract data from a file for use in a macro, and
how to write data to a file. In our example the data consists of text strings, but the
same principles can be applied to numeric data.

81

What the Macro Will Do
The aim is to write a macro that extracts the main keyword from each section of
the help file and writes the results to a new file.
To see what we mean by a "keyword", look at the following section from the
help file:
===

^AUTO_NEW_SCREEN
AUTO_NEW_SCREEN function

---->(AUTO_NEW_SCREEN)---->+------>(ON)----->+---->
| |
`------>(OFF)---->'

The AUTO_NEW_SCREEN function allows you to select ...
.
.
===

In this example, the section describes the AUTO_NEW_SCREEN function. The
keyword is AUTO_NEW_SCREEN, and that's the string we want to write to the
output file.
Note that you can search for the keyword in one of two ways:

• Look for a ^character, then take the string after the ^. Or,
• Look for the string command or function. Then take the preceding string.
From a programming point of view, the first method is better. The processor only
has to examine a file in a "forwards" direction. Using the second method, the
processor has to look "forwards" until it finds command or function, and then
look "backwards" to find the preceding string. Let's use the first method.
Now, look at the next example:
===

^CANCEL ESC STOP INTERRUPT BREAK
^ABORT
^Meview_cancel

CANCEL command

---->(CANCEL)---->

CANCEL cancels the current activity ...
.
.
===

82 Creo Elements/Direct Drafting Writing Macros

In this example, ^CANCEL, ^ABORT, and ^Meview_cancel are all preceded
by ^, but we only want to include CANCEL in our output file. We don't want to
include ABORT or Meview_cancel because these strings refer to other sections
of the help file. So, our macro must tell the processor to extract the first string
that is preceded by ^ in each section, and ignore the others.
Before discussing our text-handling macro, there is one other point to make. One
of the things that our macro must do is search for blanks in lines. In the previous
example, ^CANCEL is separated from the next string, ESC, by a blank. We
sometimes use blanks to let us know that we are at the end of strings. Now look
again at this section from the help file:
===

^AUTO_NEW_SCREEN
AUTO_NEW_SCREEN function

---->(AUTO_NEW_SCREEN)---->+------>(ON)----->+---->
| |
`------>(OFF)---->'

The AUTO_NEW_SCREEN function allows you to select ...
.
.
===

The first line of the section is ^AUTO_NEW_SCREEN. It is important to realize
that when this line is printed on the screen, the line is padded with blanks. But in
the file there are no blanks in this line. Immediately after the final N of AUTO_
NEW_SCREEN there is a linefeed character, which is not printed on the screen but
appears in the file. The linefeed character has a hexadecimal ASCII value of 0A.
If "\n" represents the linefeed character ("\n" is used in the C programming
language) then the previous example looks like:
^AUTO_NEW_SCREEN\nAUTO_NEW_SCREEN function\n\n ... (and so on)

Note that "\n" is two characters, but the actual linefeed character is only a single
character.

Analyzing the Macro
The following macro will extract the keywords from the help file. The macro is
not necessarily the most efficient, but it is easy to understand. We are now going
to analyze this macro line by line.
DEFINE Keywords_search
{##}
{## This macro searches for all the keywords ##}
{## in the help file, and lists them in ##}
{## an output file. ##}
{##}

File Input/Output and Text Strings 83

LOCAL File1
LOCAL File2
LOCAL Flag
LOCAL Filestring1
LOCAL First_char
LOCAL Line_pos
LOCAL String_length
LOCAL First_string
LET File1 '\me10\help'
LET File2 '\john\keywords.out'
OPEN_INFILE 1 File1
OPEN_OUTFILE 2 DEL_OLD File2
LET Flag 0 {initialize the value of Flag}

LOOP
READ_FILE 1 Filestring1 {read the next line of file 1}

EXIT_IF (Filestring1='END-OF-FILE')
LET First_char (SUBSTR Filestring1 1 1)
IF (First_char='^')

IF (Flag = 0)
LET Line_pos (POS Filestring1 ' ')

{find the position in the line}
{of the first blank character}

IF (Line_pos = 0) {no blank characters}
LET String_length (LEN Filestring1)

{find the length of the complete}
{line}

LET First_string (SUBSTR Filestring1 2 (String_length-1))
WRITE_FILE 2 First_string
LET Flag 1

ELSE
LET First_string (SUBSTR Filestring1 2 (Line_pos-2))
WRITE_FILE 2 First_string
LET Flag 1

END_IF
END_IF

ELSE
LET Flag 0

END_IF
END_LOOP
CLOSE_FILE 1
CLOSE_FILE 2

END_DEFINE

Look at the first line of the macro:
DEFINE Keywords_search

Every macro must start with DEFINE followed by the name of the macro. Here,
the macro name is Keywords_search.
LOCAL File1

84 Creo Elements/Direct Drafting Writing Macros

LOCAL File2
LOCAL Flag
LOCAL Filestring1
LOCAL First_char
LOCAL Line_pos
LOCAL String_length
LOCAL First_string

These are the local variables. If Keywords_search is called by another macro,
there will be no danger of conflict between the names of the variables used by the
two macros.
LET File1 '\me10\help'
LET File2 '\john\keywords.out'

In this macro, the variable File1 is used to represent the full path name for the
help file. Similarly, File2 is the file where the list of keywords will be written.
OPEN_INFILE 1 File1

A file cannot be used in a macro until it is opened. The function OPEN_INFILE
opens File1 for reading. The file pointer points to the first record in the file. The
numeral 1 is a file descriptor. After File1 is opened, all further references to
File1 are made using the file descriptor 1. The use of the file descriptor will
become clearer later. The file descriptor is similar to the MS-DOS "handle".
Note that the following statement is equally valid, and would have the same result
as our previous statement:

Platform Dependencies
OPEN_INFILE 1 '\me10\help'

So you might think the variable File1 is not really necessary. The advantage of
using a variable such as File1 is that we can quickly modify our macro to read a
file other than C:\Program Files\PTC\Creo Elements\Direct
Drafting [version]\help. All we must do is alter the line:
LET File1 '\me10\help'

If we do not use a variable such as File1, then we must search through our
macro and replace every occurrence of \me10\help with the full path name of the
new file. Our macro is very short, so this would be easy. In a longer macro, this
takes time.
OPEN_OUTFILE 2 DEL_OLD File2

Open File2 for writing. The file descriptor is 2. If the file already exists, it will
be overwritten because of the DEL_OLD instruction.
LET Flag 0

Flag is a variable that will have a value of either 1 or 0, depending on which of
two branches is taken on each pass through the macro. A variable that shows a
state or condition is often called a flag, which is why we have named it Flag. The
use of Flag will become clearer later. This line initializes the value of Flag to 0.
LOOP

File Input/Output and Text Strings 85

Start a loop. This loop will continue until a later EXIT_IF statement is satisfied,
or END_LOOP is executed.
READ_FILE 1 Filestring1

Read the file whose file descriptor is 1. This means read File1, which is
/me10/help. If a file has been newly opened, but not read, the file pointer
points to the first record in the file. The READ_FILE function treats each
complete line as a record, so the READ_FILE command reads the first line of the
file and then advances the file pointer so that it points to the next record. The next
time the same file is read, the READ_FILE command reads the second line, and
so on. If you are searching a file several times, and you want the macro to start the
search at the beginning of the file each time, you must use the OPEN_INFILE
statement before each READ_FILE statement so that the file pointer points to the
first line of the file.
EXIT_IF (Filestring1='END-OF-FILE')

Every file has an end-of-file marker. The actual marker depends on the operating
system, but is often the null character. If the macro detects this end of file marker,
it will exit from the current loop.
LET First_char (SUBSTR Filestring1 1 1)

Find the substring that starts at position 1 in the line, and has length 1. In other
words, find the first character in the line.
As an example of substrings, let's assume Filestring1 was:
Have a nice day!

If our program statement was:
LET Substring1 (SUBSTR Filestring1 3 6)

then Substring1 would be ve a n.
IF (First_char='^')

If the first character is ^, execute the following statements until the matching
ELSE_IF, ELSE, or END_IF. (The matching ELSE occurs 14 program lines
later.)
If the first character is not ^, jump to the first statement after the matching ELSE.
IF (Flag = 0)

If the value of Flag is 0, execute the following statements until the matching
ELSE_IF, ELSE, or END_IF. There is no ELSE_IF or ELSE. The matching
END_IF occurs 12 program lines later.
(We have not yet reached the point where we can explain the purpose of Flag.)
LET line_position (POS Filestring1 ' ')

As mentioned earlier, if a line starts with ^ and has only one keyword in the line,
the line will contain no blanks. If there is more than one keyword, the keywords
will be separated by blanks. (We use ' ' to indicate one blank. Two blanks would
be ' ' and so on.) The purpose of the program statement is to find out if the line

86 Creo Elements/Direct Drafting Writing Macros

contains blanks. The POS function gives the position in a string (first argument) of
the first occurrence of a substring (second argument). As an example, the current
line from the help file could be:
^CURRENT_DIRECTORY CD CURRENT DIRECTORY TM_FILE_2 SM_FILE_2

Here, the first argument is the complete line beginning with ^CURRENT_
DIRECTORY and ending with SM_FILE_2. The second argument is ' '. So,
Line_pos will be 19.
The current line could be:
^AUTO_NEW_SCREEN

Here, the value of Line_pos is 0. Each line ends with a linefeed character so
there can be no blanks in this line.
LET String_length (LEN Filestring1)

This statement computes the length of the complete line. If the line is:
^AUTO_NEW_SCREEN

then the value of String_length is 16.
When we look at the next program line, we will see why we need the length of the
string.
LET First_string (SUBSTR Filestring1 2 (String_length-1))

We have seen SUBSTR before. This statement will extract the substring starting at
position 2 in the string, and having length String_length-1. If the string is:
^AUTO_NEW_SCREEN

then First_string is AUTO_NEW_SCREEN. In other words, the ^ has been
stripped from the beginning of the line. AUTO_NEW_SCREEN can now be written
to a file.
WRITE_FILE 2 First_string

Append First_string to the file whose file descriptor is 2. This file is
\john\keywords.out. First_string will be treated as a complete line in
this file.
LET Flag 1

We see that if a line is written to the output file, we set Flag to 1. If you examine
the rest of the code carefully, you will see that if a line is read from File1, but
not written to File2, then Flag is set to 0.
Why do we want to do this? Remember that we want to extract, from each section,
the first string that is preceded by ^. For example, in the next section from the
help file, we want to extract CANCEL, but not ABORT or Meview_cancel:
===

^CANCEL ESC STOP INTERRUPT BREAK
^ABORT
^Meview_cancel

CANCEL command
.

File Input/Output and Text Strings 87

.

.
===

For clarity, here is a stripped-down version of our macro, containing only read and
write statements, and statements referring to Flag:
LET Flag 0
LOOP
READ_FILE 1 Filestring1
...
IF (First_char='^')

IF (Flag = 0)
IF ...

...
WRITE_FILE 2 First_string
LET Flag 1

ELSE
...
WRITE_FILE 2 First_string
LET Flag 1

END_IF
END_IF

ELSE
LET Flag 0

END_IF
END_LOOP

After the READ_FILE statement, there are four possible conditions:

1. First_char equals ^, Flag equals 0.

A keyword is written to file. Flag set to 1.
2. First_char equals ^, Flag equals 1.

Nothing written to file. Flag set to 0.
3. First_char not equal to ^, Flag equals 0.

Nothing written to file. Flag set to 0.
4. First_char not equal to ^, Flag equals 1.

Nothing written to file. Flag set to 0.
So we see that if First_char is not ^, nothing gets written to file. This is fine.
It means a string that is not a keyword cannot be written to file.
The only time anything gets written to file is when First_char is ^ and Flag
is 0. Now, here is the important point: the only way Flag can be 0 is if the
previous line did not begin with ^. If the previous line began with ^, then Flag
would be 1. This means that if two or more consecutive lines begin with ^, only
the keyword on the first of these lines will be written to file.

88 Creo Elements/Direct Drafting Writing Macros

If Flag is 1, the only way it can be reset to 0 is to read a line that does not begin
with ^.
Have you noticed that we only need one statement Let Flag 1? It would be
placed after the first END_IF statement in the macro. By using two statements,
and placing each statement after a WRITE_FILE statement, we are emphasizing
that Flag is only set to 1 if something is written to the file.
ELSE

If there are blanks in the line, the code after the ELSE is executed.
LET First_string (SUBSTR Filestring1 2 (Line_pos-2))

In this branch, the first keyword in the line will have ^ in front of it, and a blank
after it. The keyword therefore starts at position 2, and its length will be Line_
pos-2. Let's assume the line is:
^CURRENT_DIRECTORY CD CURRENT DIRECTORY TM_FILE_2 SM_FILE_2

The keyword we want to extract is CURRENT_DIRECTORY. The position of the
first blank in the line is 19. The length of CURRENT_DIRECTORY is 19-2 or
17.
WRITE_FILE 2 First_string
LET Flag 1

First_string is written to the output file, and Flag is set to 1.
END_IF

The closing END_IF for IF (Line_pos = 0).
END_IF

The closing END_IF for IF (Flag = 0).
ELSE

If First_char is not ^, the code after the ELSE is executed.
LET Flag 0

Flag is set to 0 if a line is read from the help file but not printed to the output
file.
We're now getting to the end of our macro. The last few lines are:
END_IF

The closing END_IF for IF (First_char = '^').
END_LOOP

The closing statement for the loop.
CLOSE_FILE 1
CLOSE_FILE 2

The CLOSE_FILE statements correspond to the OPEN_INFILE and OPEN_
OUTFILE statements at the start of the macro.
As a matter of good programming practice, close all files that are opened by your
macro. If you don't close a file, it remains open until the next user does an OPEN_
INFILE on this file. The operating system then closes the file before opening it
for the next user. If no one uses the file, it remains open. However, each operating

File Input/Output and Text Strings 89

system has a limit on the number of files that can be open at one time. When this
limit is reached, the system is unable to open more files for other users. So it's
important to close unused files.

Calling a Macro from within a Macro
It is always possible to call a macro from within another macro. Nesting macros
offers two advantages:

• The inner macros can be existing, fully debugged macros. Using existing
macros saves writing time and debugging time.

• Long macros can sometimes be difficult to understand and debug. You can
often split a long macro into shorter macros nested within a main macro. If
you use meaningful names for the inner macros you can often produce a "self-
documenting" macro—one that needs very few comment statements. As an
example, it should be clear what the following macro does:

DEFINE Create_shell
Calculate_internal_stress
Calculate_flange_thickness
Calculate_bolt_thickness
Draw_semi_shell
Draw_flanges
Draw_bolts
Draw_washers
Draw_nuts

END_DEFINE

Let's replace some lines in Keywords_search by an inner macro. In this
example, we probably do not gain very much by using an inner macro. It
demonstrates a principle, and we can use the example to show you how to pass
parameters to macros.
Create an inner macro using the following lines from our first macro:
IF (Line_pos = 0) {no blank characters}
LET String_length (LEN Filestring1)

{find the length of the complete}
{line}

LET First_string (SUBSTR Filestring1 2 (String_length-1))
WRITE_FILE 2 First_string
LET Flag 1

ELSE
LET First_string (SUBSTR Filestring1 2 (Line_pos-2))
WRITE_FILE 2 First_string
LET Flag 1

END_IF

To create a new macro called Write_to_file, all you have to do to is put
DEFINE Write_to_file at the beginning and END_DEFINE at the end.

90 Creo Elements/Direct Drafting Writing Macros

In the main macro, we must replace the ten lines with a single line containing the
new macro name:
Write_to_file

Our file will now contain the following:
DEFINE Keywords_search
{##}
{## This macro searches for all the keywords ##}
{## in the help file, and lists them in ##}
{## an output file. ##}
{##}

LOCAL File1
LOCAL File2
LOCAL Flag
LOCAL Filestring1
LOCAL First_char
LOCAL Line_pos
LOCAL String_length
LOCAL First_string
LET File1 '\me10\help'
LET File2 '\john\keywords.out'
OPEN_INFILE 1 File1
OPEN_OUTFILE 2 DEL_OLD File2
LET Flag 0 {initialize the value of Flag}

LOOP
READ_FILE 1 Filestring1 {read the next line of file 1}

EXIT_IF (Filestring1='END-OF-FILE')
LET First_char (SUBSTR Filestring1 1 1)
IF (First_char='^')

IF (Flag = 0)
LET Line_pos (POS Filestring1 ' ')

{find the position in the line}
{of the first blank character}

Write_to_file
END_IF

ELSE
LET Flag 0

END_IF
END_LOOP
CLOSE_FILE 1
CLOSE_FILE 2

END_DEFINE

DEFINE Write_to_file
IF (Line_pos = 0) {no blank characters}

LET String_length (LEN Filestring1)
{find the length of the complete}
{line}

LET First_string (SUBSTR Filestring1 2 (String_length-1))

File Input/Output and Text Strings 91

WRITE_FILE 2 First_string
LET Flag 1

ELSE
LET First_string (SUBSTR Filestring1 2 (Line_pos-2))
WRITE_FILE 2 First_string
LET Flag 1

END_IF
END_DEFINE

The new file illustrates the point that variables not declared as LOCAL are
automatically global. Global variables are known to both macros. For example,
the value of Line_pos is evaluated by the outer macro and used by the inner
macro. The value for Flag is evaluated by the inner macro and used by the outer
macro.

Passing Parameters to a Macro
Earlier in this chapter, we discussed the problem of global variables, and how
these can sometimes cause harmful side effects. If macros are written as watertight
compartments, then the only way to pass information to a macro is by using
parameters. As an example, let's rewrite our inner macro, Write_to_file,
using parameters.
The variables String_length and First_string are no longer used by
Keywords_search, so they have been deleted.
DEFINE Keywords_search
LOCAL File1
LOCAL File2
LOCAL Flag
LOCAL Filestring1
LOCAL First_char
LOCAL Line_pos

{ LOCAL String_length deleted }
{ LOCAL First_string deleted }
LET File1 '\me10\help'
LET File2 '\john\keywords.out'
OPEN_INFILE 1 File1
OPEN_OUTFILE 2 DEL_OLD File2
LET Flag 0

LOOP
READ_FILE 1 Filestring1

EXIT_IF (Filestring1='END-OF-FILE')
LET First_char (SUBSTR Filestring1 1 1)
IF (First_char='^')

IF (Flag = 0)
LET Line_pos (POS Filestring1 ' ')
Write_to_file Line_pos Filestring1 2

END_IF
ELSE

92 Creo Elements/Direct Drafting Writing Macros

LET Flag 0
END_IF

END_LOOP
CLOSE_FILE 1
CLOSE_FILE 2

END_DEFINE

DEFINE Write_to_file
PARAMETER Column
PARAMETER String
PARAMETER File_descriptor
LOCAL String_length
LOCAL First_string
IF (Column = 0)

LET String_length (LEN String)
LET First_string (SUBSTR String 2 (String_length-1))
WRITE_FILE File_descriptor First_string
LET Flag 1

ELSE
LET First_string (SUBSTR String 2 (Column-2))
WRITE_FILE File_descriptor First_string
LET Flag 1

END_IF
END_DEFINE

Here are some things you should note about the new macros:

• Except for Flag, the variables in Write_to_file are different from those
in Keywords_search. This is the most common situation if you call a
macro from within a macro. The inner macro is likely to be part of a library of
macros, and you have used it to avoid writing new code yourself. The
specification for the macro will tell you what the macro does and what
parameters you have to pass. You have no interest in the internal workings of
the macro, or what variables are used.

• In Write_to_file, the parameters can be declared in any order. But when
Write_to_file is called by Keywords_search, the arguments must be
in the correct order. The statement that calls Keywords_search is:
Write_to_file Line_pos Filestring1 2

In this statement, notice the following:

○ Line_pos corresponds to Column.
○ Filestring1 corresponds to String.
○ 2 corresponds to File_descriptor.

When you call the macro Write_to_file, the system knows that the first
parameter after the macro name represents the first declared parameter in the
called macro; the second parameter after the macro name represents the second
declared parameter in the called macro, and so on.

File Input/Output and Text Strings 93

Note that you can pass parameters in to a called macro, but you cannot pass
parameters out to the calling macro. As in all programming languages, macros are
expanded at compile time. This means that the macro code is substituted for the
macro name. When one macro calls another macro, the code is substituted inline
in the calling macro at compile time. The resulting code is then executed as if
there were only one macro.
If Write_to_file were substituted inline without PARAMETER statements,
the compiler would complain that some variables were unknown. The
PARAMETER statements tell the compiler that some pairs of variables are
equivalent. However, PARAMETER variables behave similarly to LOCAL
variables: they are only visible in the macro in which they are declared. So a
macro is different from functions and subroutines as used in other programming
languages such as PL/I or Fortran. In these languages, the program branches to the
called function or subroutine, which can then return values to the calling program.
Since you need to know the value of Flag after execution of Write_to_file,
Flag has not been declared as a local variable or as a parameter in Write_to_
file. We must keep Flag as a global variable so that it is visible to both
macros.
The output file, keywords.out, will have the keywords listed in the order that
they appear in the help file.

Platform Dependencies
If you want these words to be sorted, the easiest way is to use the MS-DOS sort
command. In a Windows environment, use the Program Manager to open a
command prompt, then type:
sort < keywords.out > keywords.srt

keywords.srt is the name of the sorted file. If keywords.out is not in your
current directory, you must use the full path name of the file.

94 Creo Elements/Direct Drafting Writing Macros

8
Using Dimensions Stored in a Data

File
What the Macro Will Do ...96
Describing the Spigot...96
Vector Analysis ...98
Describing the Data File...99
Analyzing the Macro ..99
Refining the Macro .. 101

This chapter describes a macro that extracts dimensions from a file of tabulated
data. The macro then draws the part at a specified location on the screen.

95

What the Macro Will Do
• The user is prompted to digitize two points on the circumference of a hole

face. In our simple macro, these points are the right point and the left point as
you look into the hole.

• The macro calculates the diameter of the hole by using the two points.
• The macro searches a file until the calculated hole diameter matches a value in

the first column. The remainder of the data in the row is then used to calculate
the size of a spigot that is a friction fit in the hole.

• The macro draws the spigot in the correct position and attitude.
• The user is again prompted to digitize two points, or END.

Describing the Spigot
The next figure shows the general dimensions of the spigot:

Figure 13. Spigot—General Dimensions

The dimension S, the width of the spigot shoulder, can be computed from 1/2(D2-
D1).
You can see that the geometry of the spigot is very simple. However, the macro
we discuss in this chapter can be adapted to any complex geometric figure.

96 Creo Elements/Direct Drafting Writing Macros

To test your macro, you may want to draw a block similar to the following
sectional view, which shows holes of several different diameters at several
different attitudes:

Figure 14. Sectional View of Test Block

After you have used the macro to insert the correct spigot in each hole, you should
see the following:

Figure 15. Spigots in Place

Using Dimensions Stored in a Data File 97

Vector Analysis
The next figure shows the spigot in a general position. P1 through P8 are vectors
originating at the origin. To keep the drawing simple, the line from the origin is
shown only for P1. The vectors derived from the spigot dimensions are also
shown:

Figure 16. Spigot—General Dimensions

Dimensions such as D1 and L1 (refer to Figure 16. Spigot—General Dimensions
on page 98) cannot be used in vector analysis: vectors need a direction as well as a
length. However, it is simple to convert dimensions to vectors if the angles are
known or can be calculated.
Let's take the dimension S first. The angle at which S acts is the same as the angle
of (P2-P1). Since P2 and P1 are vectors, the angle of the vector (P2-P1) can be
calculated from ANG(P2-P1). ANG is a built-in function.
If we say that the vector derived from S is called Vect_S, then:
Vect_S = (PNT_RA S ANG(P2_P1))

where PNT_RA is a built-in function that converts a length and an angle to a
vector.
To convert L1 and L2 to vectors, note that the angle will be 90 degrees greater
than the angle of (P2-P1). For example:
Vect_L1 = (PNT_RA L1 (ANG(P2-P1)+90))

The other vectors are defined in a similar way. Note that in Figure 16.
Spigot—General Dimensions on page 98, the vectors representing the dimensions
are all positive in the directions shown. In Figure 16. Spigot—General
Dimensions on page 98 we drew the spigot in any arbitrary position. This means

98 Creo Elements/Direct Drafting Writing Macros

that, in many positions, the vectors of the dimensions will actually be negative.
This does not matter. As long as you use a consistent "sign convention", you do
not need to worry about the sign of a vector.

Describing the Data File
The data file the macro uses is called \anna\spigot.dat. The data in the file
is:
10 30 20
15 30 30
20 40 40
25 40 40

From left to right, the data represents the spigot dimensions D1, D2, and L1 in
millimeters. These dimensions were arbitrarily chosen so that there is no fixed
relationship between the values. If there is a fixed relationship, for example D2=
3xD1, and L1=2xD1, then it is easier to write the equations in your macro.

Analyzing the Macro
The macro is shown in the following lines. You have already seen many of the
commands and functions in the previous chapter, "File Input/Output and Text
Strings".
DEFINE Spigot
{local variables here}

LET File1 '\anna\spigot.dat'
OPEN_INFILE 1 File1

LET File1 '\anna\spigot.dat'
OPEN_INFILE 1 File1

LET L2 10 {height of head is constant for simplicity}
{the main loop is executed once for each pair of points }
{digitized by the user}
LOOP

READ PNT 'Digitize first point, or END' P1
READ PNT 'Digitize second point' P2

LET Hole_diam (ABS(P2 - P1)) {we don't want negative }
{lengths}

OPEN_INFILE 1 File1
LOOP

READ_FILE 1 Line_of_data
LET Line_pos (POS Line_of_data ' ')

{find the position of the first blank in the line}
LET Data_1 (SUBSTR Line_of_data 1 (Line_pos -1))

{Data_1 finishes just before the first blank}

Using Dimensions Stored in a Data File 99

LET D1 (VAL Data_1) {convert from text to numeric}
EXIT_IF (ABS(D1 - Hole_diam) < 0.0001) {we want the spigot}

{to be a friction fit in the hole}
END_LOOP
LET Line_length (LEN Line_of_data)

{mark the start position of the next data item, then}
{step along until the next blank is found}

LET Start_pos (Line_pos+1)
LET Line_pos (Line_pos+1)
LOOP

LET Next_char (SUBSTR Line_of_data Line_pos 1)
EXIT_IF (Next_char = ' ')

LET Line_pos (Line_pos+1)
END_LOOP
LET Data_2 (SUBSTR Line_of_data Start_pos (Line_pos-1))

{the last data starts from the position after the blank, and is}
{of length (Line_length-Line_pos) }

LET Data_3 (SUBSTR Line_of_data (Line_pos+1)
(Line_length-Line_pos))

LET D2 (VAL Data_2) {convert to numeric}
LET L1 (VAL Data_3)
LET S (0.5*(D2 - D1))
LET Angle (ANG(P2-P1))

{convert all lengths to vectors}
LET Vect_S (PNT_RA S Angle)
LET Vect_L2 (PNT_RA L2 (Angle+90))
LET Vect_D2 (PNT_RA D2 Angle)
LET Vect_L1 (PNT_RA L1 (Angle+90))
LET Vect_D1 (PNT_RA D1 Angle)

LET P3 (P1 - Vect_S)
LET P4 (P3 + Vect_L2)
LET P5 (P4 + Vect_D2)
LET P6 (P5 - Vect_L2)
LET P7 (P2 - Vect_L1)
LET P8 (P7 - Vect_D1)

{connect the points}
LINE POLYGON P1 P3 P4 P5 P6 P2 P7 P8 P1

END_LOOP
END_DEFINE

Let's start our analysis with the following line:
LET Hole_diam (ABS(P2 - P1))

When we search the data file, we will look for a value of D1 that is equal to
Hole_diam. Since it is possible for (P2-P1) to be negative, we are taking the
absolute value so that we can check for equality.
LET D1 (VAL Data_1)

100 Creo Elements/Direct Drafting Writing Macros

Data_1 is a text string. We want to be able to compare Data_1 with D1, which
is a number. So we convert Data_1 to a numeric value.
EXIT_IF (ABS(D1 - Hole_diam) < 0.0001)

We want to search the file until we find a value of D1 that is equal to Data_1.
You might expect us to use an equality statement such as the following:
EXIT IF (D1 = Hole_diam)

In any programming language, programmers avoid equality statements in these
situations because of problems of accuracy. Let's say you digitize the 20 mm
diameter hole at the left of Figure 14. Sectional View of Test Block on page 97.
The computer may compute the hole diameter as 20.0000000000001 mm. When
the macro is reading the third line in the data file, the statement as seen using the
trace facility would be:
EXIT IF (D1 20 = Hole_diam 20.0000000000001) 0

The 0 at the end of the line indicates false, so there is no equality.
The actual statement we use in the macro says that if the difference between D1
and Hole_diam is acceptably small, we will accept D1.
LET P3 (P1 - Vect_S)

Figure 16. Spigot—General Dimensions on page 98 shows the positive direction
of Vect_S. To get from P1 to P3, we have to go in the negative direction. So P3
= P1 - Vect_S. If we had defined the positive direction of Vect_S to be
downwards to the left, then the correct equation would be P3 = P1 + Vect_S.
This demonstrates that as long as you follow your own sign convention, the signs
of vectors can always be determined.
LET P4 (P3 + Vect_L2)

To get from P3 to P4, we go in the positive direction of Vect_L2, so we add
Vect_L2. For the remaining vectors, the decision whether to add or subtract also
depends on the direction that you have chosen as positive.

Refining the Macro
This macro has been kept as simple as possible to show the principles and to give
you as little typing as possible. The standard parts data that you store in text files
can be for simple parts (such as washers, gaskets, and studs), or very complex
parts (such as mechanical seals and piston assemblies). The principles are the
same.
Even for drawing spigots, the macro is very crude. Here are some obvious
improvements:

• In our macro, P1 and P2 must be digitized in the correct order so the macro
knows the correct attitude of the spigot. If you digitize the points in the wrong
order, the spigot is drawn as a mirror image of the correct position (try it!).
You can rewrite the macro so that the user must digitize a third point (for

Using Dimensions Stored in a Data File 101

example, a point at the bottom of the hole), so that the macro knows the
attitude of the hole.

• For a spigot, we need a friction fit, so the diameter of the spigot is the same as
the diameter of the hole. In cases where a loose fit is required, the macro must
be able to centralize the item in the hole.

• In our file spigot.dat, each data item consists of two digits, and the data is
arranged with only one blank between each data item. Normally, tabular data
items will have different lengths and each column will be right-justified. So,
there will be a varying number of blanks between each data item. Your macro
must allow for this.

• In the case of our simple spigot, there was only one row of data for each value
of D1. If you have several rows of data for each value of D1, (for example,
several values of D2 for each value of D1), you must add a loop within a loop
to search for the required value of D2.

• In the case of P1 and P2 it is assumed that the value of (P1-P2) corresponds
to a value of D1 in the file spigot.dat. If the user inputs two points P1 and
P2 that do not meet the condition the loop will be executed until the string
END-OF-FILE is read. Further execution will be stopped. To allow for this
situation you should add a line that exits the loop if END-OF-FILE is read
and displays a message to tell the user that the input was incorrect.

102 Creo Elements/Direct Drafting Writing Macros

9
Useful Macros

Drawing Construction Lines at Angles to Existing Lines .. 104
Splitting a Line into Equal Segments ... 104
Drawing a Round-Ended Slot ... 105
Drawing Regular Polygons... 106
Fitting text around a circular object.. 107
Showing the Different Z-Levels of a Hidden-Line Drawing... 107

This chapter contains some macros that may be useful during your CAD
operations. Even if you don't want to use a macro, you can still learn a lot by
studying the macro and trying to understand it.
If you only want to try these macros, you can save typing time by omitting local
variables and comments.

103

Drawing Construction Lines at Angles to
Existing Lines
The following macro draws a construction line to intersect an existing line at a
specified angle. The existing line can be a construction line or a geometry line
(real or imaginary).
DEFINE Ang_c_line

LOCAL P1
LOCAL P2
LOCAL Ang1
LOCAL Ang2

LOOP
CATCH ELEM
READ PNT

'Pick intersection point on existing line' P1
READ PNT

'Pick a second point on existing line' P2
READ NUMBER

'Enter angle of C_line from existing line' Ang1
LET Ang2 (ANG(P2-P1))
C_LINE PT_ANG P1 (Ang1+Ang2)
END

END_LOOP
END_DEFINE

Splitting a Line into Equal Segments
This macro splits a line (real or imaginary) into a specified number of equal
segments. The macro then draws construction lines through the split points. These
construction lines can be horizontal, vertical, or perpendicular to the existing line.
DEFINE cline_mix

{local variables here}

LOOP
READ STRING

"ENTER 'H', 'V', OR 'P' FOR C_LINE HORIZ, VERT, OR PERP" Q
EXIT_IF ((Q='H') OR (Q='h') OR (Q='V') OR (Q='v') OR

(Q='P') OR (Q='p')) {this line must be joined to previous line}
END_LOOP

READ NUMBER
'ENTER NO. OF SECTIONS FOR SPLITTING LINES (2,3,4,..)' N

READ PNT 'ENTER start point of line' P1
READ PNT 'ENTER end point of line' P2
LET Fraction (1/N)

104 Creo Elements/Direct Drafting Writing Macros

LOOP
LET N (N-1)

EXIT_IF (N=0)
LET PN (N*Fraction)
LET PNN (P2-(P2-P1)*PN)
IF ((Q='H') OR (Q='h'))

C_LINE HORIZONTAL PNN
ELSE_IF ((Q='V') OR (Q='v'))

C_LINE VERTICAL PNN
ELSE

C_COLOR BLACK
C_LINE P1 P2
C_COLOR RED
C_LINE PERPENDICULAR P1 PNN

END_IF
END_LOOP

IF (Q='P')
DELETE SELECT C_LINES BLACK CONFIRM END REDRAW
ELSE
END

END_IF
END_DEFINE

Drawing a Round-Ended Slot
This macro will draw a round-ended slot of any size, at any angle to the axes.

DEFINE A_slot_macro
LOCAL W
LOCAL P1
LOCAL V
LOCAL P2
READ NUMBER 'Enter the slot width' W

LOOP
FOLLOW OFF
COLOR WHITE
LINETYPE SOLID
READ PNT 'Pick one center point' P1
READ PNT 'Pick the other center point' RUBBER_LINE P1 P2
LET V (ROT ((P2 - P1) * (W /2) / (LEN (P2 - P1))) 90)
ARC CEN_BEG_END P1 (P1 + V) (P1 - V)
ARC CEN_BEG_END P2 (P2 - V) (P2 + V)
LINE POLYGON (P1 - V) (P2 - V)

Useful Macros 105

LINE POLYGON (P1 + V) (P2 + V)

LET V (V * 1.5)
COLOR YELLOW
LINETYPE DOT_CENTER
LINE POLYGON (P1 - V) (P1 + V)
LINE POLYGON (P2 - V) (P2 + V)
LET V (ROT V 90)
LINE POLYGON (P1 + V) (P2 - V)
END_LOOP

COLOR WHITE
LINETYPE SOLID

END_DEFINE

Drawing Regular Polygons
This macro will draw a regular polygon with any number of sides, and with
inscribed and circumscribed circles.

DEFINE A_polygon_macro
LOCAL P
LOCAL D
LOCAL N
LOCAL R
LOCAL A
LOCAL P1
LOCAL P2
LOCAL Pm

LOOP
READ 'Pick the center point of the polygon' P
READ 'Enter the diameter of the circumscribing circle' D
READ 'Enter the number of sides in the polygon ' N
LET R (D/2)
LET A ((180-(360/N))/2)
LET P1 (P+PNT_XY(R*COS A)(R*SIN A))
LET P2 (P+PNT_XY(-R*COS A)(R*SIN A))
LET Pm ((P1 + P2) /2)
LINE P1 P2
MODIFY Pm ROTATE COPY (N -1) CENTER P (360/N)
CIRCLE P (R*SIN A)
CIRCLE P R
WINDOW FIT
END_LOOP

106 Creo Elements/Direct Drafting Writing Macros

END_DEFINE

Fitting text around a circular object
This macro will fit a text string around a circular object.

DEFINE T_rot
LOCAL T
LOCAL Cp
LOCAL Sp
LOCAL A
LOCAL N
LOCAL Da
READ STRING 'Enter text' T
READ PNT 'Enter center point' Cp
READ PNT 'Enter start point' Sp
READ NUMBER 'Enter angle' A
LET N (LEN T)
LET Da (A/N)
LET A (ANG (Sp - Cp))
LET N 1
WHILE (N< =LEN T)

TEXT_ANGLE (A - 90)
TEXT (SUBSTR T N 1) Sp
LET A (A - Da)
LET Sp (Cp+PNT_RA (LEN (Sp - Cp)) A)
LET N (N+1)

END_WHILE
END
TEXT_ANGLE 0

END_DEFINE

Showing the Different Z-Levels of a
Hidden-Line Drawing
This macro displays each z-level in a drawing, one at a time. A logical table is
created in RAM to store the necessary information.
Before you can use this macro, your hidden-line module must be activated, and
you must have a drawing with assigned z-levels on your screen.
DEFINE Scan_z_levels

Useful Macros 107

LOCAL Range_min
LOCAL Range_max
LOCAL Act_line
LOCAL Max_line
LOCAL Act_val
WINDOW FIT
HL_INQ_Z_VALUE RANGE
LET Range_min (INQ 3)
LET Range_max (INQ 4)
LET Act_line 0
CREATE_LTAB "Range_drawing" {create a logical table in RAM}
{ fill the logical table with all z values in the drawing}

REPEAT
LET Act_line (Act_line + 1)
HL_INQ_Z_VALUE NEXT
LET Act_val (INQ 3)
WRITE_LTAB "Range_drawing" Act_line 1 Act_val

UNTIL (Act_val = Range_max)

LET Max_line Act_line
{Switch all geometry off and show only geometry having no Z-values}
HL_REDRAW_MODE ON CURRENT
SHOW GLOBAL ALL ON
SHOW DIMENSIONS OFF
SHOW HATCHING ALL OFF
SHOW TEXTS ALL OFF
HL_VISUALIZE GLOBAL ALL OFF
DISPLAY "First of all, you see all elements without a z-value"
LET Act_line 0
{show elements on each z-value, one at a time }

REPEAT
LET Act_line (Act_line + 1)
LET Act_val (READ_LTAB "Range_drawing" Act_line 1)
SHOW GLOBAL ALL OFF
HL_VISUALIZE GLOBAL Act_val Act_val CYAN
DISPLAY ("Now you see all elements with z-value " + (STR Act_val))

UNTIL (Act_line = Max_line)
SHOW GLOBAL ALL ON
DELETE_LTAB 'Range_drawing'

END_DEFINE

108 Creo Elements/Direct Drafting Writing Macros

10
Recording the System Operation

The ECHO Function.. 110
Using ECHO for Creating Macros ... 111

This chapter shows you how to store a record of all system inputs that are made in
a certain period. This feature can be useful for:

• Creating fixed dimension geometric macros very quickly.
• Making demonstrations of system operation - the invisible draftsman!
Two functions can do this: - ECHO and TECHO. The features of each are outlined
in the following sections.

109

The ECHO Function
This function will write all system input to a file (or printer) in the form shown
here:
Tm_screen_create_1
LINE POLYGON
-1.74255323667387E+002,-1.91693974675132E+000
-1.68756133685496E+002,1.64136935262188E+001
-1.64631741199077E+002,2.81847384876597E+000
-1.82402271788707E+002,3.73500551241448E+000
-1.78226960876530E+002,1.07617482670530E+001
-1.52869584848922E+002,6.79899966919450E-001

LINE PARALLEL
-1.53429687532262E+002,1.08635851185695E+001
-1.52767747997405E+002,3.88776078968923E+000
LINE HORIZONTAL
-1.67381336190023E+002,-3.44449251949884E+000
-1.50170908283734E+002,-2.27336872705908E+000

ARC THREE_PTS
-1.60100001306593E+002,7.50296901852502E+000
-1.50731010967075E+002,1.59643163056796E+000
-1.52716829571647E+002,1.09654219700860E+001
SPLITTING ON
CIRCLE CENTER
-1.54040708641361E+002,-2.06969502402607E+000
-1.51902134759515E+002,4.75337402757949E+000
END
END

The names of all commands and functions used are recorded, together with
numerical input from the keyboard.
To start an ECHO file, type the following:
ECHO 'echofilename'

where echofilename is the chosen name for your ECHO file.
System inputs from now on will be recorded.
To close an ECHO, file type the following:
ECHO OFF

To replay an ECHO file, type the following:
INPUT 'echofilename'

where echofilename is the name previously given to the ECHO file.

110 Creo Elements/Direct Drafting Writing Macros

Using ECHO for Creating Macros
You can use the ECHO file as a basis for creating a macro. However, with some
types of macro you gain nothing by using ECHO. For example, the spigot macro
that we looked at in Using Dimensions Stored in a Data File on page 95 is almost
completely involved with vector analysis and reading files. Tasks that involve a lot
of digitizing and changing menus when done manually are the best type of tasks
for ECHO.
Look at the hatched block in the next figure:

Figure 20. Block Created Using ECHO

Here are the contents of the ECHO file recorded during creation of the block:
TM_CREATE_1
LINE RECTANGLE
-6.263595945324684,8.418272950516371
5.595479044490039,0.7683344359598321
TM_CONSTRUCT_1
-6.230190100282952,8.418272950516371
5.628884889531771,0.7683344359598321
-6.230190100282952,0.7683344359598321
5.562073199448307,8.418272950516371
CIRCLE CENTER
-0.350761372938188,4.610006615758968
1.252719189064929,4.409571545508578
TM_END

Tm_text_1
TEXT_SIZE
1
I_set_font_1 "hp_i3098_v"
TEXT Restore_old_text_font
'FACE "A"'
-5.161203058947541,6.71457485338806
Tm_hatch
HATCH_DIST
1
HATCH AUTO

Recording the System Operation 111

3.991998482486922,4.409571545508578
TM_END
echo off

The construction lines were used to find the intersection of the diagonals of the
rectangle, so that the center of the circle could be visually located. In a macro, the
coordinates of the center will be known, so no construction lines are necessary.
We can edit the ECHO file, using our own coordinates for points:
DEFINE Hatch_block
LINE RECTANGLE
-5,4
5,-4
CIRCLE CENTER
0,0
-1,0
END

TEXT_SIZE
1
I_set_font_1 "hp_i3098_v"
TEXT Restore_old_text_font
'FACE "A"
-4,2
HATCH_DIST
1
HATCH AUTO
3,0
END
END_DEFINE

To create the macro, do the following:

• Put DEFINE 'filename' at the beginning and END_DEFINE at the end.
• Remove references to menus. For example, remove TM_CREATE_1, Tm_

text_1, and Tm_hatch.
• Remove echo off.
• Replace TM_END by END.
Note that you use END more often in a macro than you do when working
manually. When you are working manually, you can terminate a recursive
command or function by starting a new command.

112 Creo Elements/Direct Drafting Writing Macros

11
Using the Interface to Find a

Command
What Command Will You Use?... 114

In this chapter, we "look behind" the user interface to see what commands are
activated each time you pick an item on a screen menu. This helps you to relate a
familiar action on the user interface to an unfamiliar macro command or function.

113

What Command Will You Use?
When you start to write your macro, what commands and functions will you use?
We saw in Recording the System Operation on page 109 that a good way to start a
macro is to use ECHO, and then modify the ECHO file. This is fine for a "drafting"
macro that saves the user from doing a lot of digitizing and menu changing. But
many macros contain only a few commands that actually show visible results,
such as drawing a line or creating a new viewport. The remainder of the
commands perform calculations and vector analysis. The spigot macro in Using
Dimensions Stored in a Data File on page 95 is a good example. For such macros,
ECHO will not help you much.
If you want to create a viewport in a macro, what command will you use? Ask
yourself: "How do I do this on the user interface?". If you can find out what
internal command is activated when you press CREATE, this is the command to
use in your macro.

Screen Commands and Functions
Here's how to find the commands that lie behind the screen menu slots. Let's take
the INFO menu as an example. Type on the command line:
EDIT_MACRO

The system responds with the prompt:
Enter macro_name or ALL

Now press INFO. The following macro is displayed on the screen:
DEFINE Tm_info
Sm_info

END_DEFINE

Now type:
EDIT_MACRO Sm_info

The macro Sm_info is displayed on the screen. Here it is:
DEFINE Sm_info
IF (I_port)

Check_i_port
END_IF
IF (NOT I_port)

CURRENT_MENU '' T_clear_menu
MENU
BLACK
YELLOW ' INFO' '' 1 1
MENU
BLACK
WHITE 'ADD SELECT' 'ADD_ELEM_INFO' 3 1
MENU 'Element' 'ADD_ELEM_INFO' 3 2
MENU
BLACK
CYAN 'SCREEN' 'SCREEN' 4 2

114 Creo Elements/Direct Drafting Writing Macros

MENU
BLACK
WHITE 'ADD CURRNT' 'ADD_CURRENT_INFO' 5 1
MENU
BLACK
WHITE 'EDIT' 'EDIT_ELEM_INFO' 7 1
MENU 'Element' 'EDIT_ELEM_INFO' 7 2
MENU 'Current' 'EDIT_CURRENT_INFO' 8 2
MENU
BLACK
WHITE 'DELETE' 'DELETE_ELEM_INFO' 9 1
MENU 'Element' 'DELETE_ELEM_INFO' 9 2
MENU 'Current' 'DELETE_CURRENT_INFO' 10 2
MENU
BLACK
WHITE 'CHANGE' 'CHANGE_ELEM_INFO' 11 1
MENU 'Element' 'CHANGE_ELEM_INFO' 11 2
MENU 'Global' 'CHANGE_GLOBAL_INFO' 12 1
MENU 'Current' 'CHANGE_CURRENT_INFO' 12 2
MENU
BLACK
WHITE 'LIST' 'LIST_GLOBAL_INFO' 13 1

END_IF
END_DEFINE

You can see that the displayed text for row 1, column 1 is ADD SELECT. The
corresponding command (sometimes called the "action text") is ADD_ELEM_
INFO. The displayed text for row 8, column 2 is Current. The corresponding
command is EDIT_CURRENT_INFO.
Use this method to find the contents of any screen menu.

Summary
In summary, if you want to know what commands or functions to use in a macro
to do a specific task:

• Decide how you would do the task using the user interface.
• Find out what command "lies behind" the user interface.
• If necessary, read the description of the command in the online help.
• Use the command, plus the correct options, in your macro.

Using the Interface to Find a Command 115

12
Customizing

What Is the Creo Elements/Direct Drafting Environment? ... 118
Customizing the Creo Elements/Direct Drafting Environment...................................... 119
How Screen Menus are Created... 119
Customizing the Screen Menus .. 124
Customizing for Local Directories ... 124
Customizing the Keyboard ... 127
What is a Text Font? .. 129
How to Create a Text Font.. 134
Customizing the Startup Procedure .. 137
Customizing the Hatch Patterns ... 140
The Keyboard Input Characters.. 142
The Keyboard Input Characters.. 143

When Creo Elements/Direct Drafting starts, it reads and executes a number of
files which define a variety of functions (such as the screen menus, and Creo
Elements/Direct Drafting environment). These files are executable programs
called macros, which you can edit and store under your own filenames to be
reloaded and used as required. It is therefore possible to create your own
alternative definitions for the screen menus and Creo Elements/Direct Drafting
environment. This process is known as customizing.

117

What Is the Creo Elements/Direct Drafting
Environment?
The Creo Elements/Direct Drafting environment consists of such things as the
color of construction or drawing lines on the screen, the size and color of
dimension text, whether drawing lines are split or not while drawing, the drawing
scale and units, and so on.
All these are controlled by the settings of the environment functions, of which
there are more than 70 in the system. An example of an environment function is
DIM_COLOR. This can be set to produce dimensions with any of the colors
available.
The current settings of the environment functions can be stored in a file. Here is a
listing of part of an Creo Elements/Direct Drafting environment file:
MAX_FEEDBACK 100
CONFIGURE_EDITOR '$' 1 79
UNITS 1 MM
UNITS 1 DEG
CS_REF_PT 0,0
CS_AXIS 1,0 0,1
FOLLOW OFF
GRID_FACTOR 10
CURRENT_FONT 'hp_block_v'
TEXT_FRAME OFF
TEXT_ANGLE 0
TEXT_ADJUST 1
TEXT_LINESPACE 2.2
TEXT_FILL OFF
TEXT_SIZE 1
TEXT_RATIO 1
TEXT_SLANT 0
LINE WHITE SOLID END
C_LINE RED DOTTED END
TEXT WHITE END
SPLITTING ON
ARROW_FILL ON

At startup, the functions are set as shown in the listing to provide a standard
environment. During normal use the settings are changed from the screen menu as
required.
It is also possible to change the function settings by editing the Creo Elements/
Direct Drafting environment. This method is useful because it gives an overview
of the status of all environment functions at once.
A customized environment can be stored in a named file. This file can then be
used to restore the same environment whenever it is required.

118 Creo Elements/Direct Drafting Writing Macros

Customizing the Creo Elements/Direct
Drafting Environment
The environment will be displayed and the function settings can be changed as
required. When you have finished changing the environment, press [CTRL] [D]
to implement all the changes on the system. The current environment can be
stored for future use in a named file by picking the SAVE ENV option from the
screen menu and entering:
'env_filename'

where env_filename is a name of your own choice.
To execute the stored file and redefine the system environment, enter:
INPUT 'env_filename'

How Screen Menus are Created
The screen layout consists of a menu from which commands can be given and a
working area in which drawings are produced. The menu layout provides active
areas (called slots) from which commands can be called directly. Names and
mnemonics associated with these commands can be displayed in the slots.
A typical menu listing is shown at the beginning of Using the Interface to Find a
Command on page 113. If you study this listing, you can see that, for each row
and column, the "display" text appears before the "action text".
The names of the system macros that display the screen menus can by found by
entering EDIT_MACRO and picking one of the screen menu pads. The display will
become as follows:
DEFINE action_text

action
END_DEFINE

In this case action is the name of the macro that displays the screen menu. Each of
these macros can be edited and stored in a file for future use.
Here is how to save the macro that displays a screen menu. Let's use the CREATE
1 menu as an example:

1. Use EDIT_MACRO to get the macro name from the screen menu. You will
find that the macro for the CREATE 1 menu is Sm_create_1.

2. On the command line, type:
SAVE_MACRO Sm_create_1 'filename'

filename is a name of your choice.
Now you can edit the file. You may want to add the contents of the file to your
customize file.

Customizing 119

Menu Variables
Here are the first few lines of the CREATE 1 menu, showing the menu variables:
DEFINE Sm_create_1
LET Lastmen 'Tm_create_1'
IF (I_port)

Check_i_port
END_IF
IF (NOT I_port)

MENU_BUFFER ON
CURRENT_MENU Sm_create_1_layout_name
T_clear_menu
Menu_control_icons
MENU Colo0 Bcol5 CENTER 'CREATE 1' '' 1 3

.

.

.
MENU Colo0 Bcol5 CENTER 'SPLINE' 'Tm_create_3' 25 2
Eight_menu_slots_add

END_IF
END_DEFINE

The meaning of each of these variables is as follows:

• I_port

The next variable I_port relates to the LARGE/SMALL pad underneath PORT
on the formerly used tablet. When LARGE/SMALL is picked, the macro Tm_
port_large_slash_small is executed and the coordinates of the current
viewport are stored. The current viewport is then enlarged so that the entire
screen becomes available for creating geometry. At the same time, the variable
I_port is set to 1 to inform the system that a large viewport is on display
and if a menu pad is picked, nothing will happen. When LARGE/SMALL is
picked again, the current port is reduced to its original size, and the variable
I_port is set to 0 so that menus can be changed in the usual way.

• CURRENT_MENU Sm_create_1_layout_name

This sets the name of the current screen menu to Sm_create_1 (Sm_
create_1_layout_name is a macro that will be expanded to that string).
All menu layouts and menu commands will be related to this current menu,
until a current menu having a different name is used. To define your own
menus we recommend using '' (an empty string) as layout name.

• T_clear_menu

This macro clears all text from the menu so that new text can be entered.
• Menu_control_icons

This macro inserts the icons for pinning, moving and removing the menu into
the first line of the menu.

120 Creo Elements/Direct Drafting Writing Macros

• MENU Colo0 Bcol5 CENTER 'CREATE 1' 1 3

This line finishes the first menu row. Colo0 and Bcol5 will expand into a
foreground and a background color, which is defined according to the
MEPELOOK at system startup time. All system defined menus use these
macros for specifying foreground and background colors. The following table
gives an overview on how these macros relate to the menu color if MEPELOOK
is set to 0.
Foreground Background COLOR (MEPELOOK=0)
Colo0 Bcol0 BLACK
Colo1 Bcol1 WHITE
Colo2 Bcol2 RED
Colo3 Bcol3 GREEN
Colo4 Bcol4 BLUE
Colo5 Bcol5 YELLOW
Colo6 Bcol6 MAGENTA
Colo7 Bcol7 CYAN

• Eight_menu_slots_add

Eight_menu_slots_add is a macro which updates the last 8 user
customizable slots. It is used in every standard menu. You can place your own
menus items in these 8 slots using the Eight_menu_slots macro. The
syntax for this macro is

Eight_menu_slots 'title' 'action' Row_number Column_number

The string title will be displayed in the slot, action is the action text,
which will be executed if the menu slot is pressed. Row_number and
Column_number are the corresponding row and column numbers. The valid
range for the row number is 26 to 27, and 1 to 4 for the column number.

Physical Layout of Menu Slots
You have probably noticed that, with only a few exceptions, all your screen menus
have a similar layout of rows and columns. This is because most of the menus use
the same "template". This template is created using a macro called Layout_
body_1. This macro is used for example to define the layout of the Sm_
create_1 menu:
DEFINE Layout_body_1
Headline_height ' | | | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '

Customizing 121

Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Text_slot_height ' | '
Bottom_slot_height ' | | | '
Bottom_slot_height ' | | | '

END_DEFINE

Here is an explanation of the variables used in the above macro:

• Headline_height

The height of the menu title slot.
• Text_slot_height

The height of the slots containing the display text.
• Bottom_slot_height

The height of the small boxes at the bottom of each menu.
The slot height values are calculated during startup. This allows the menu size to
be adapted to suit the window or display size on which Creo Elements/Direct
Drafting was started. The values are defined in the hp_macro.m file. These
definitions can be used as examples of how the slot sizes can be made self-
adapting for different window or display sizes.
This templete macro is used in the following macro, which defines the CREATE 1
menu layout:
DEFINE Sm_create_1_layout

CURRENT_MENU 'Sm_create_1'
CURRENT_SCREEN 1
MENU_LAYOUT Menu_position RIGHT

Layout_body_1
Menu_home_point_top

END
MENU_STATUS ENABLE_INQ
LET Sm_create_1_layout_name 'Sm_create_1'

END_DEFINE

122 Creo Elements/Direct Drafting Writing Macros

Here is an explanation of the variables used in the above macro:

• CURRENT_MENU 'Sm_create_1'

This sets the name for the CREATE 1 menu layout to Sm_create_1.
• CURRENT_SCREEN 1

This ensures that even in a dual screen environment the menu will be placed
on the first screen.

• MENU_LAYOUT

The MENU_LAYOUT command causes the menu to be displayed at the right of
the screen. The MENU_LAYOUT command is terminated by END.

• Menu_position

A macro containing the qualifier LOWER. This can be set to UPPER if
required.

• Layout_body_1

This line calls the macro Layout_body_1.
• Menu_home_point_top

Moves the menu to the correct position on the screen. This position is
calculated according to the Menu_position macro and user interface
version (screen-only).

• MENU_STATUS ENABLE_INQ

This removes the inquiry protection from the menu.
• LET Sm_create_1_layout_name 'Sm_create_1'

The CREATE 1 menu does not use the layout name directly. To activate its
layout the Sm_create_1_layout_name variable is used. Therefore Sm_
create_1_layout_name has to be defined here to the correct string. This
is usefull for deferring the actual generation of the menu layout until the menu
is requested the first time. Until the first request, Sm_create_1_layout_
name will define the macro name that generates the layout.

Using Tables for Screen Menus
Some of the screen menus are defined using the TABLE series of commands, such
as TABLE_LAYOUT and SHOW_TABLE. Tables are used because they allow the
display of system status variables. Table scrolling allows long lists to be
displayed. Examples of menus using tables are:

• HIDDEN LINE

These menus are created using MENU and TABLE commands.

Customizing 123

The definition of these menus can be seen in ASCII versions of the files hp_
macro.m, and hp_men_t.m.
Use copies of the existing menus to make changes or additions.
Menus that are defined using tables are secured against deletion or overwriting.
This avoids potential problems caused by commands such as DELETE_TABLE_
ALL.
If you want to use your own menu tables, you should move the SECURE_TABLE
statements in the previously mentioned files to the end of your table definitions.
The logical tables for the default menus should not be changed because they are
accessed by the Creo Elements/Direct Drafting code.
For further information about the use of tables, refer to the online help.

Customizing the Screen Menus
You can customize the menus in several ways:

• New commands can be made available in the existing menus. Add the display
text, and insert the new command as the action text.

• You can activate one of your macros from an empty menu slot. Add the
display text, and insert the name of your macro as the action text.

• New menus can be created using the existing menu layout.
• New menus can be created using a new menu layout.
• Customized viewport arrangements can be defined and called when wanted.

Customizing for Local Directories
When you customize Creo Elements/Direct Drafting, you will have a number of
files to store on your system's hard disk (for example, files containing your own
macros, customization, geometry, and bodies). These files are normally stored in
your own user directory (also called your home directory). This directory is
separate from the directories of other users.

Platform Dependencies
If you start Creo Elements/Direct Drafting while you are in your home directory,
all files are stored in this directory unless you specify otherwise. In a Windows
environment, you can install Creo Elements/Direct Drafting so that it always starts
from your home directory. See your the configuration manual that corresponds to
your operating system manual.
Figure 23. Directory Hierarchy Structure on page 125 shows a typical hierarchy of
directories. Your system may be somewhat different.

124 Creo Elements/Direct Drafting Writing Macros

Figure 23. Directory Hierarchy Structure

At the top of the tree is the root directory, denoted by a slash (/). Under this is a
directory called users. Under users is your own user directory corresponding
to your login name, together with the directories of other users. Your own
directory (also called your home directory) can contain files and sub-directories.
Normally you will store your files in your user directory or one of your sub-
directories, but it is also possible to store files in the directories of other users,
provided these directories are not write-protected.
Underneath the root directory is a directory called me10 which contains all the
Creo Elements/Direct Drafting software. Other files and directories are used by
your operating system. You need not concern yourself with these.
Files and directories within the same branch of the tree structure are separated
from each other with a slash, the first slash corresponding to the root directory.
The full specification for a file in your user directory is:

/users/user_directory/filename

where user_directory is the directory corresponding to your own login name and
filename is one of your own files.

Customizing 125

Note
You can use either a slash (/) or a backslash (\) to separate files and directories
when specifying pathnames within Creo Elements/Direct Drafting. The following
two paths specify the same file:

/users/user1/file2
\users\user1\file2

When you first log in, your own user directory is known as the current directory. If
you specify a file simply by giving the filename, the system will look for the file
in your current directory. If it is not there, the system will look in the me10\
me10 directory, or the directories specified in the SEARCH path. The SEARCH
path is specified in the environment file.
If you wish to specify a file that is not in the current directory and not specified by
the SEARCH path, you must specify the full path name, starting from the root
directory.
You can create a sub-directory under the current directory by entering the
following command at the Creo Elements/Direct Drafting command line:
CREATE_DIRECTORY 'subdirectory'

subdirectory is a name of your choice.
To make the subdirectory the current directory, use the CURR DIR option in the
FILE screen menu and specifying the name of the new directory. If you create a
file in subdirectory, the full specification for the file will be:
/users/user_directory/subdirectory/filename

We will now see how to produce a customized menu so that you can change from
one directory to another.

Example—Create Your Own Directory Menu
Create a file with a filename of your own choice using EDIT FILE from the FILE
screen menu and enter the text of a macro. Here is an example:
DEFINE Directory
IF (NOT I_port)

CURRENT_MENU ''
MENU Colo1 Bcol0 '' '' BOX 1 1 38 7
MENU Colo0 Bcol5 CENTER 'DIRECTORY' 1 1
MENU Colo1 Bcol0 'users' 'CURRENT_DIRECTORY "/users"' 3 1
MENU 'me10' 'CURRENT_DIRECTORY "/me10"' 3 2
MENU 'Jim' 'CURRENT_DIRECTORY "/users/jim"' 4 1

END_IF
END_DEFINE

126 Creo Elements/Direct Drafting Writing Macros

The first MENU statement sets the menu heading. The second MENU statement
defines all the boxes under the heading to be blank with a black background, but
to have white text as soon as some text is written into them.
The third MENU statement defines a slot to represent the directory of users. The
one after that represents the directory containing the Creo Elements/Direct
Drafting software, and so on.
Note that all the CURRENT_DIRECTORY statements specify the full pathname
for the directories, starting with the root directory (/). This ensures that the
directories can always be found, regardless of where they are in the directory tree
structure.
The list of MENU statements can continue until the slots in the menu layout are
filled.
The numbers at the end of each MENU statement represent the row and column
number of the slot.
In this example, the last MENU statement defines a slot for displaying the current
catalog on the screen. When the menu is displayed, you can change the current
directory by picking any named slot and then display the directory by picking
CATALOG.
If you input the file and run the macro, the menu is displayed. You can select
directories by picking the named slots.

Customizing the Keyboard
When working with Creo Elements/Direct Drafting, you may use some commands
more frequently than others. This section shows how to customize the keyboard to
reduce the time required to call one of these commands.
Your keyboard has eight or twelve function keys labelled f1 to f8 or f1 to f12. All
of these keys can be customized.
For example, you may wish to use commands that are not available on your
current screen menu. To avoid having to change the screen menu to issue a
command, customize a function key so that the required command is written on
the input line or directly executed whenever the function key is pressed. Refer to
the explanation of DEFINE_KEY in the online help.
The function keys also can be used to display characters that are not available on
the keyboard. Each character has a number associated with it, known as an ASCII
number. The numbers range from 0 to 255, and most of them represent readable
characters, although some of them are used for control functions, such as ESC,
RETURN, TAB and DEL. A list of all the characters that produce useful text is
given at the end of this chapter under the heading The Keyboard Input Characters.
The characters that cannot be used for text are the ones with ASCII numbers 0-31,
127-159 and 255.

Customizing 127

Any of the text characters can be displayed on the input line by entering:
DISPLAY (CHR ascii_number)

where ascii_number is the ASCII number of the character.
To customize a function key so that it can be used to type a character, enter the
command:
DEFINE_KEY key_number (CHR ascii_number)

where key_number is a number from 1 to 8 or from 1 to 12 representing the
function key to be customized. The next time the function key is pressed, the
character will appear on the user input line.

Note
If a function key is customized and used to place text on a drawing from the TEXT,
SYMBOLS or DIMENSION menus, the text on the drawing will depend on how the
text font has been customized, and will not necessarily look the same as the
characters that appear on the input line. See the next section on "Customizing the
Text Fonts".

To customize a key so that it can be used to issue a command, enter:
DEFINE_KEY key_number 'action_text'

where action_text is the name of the required command. When the key is
pressed, the command name appears on the input line. To execute it, press
[Return].
Quotes are needed around a command name because the system is asking for text,
just as if you had typed the command on the input line. When customizing a key
to produce a character, quotes are not needed because (CHR ascii_number) is
considered by the system to be text.
The function keys also can be customized from a file. Select EDIT FILE from the
FILE screen menu and enter in quotes the filename under which the file is to be
stored on the disk. Type the required instructions and store the file using [CTRL]
[D].
Now select INPUT and enter the filename again. All the keys which are defined in
the file will be customized.
If you customize the function keys either from the keyboard or from a file, the
function key definitions will be lost whenever the system is switched off. The
advantage of storing your DEFINE_KEY instructions in a file is that whenever
you start up the system and wish to customize the function keys, all you have to
do is input your file.
The following listing is an example of a file that customizes eight function keys.
DEFINE_KEY 1 (#14 '3' #15)
DEFINE_KEY 2 (#14 '1' #15)

128 Creo Elements/Direct Drafting Writing Macros

DEFINE_KEY 3 (#14 '2' #15)
DEFINE_KEY 4 'LOAD'
DEFINE_KEY 5 'STORE'
DEFINE_KEY 6 'CATALOG' "" SCREEN'
DEFINE_KEY 7 'INPUT'
DEFINE_KEY 8

'INPUT "dir_file" DEFINE Tm_macros_1 directory END_DEFINE'

• The first three keys are customized to produce the characters ° (degree),
diameter sign, and ± (plus/minus) of the hp_symbols font on the drawing.

• Keys 4 and 5 are customized to load and store drawings.
• Key 6 is used to catalog the current directory on the screen. Key 7 is used to

input a file.
• Key 8 is customized to input a file, and also to define the first user-defined

macro pad so that when picked it executes a macro. In this example, dir_
file is the file described in the previous section, "Customizing for Local
Directories". It contains the macro called directory, which when executed
displays the menu of user directories on the screen. Provided the file exists in
the current directory, and the filename and macro name are both the same as in
the DEFINE_KEY statement, when the function key is pressed followed by
[Return], all you have to do is pick the first user-defined macro pad and the
menu of user directories will be displayed.

Note
If a function key is customized so that it executes a number of macros in series,
only the last macro can contain a READ statement to prompt the user for input.
This is because the next word in the list will be considered by the system to be the
input for the READ statement.

What is a Text Font?
A text font is a group of pre-defined geometrical patterns that can be placed on a
drawing. Each pattern in a font is made up of straight lines joining points on a
grid, and is associated with a keyboard character so that it can be easily called.
Although normally used for text (the standard system annotation and
dimensioning texts are produced this way), text fonts also can produce special
symbols. Because there can be many points in the grid, highly detailed symbols
can be defined.

Customizing 129

If you need special text or symbols, create them with your own customized text
fonts and store them on disk ready for use. For example, you may want to create a
text font that produces company trademarks and logos.
Text fonts are very versatile. Some of the main features:

• Characters can be filled or unfilled.
• The character width-to-height ratio can be set.
• The character slant angle can be set (forwards or backwards).
• The line angle can be set (0 to 360 degrees).
Here are some examples of text and symbols:

Figure 24. Examples of Text and Symbols

The System Fonts
When you start Creo Elements/Direct Drafting, a number of font files are loaded
into memory, but only one of them is the current font and immediately available
for use. You can find out which fonts are in memory using LIST FONTS from the
TEXT 2 menu and specifying the screen option.
The system displays a list of fonts loaded, fonts used, and the current font. This
list it has nothing to do with the files from which they are created. The fonts hp_
Y14.5 and hp_i3098_v are loaded from files with the same names, but hp_
def_font is created within the system and displays a box on the screen to
represent the space that will be occupied by characters before they are drawn.
Some files available on the disk create fonts when they are loaded.
The following table gives the Creo Elements/Direct Drafting and the DOS font
name, and a description for each Creo Elements/Direct Drafting drawing font:

130 Creo Elements/Direct Drafting Writing Macros

Drafting Font Name DOS Filename Description
hp_block_c hp_blk_c.fnt Filled font with constant

character spacing
hp_block_v hp_blk_v.fnt Filled font with variable

character spacing
hp_d17_c hp_d17_c.fnt DIN17 font with constant

character spacing
hp_d17_v hp_d17_v.fnt DIN17 font with variable

character spacing
hp_jasc_c hp_jas_c.fnt Kanji Japanese and Greek

font with constant
character spacing

hp_jasc_v hp_jas_v.fnt Kanji Japanese and Greek
font with variable
character spacing

hp_kanji_c hp_kan_c.fnt
hp_symbols hp_syms.fnt Special characters for

dimensioning: degree (°),
diameter sign, plus-minus
(±), minutes ('), seconds
(")

hp_symbols2 Special symbols
characters (tolerances)

hp_Y14.5 hp_y14_5.fnt Used for symbols only
hp_i3098_c i3098_c.fnt ISO 3098 font with

constant character
spacing

hp_i3098_v i3098_v.fnt ISO 3098 font with
variable character spacing

Example—Displaying the Characters in a Font
The characters in the current font, together with their corresponding ASCII
numbers, can be displayed on the screen by:

• Using the FONT EDITOR in the TEXT 2 menu. (for further information, refer
to Design and Drafting with Creo Elements/Direct Drafting.)

• Running the following macro.
(For a discussion of ASCII numbers, see the section on customizing the
keyboard).

Customizing 131

Note
The macro uses the WINDOW function to set the coordinates of the current port. If
the current port is not the one in that you wish the display to appear, use the
CURRENT and pick the required viewport.

The macro deletes all existing 2D geometry.

132 Creo Elements/Direct Drafting Writing Macros

This macro displays all the characters in the current font that can be displayed on
a drawing using keyboard inputs from the TEXT, SYMBOLS, and DIMENSION
menus.
It is possible to define a character within a font corresponding to any ASCII
number from 0 to 255, and they can all be displayed on a drawing from within a
macro, or by entering (CHR n) on the input line without quotes, where n is the
ASCII number, when prompted for text to be included in your drawing.

Customizing 133

However, you would normally be interested only in the characters that can be
displayed simply by entering text when prompted for input from the TEXT,
SYMBOLS and DIMENSION menus. For this reason the macro only lists characters
that can be input using the normal keyboard characters or customized function
keys. The ASCII numbers corresponding to control characters have been omitted
from the list. These are the numbers 0-31, 127-159 and 255.
The macro begins by defining local variables and then defining the ASCII
numbers 0 to 9 to produce the characters 0 to 9. These numbers would not
normally be used to produce characters but have been used within the macro to
avoid interfering with the characters in the current font. The characters 0 to 9 are
used to produce the list of ASCII numbers in the display.
The text parameters are set to their default values and all 2D geometry is deleted.
Awindow is defined in the current viewport and the characters are displayed,
together with their corresponding ASCII numbers. When the macro is run with
hp_i3098_v (the default text font) as the current font, the display will become
as follows:

How to Create a Text Font
Each character in a font has its own cell. The cell size (in grid points) may be up
to 250 × 250. The decision on how many points to use in the cell depends on the
degree of detail needed: greater detail needs more points. The next figure shows
an example of how the letters A and g could be defined in a text font. The same
principles are applied for the definition of symbols.

134 Creo Elements/Direct Drafting Writing Macros

Figure 27. Creating a Font

The characters are laid out in cells on a grid according to the detail required. The
vertical distance between grid points is determined by the TEXT_SIZE function
and the number of grid points that are fitted into the specified size. The horizontal
distance between grid points is determined in the same way, except that it also can
be altered using the TEXT_RATIO function, which affects the width to height
ratio of points on the grid and is normally set to 1. Details of these functions are in
the help file.
The command that creates a text font is DEFINE_FONT. This is how the font
above is defined:
DEFINE_FONT 'example' 6 20 20
CHAR_LAYOUT
'A' 0,6 2,12 8,26 14,12 16,6 BREAK 14,12 2,12 23
'g' 12,6 4,6 1,8 0,10 0,16 1,18 4,20 12,20 12,4 11,2 8,0 0,0 19

END

The name of the font is Example. The first number following this (6) is called
the underlength. This represents the number of grid points that lie below the
cursor when a character or symbol is placed on the screen. In text applications,
this can be used as the maximum distance required for the tail of a character such
as g or p.
The second number (20) is called the height. The vertical distance between grid
points is the value set with the TEXT_SIZE function divided by the value of
height. In text applications the value of height can represent the number of grid
points corresponding to the height of a capital letter.
In the above example, if the TEXT_SIZE is left at its default value of 3.5 mm, the
height of the letter A will be 3.5 mm because 20 grid points represent the height of
the letter, and the value of height in the DEFINE_FONT function is also 20.

Customizing 135

The third number in this line (20) is called the width. This gives the number of
grid points in the horizontal direction that are equivalent to the value set with the
TEXT_SIZE function. In this example, the width is set to the same value as the
height to maintain the same character proportions as defined on the grid. If the
width specification was reduced to 10, the characters would be elongated in the
horizontal direction to twice their width.
The CHAR_LAYOUT command starts the character definition. Each character is
defined in turn with a set of grid point coordinates. A line will be drawn from
point to point to form the character outline. The BREAK function is used to put a
break in the line being drawn.
The number at the end of each character definition is the width of that character
cell in grid points. This controls the space between characters.
The command END is used to end the font definition.
A new text font can be defined by entering the instructions from the keyboard, but
it is more convenient to create a font containing all the required character
definitions from within the editor, and store it as a file that can be INPUTwhen
required. When a new font is defined, from the keyboard or from a file that is
INPUT, it will become the current font and only the characters contained in the
new current font will be available for use. To use any of the characters in the
system fonts, or in another of your own fonts, the current font will have to be re-
specified.
A number of fonts are available within the system and can be set as the current
font using SET FONT from the screen menu TEXT 1. If you have defined some of
your own fonts, you can select which one is to be the current font by entering the
command:
CURRENT_FONT 'fontname'

where fontname is the name of your font.

Storing your Fonts—ASCII Files and BINARY Files
To create a text file containing all the instructions within one of the system fonts
you first must see if the font has been loaded into the system. Select LIST FONTS
from the TEXT screen menu to see if the font is in the list, then press [ESC] to
get back to the menu.
If the font is not in the list, it needs to be loaded by entering:
LOAD_FONT 'bin_filename'

where bin_filename is the name of the binary file containing the font.
The font can then be written to the disk as an ASCII file by entering:
SAVE_FONT 'fontname' 'ascii_filename'

where fontname is the name of the font, and ascii_filename is the name
you choose for the text file containing the font. The file can then be examined and
edited in the usual way.

136 Creo Elements/Direct Drafting Writing Macros

A text file can contain more than one font. When a text file is input, all the fonts
within it are loaded and the last one in the list becomes the current font.
To create a binary file containing one of your fonts, proceed as follows:

1. Create a text file using the methods described above.
2. INPUT the file so that all the fonts within it are loaded into the system.
3. Store each font on the disk in a separate binary file by entering:

STORE_FONT 'fontname' 'bin_filename'

where fontname is the name of the font and bin_filename is the name
under which you choose to store the binary file on the disk.

The font can then be loaded back into the system using LOAD_FONT as described
earlier in this section.
Binary files cannot be examined from within the editor. The advantage of using
them is speed of access.

Customizing the Startup Procedure
Before implementing any of the procedures described here, read the section that
describes the Creo Elements/Direct Drafting startup file in the configuration
manual that corresponds to your operating system.
The custom.m file is only input during startup if the braces { } have been
removed from the following line at the end of the \me10\startup file:
{ INPUT 'custom.m' }

If this is done, the system looks for a file called custom.m according to the
SEARCH path.
This normally means that it looks in the current directory first and then in the
\me10 directory. Throughout this discussion it is assumed that the SEARCH path
is set up this way. After startup the SEARCH path can be found by selecting EDIT
ENV from the SET UP screen menu.
During startup, the current directory is the home directory of the user who has
logged on. You can choose one of the following options for a customized startup:

Platform Dependencies
• Create a file called custom.m in the directory from which you normally start

Creo Elements/Direct Drafting and edit the file so that it contains your own
customizing requirements. This allows you to control the customizing
procedures that are implemented during startup.

• Use the group customization file. To do this, you cannot have a file called
custom.m in your Creo Elements/Direct Drafting startup directory. In this

Customizing 137

case the system looks for a \me10\custom.m file that should have been
created by the system administrator. The customization specified in this file
affects all users, regardless of the startup directory.

Customized Startup for the Whole Group
The file \me10\custom.m can be created, usually by a system administrator.
This file can be edited so that it contains customized startup procedures that apply
to any member of your group who has not created a custom.m file in their Creo
Elements/Direct Drafting startup directory.
The \me10\custom.m file can be edited with any text editor, although it is
more likely that the system administrator will want to develop and test the
customizing procedures while running the Creo Elements/Direct Drafting software
as an ordinary user and then copy or append the files into \me10\custom.m.

Customized Startup for the Group and Individual
Users
We have already seen how users can implement their own startup procedures by
creating a file called custom.m in their Creo Elements/Direct Drafting startup
directories. The following choices are available to users who have created this file.

• Include the following line as the first line in your custom.m file:
INPUT '\me10\custom.m'

In this case the customizing procedures that have been developed by the
system administrator for the whole group will be implemented first, and then
your own procedures will be implemented.

• If you wish to customize the system startup according to your own
requirements without using any of the group procedures, do not include a line
shown above in your customize file.

• If you want the system to operate according to the normal defaults without any
customizing at all, create a custom.m file in your home directory but leave it
empty.

Creating a Menu for Customized Startup
If you have created a file called custom.m in your home/startup directory, you
can place any functions or commands in the file that you would like to have
implemented during startup. In addition, you can use the file to define function
keys so that other files can be input as required.

138 Creo Elements/Direct Drafting Writing Macros

Here is an example of how you can customize the system so that a menu is
displayed after startup, offering a variety of customizing procedures that may be
required in different circumstances. Edit your custom.m file so that it contains
the following lines:
DEFINE_KEY 1 ((CHR 4)+'INPUT"project1"'+(CHR 13))
DEFINE_KEY 2 ((CHR 4)+'INPUT"project2"'+(CHR 13))
DEFINE_KEY 3 ((CHR 4)+'INPUT"project3"'+(CHR 13))
DEFINE_KEY 4 ((CHR 4)+'INPUT"project4"'+(CHR 13))
DEFINE_KEY 5 ((CHR 4)+'INPUT"project5"'+(CHR 13))
DEFINE_KEY 6 ((CHR 4)+'INPUT"project6"'+(CHR 13))
DEFINE_KEY 7 ((CHR 4)+'INPUT"project7"'+(CHR 13))
DEFINE_KEY 8 ((CHR 4)+'INPUT"project8"'+(CHR 13))
EDIT_FILE"menu" {Must be last line in file}

In this example the names project1 through project7 are the names of files
containing customizing procedures for work related to different projects. You can
choose whatever names you like for your files.
The function keys have been set up so that they can be used while a menu is
displayed on the alpha screen, but they also can be used when graphics are
displayed. Here is a description of how the function keys are defined:

• (CHR 4) means [CTRL] [D]. This exits the alpha display so that the input
statement can be executed. If graphics are displayed and the system is waiting
for a command, [CTRL] [D] will not do anything.

• (CHR 13) means RETURN. This avoids having to press [RETURN] after
pressing the function key.

• The first seven keys are used to input the required files, while function key
[f8] is used to re-display the menu. The name menu is only an example.
You can choose your own name for the file containing your screen menu.

The EDIT_FILE statement at the end of the customize file will display the screen
menu. This should be the last line because at this point the user will be given a
choice of whether or not to input other files by pressing function keys.
Here is an example of what the menu file may look like:
Press function key f1 to customize for project 1
Press function key f2 to customize for project 2
Press function key f3 to customize for project 3
Press function key f4 to customize for project 4
Press function key f5 to customize for project 5
Press function key f6 to customize for project 6
Press function key f7 to customize for project 7

Press ESC to display graphics

When a function key is pressed, the menu will disappear and the graphics will be
displayed. The file that has been defined within the function key will be INPUT
so that customizing procedures are implemented. The files that contain
customizing procedures should contain the following line as the last statement:

Customizing 139

DISPLAY 'Press function key f8 to display customizing menu'

You can re-display the menu or continue with other operations.

Note
Do not type anything onto the screen while the customizing menu is displayed.
(CHR 4) in the function key definitions will save a copy of the menu file and
overwrite the old one.

Customizing the Hatch Patterns
The defaults.m file contains the hatch patterns for the options iron, steel and
copper on the HATCH screen menu. For a more detailed description of the
defaults.m file, refer to the configuration manual that corresponds to your
operating system.
The hatch patterns are produced with the following macros.
DEFINE I_hatch_iron
HATCH_ANGLE 45
HATCH_DIST 5
CURRENT_HATCH PATTERN 0 1 0 CYAN SOLID CONFIRM

END_DEFINE

DEFINE I_hatch_steel
HATCH_ANGLE 45
HATCH_DIST 15
CURRENT_HATCH PATTERN 0 1 0 CYAN SOLID (1/3) 1 0 CYAN SOLID
CONFIRM

END_DEFINE

DEFINE I_hatch_copper
HATCH_ANGLE 45
HATCH_DIST 5
CURRENT_HATCH PATTERN 0 1 0 CYAN 0.5 1 0 CYAN DASHED CONFIRM

END_DEFINE

It is very easy to alter these macros, or to write new macros of your own to
produce other hatch patterns.
Your system administrator can edit the \me10\defaults.m file with any text
editor. However, any changes made to the \me10\defaults.m file will be
overwritten when you re-install or update your Creo Elements/Direct Drafting
software. Here is a better method:

140 Creo Elements/Direct Drafting Writing Macros

1. Start Creo Elements/Direct Drafting.
2. Use the COPY command in the FILE screen menu to copy the \me10\

defaults.m file to the current directory.
3. Edit your file using the Creo Elements/Direct Drafting editor. Delete all the

lines that do not need to be changed, and alter the remaining lines to match
your current environment.

4. INPUT the file so that you can verify your changes.
5. If the results are satisfactory, include the following line in the \me10\

custom.m file:
INPUT 'filename'

where filename is the full pathname and filename of your file.

If necessary, edit the \me10\startup to remove the braces { } from the
line:
{INPUT 'custom.m'}

so that it reads:
INPUT 'custom.m'

When you start Creo Elements/Direct Drafting, the startup file will input the
contents of the custom.m file. This will in turn input your file.
For further information about hatching, refer to Design and Drafting with Creo
Elements/Direct Drafting.

Customizing 141

The Keyboard Input Characters

142 Creo Elements/Direct Drafting Writing Macros

The Keyboard Input Characters

Customizing 143

13
Brief Description of Commands

and Functions
This chapter gives a very brief description of each command and function,
arranged in alphanumeric sequence. For more information on any command or
function refer to the Creo Elements/Direct Drafting help system. For example,
enter:
help catch

The screen will clear and Creo Elements/Direct Drafting will display further
information about the CATCH function.
ABS (arithmetic function)
For a number argument: returns the absolute value of the argument.For a vector
argument: returns the length of the vector from the origin to the argument point.
ADD_CURRENT_INFO (command)
Adds the specified text to the current info.
ADD_DIM_POSTFIX (command)
Adds a postfix to an existing dimension.
ADD_DIM_PREFIX (command)
Adds a prefix to an existing dimension.
ADD_DIM_SUBFIX (command)
Adds a subfix to an existing dimension.
ADD_DIM_SUPERFIX (command)
Adds a superfix to an existing dimension.
ADD_DIM_TOLERANCE (command)
Allows you to add a tolerance to the selected dimension.

145

ADD_ELEM_INFO (command)
Adds the specified text to the info of the specified elements.
ADU_ACCURACY (function)
Specifys the accuracy when comparing two layouts.
ADU_CHECK (command)
Compares two layouts and attempts to re-annotate the new layout.
ADU_CONFIRM_ANNOS (command)
After an automatic update of annotations, the system marks every annotation as
'transffered' (default in green), 'regenerated' (default in red) or 'updated' (default in
blue). With ADU_CONFIRM_ANNOS you can accept the proposals of the system.
ADU_UPDATE_ANNOS (command)
Allows you to exchange the elements, to which annotations refer. For example,
you can exchange a reference element of a dimension, without deleting the
dimension.
ANALYZE_BSPLINE (function)
Allows you to analyze specific elements and values that describe the selected b-
spline.
AND (arithmetic function)
Returns 1 if both arguments are different from 0. Otherwise returns zero.
ANG (arithmetic function)
Returns the angle between the X-axis and the vector from the origin to the
argument point.
ARC (command)
Creates an arc.
ARCCOS (arithmetic function)
Returns the principal value of the angle that has a cosine equal to the argument.
ARCSIN (arithmetic function)
Returns the principal value of the angle that has a sine equal to the argument.
ARCTAN (arithmetic function)
Returns the principal value of the angle that has a tangent equal to the argument.
ARC_RESOLUTION (function)
Specifies the precision of arcs on the screen (if display lists are used).
AREA_PROPERTY (command)
Calculates physical properties of selected areas.

146 Creo Elements/Direct Drafting Writing Macros

ARROW_CURSOR (function)
Controls the cursor shape that you see in table and menu areas.
ARROW_FILL (function)
Controls the filling of arrows in dimensions and leader lines.
ASSIST (command)
Sets user assistance (Copilot).
AUTO_NEW_SCREEN (function)
Specifies whether NEW_SCREEN should operate after exposing the Creo
Elements/Direct Drafting window.
AUTO_STORE_TIME (function)
Performs an autosave of the drawing. The frequency is user-defined.
BEEP (function)
Produces a beep on the loudspeaker.
BLACK (function)
Specifies the line color.
BLUE (function)
Specifies the line color.
BSPLINE (command)
Creates a B-spline curve.
BSPL_ADD_C_PNT (command)
Adds a control point between two neighboring control points.
BSPL_ADD_I_PNT (command)
Adds an interpolation point between two neighboring control points.
BSPL_DEL_C_PNT (command)
Deletes control points from a spline.
BSPL_DEL_I_PNT (command)
Deletes interpolation points from a spline.
BSPL_DEL_TANGENT (command)
Lets you delete a slope.
BSPL_MOVE_C_PNT (command)
Lets you modify the position of a control point.
BSPL_MOVE_I_PNT (command)

Brief Description of Commands and Functions 147

Lets you modify the position of an interpolation point.
BSPL_MOVE_PNT (command)
Lets you modify the position of a B-spline.
BSPL_POINT_LENGTH (command)
Allows you to subdivide a bspline in pieces of same length.
BSPL_POLYGON_FEEDBACK (function)
Used to determine your feedback type while creating bsplines.
CANCEL (command)
Cancels current system activity. Returns to Enter command.
CANCEL_EDIT_DIM_TEXT (command)
Cancels the effects of EDIT_DIM_TEXT. Restores an edited dimension to its
original state.
CATALOG (function)
Outputs a listing of the named directory to the specified destination.
CATALOG_LAYOUT (command)
Specifies the layout of the directory information given by CATALOG.
CATCH (function)
Allows the user to select a point on the screen without having to put the cursor
directly on that point.
CENTER (command)
Centers menu text.
CENTERLINE (command)
Allows you to create a centerline for a circular element. The centerline becomes
part of the circular element and is moved or deleted if the associated circular
element is moved or deleted.
CENTER_DASH_DASH (function)
Defines the linetype.
CHAMFER (command)
Creates a chamfer.
CHANGE_COLOR (command)
Changes the color of the selected elements.
CHANGE_CURRENT_INFO (function)
Global search and replace on current info text.

148 Creo Elements/Direct Drafting Writing Macros

CHANGE_DIM_ARROW (command)
Changes the current dimension line termination.
CHANGE_DIM_COLOR (command)
For the selected dimensions, changes the color of the extension and dimension
lines.
CHANGE_DIM_FORMAT (command)
Allows you to change the format of an existing dimension.
CHANGE_DIM_FRAME (command)
Changes the type of the selected frame for dimension text.
CHANGE_DIM_LINEWIDTH (command)
Changes the pensize of the extension and dimension lines for selected dimensions.
(Same action as CHANGE_DIM_PENSIZE.)
CHANGE_DIM_PENSIZE (command)
Changes the pensize of the extension and dimension lines for selected dimensions.
CHANGE_DIM_TEXTS (command)
Allows you to change the attributes for existing dimension texts.
CHANGE_DIM_TEXT_COLOR (command)
Defines the dimension text color.
CHANGE_DIM_TEXT_LOCATION (command)
Changes the location of dimension text: above, on, or below the line.
CHANGE_DIM_TEXT_ORIENTATION (command)
Changes the orientation of the diimension text.
CHANGE_DIM_VERTEX (command)
Moves the dimension extension line to another vertex point.
CHANGE_ELEM_INFO (command)
Global search and replace on specified info text.
CHANGE_FILLET (command)
Changes the radius of the selected fillets.
CHANGE_GLOBAL_INFO (function)
Global search and replace on info text for every element in memory.
CHANGE_HATCH_ANGLE (command)
Changes the angle of the selected hatch.

Brief Description of Commands and Functions 149

CHANGE_HATCH_COLOR (command)
Changes the color of the selected hatch.
CHANGE_HATCH_DIST (command)
Changes the separation between hatch lines.
CHANGE_HATCH_LINETYPE (command)
Changes the linetype of the selected hatch.
CHANGE_HATCH_PATTERN (command)
Changes the pattern of the selected hatch.
CHANGE_HATCH_REF_PT (command)
Changes the reference point of the selected hatch.
CHANGE_LEADER_ARROW (command)
Changes the terminators of the selected leader lines.
CHANGE_LEADER_ARROW_SIZE (command)
Changes the size of the selected leader line terminators.
CHANGE_LINETYPE (command)
Changes the linetype of the selected elements.
CHANGE_LINEWIDTH (command)
Changes the pensize of selected elements, which may be real geometry not
construction geometry or POINT. (Same action as CHANGE_DIM_PENSIZE.)
CHANGE_LINESIZE (command)
Changes the linesize of selected elements, which may be real geometry not
construction geometry or POINT.
CHANGE_DIM_PENSIZE (command)
Changes the pensize of the extension and dimension lines for selected dimensions.
CHANGE_PART_REF_PT (function)
Changes the reference point of the active part.
CHANGE_TABLE_SIZE (function)
Changes the size of existing tables that are not secured against size change.
CHANGE_TEXT (command)
Changes one or more existing texts to new text.
CHANGE_TEXT_ADJUST (command)
Changes the adjust parameter of the selected text.

150 Creo Elements/Direct Drafting Writing Macros

CHANGE_TEXT_ANGLE (command)
Changes the angle of the selected text.
CHANGE_TEXT_FILL (command)
Toggles filling of the selected text to off/on.
CHANGE_TEXT_FONTNAME (command)
Changes the font of the selected text.
CHANGE_TEXT_FRAME (command)
Changes the frame of the selected text.
CHANGE_TEXT_LINESPACE (command)
Changes the inter-line spacing of multi-line text.
CHANGE_TEXT_RATIO (command)
For the selected text, changes the ratio between character width and height.
CHANGE_TEXT_SIZE (command)
Changes the character size of the selected text.
CHANGE_TEXT_SLANT (command)
Changes the slant of the selected text.
CHANGE_VIEWPORT_COLOR (function)
Changes the background color of the current viewport.
CHANGE_VIEWPORT_SIZE (function)
Changes the size of the current viewport.
CHAR_LAYOUT (command)
Defines the characters of the current font.
CHECK_3D_GEO_MODIFY (function)
Specifies whether or not to issue a warning when modifying a Creo Elements/
Direct Modeling layout (ADU).
CHECK_BREAK (arithmetic function)
Returns 1 if BREAK key was pressed and IGNORE_BREAK was active.
CHECK_DIM_DETAIL (function)
Enables/disables the built-in dimension checking mechanism.
CHECK_ERROR (arithmetic function)
Returns 1 if one or more errors were trapped since the last TRAP_ERROR function
call, otherwise returns 0.

Brief Description of Commands and Functions 151

CHECK_FONT_FILLABLE (function)
Characters of the current font are written to the selected output specification
which cannot be filled.
CHECK_WINDOW (function)
Enables/disables the built-in window check mechanism which (by default) rejects
extremely large or small window settings.
CHG_PIXEL_COLOR (command)
Changes the color of pixels to the color specified in SET_COLOR.
CHR (arithmetic function)
Converts a decimal number to the equivalent ASCII character. For example,
CHR(35) is '#'.
CIRCLE (command)
Creates a circle.
CL_ABS_OFFSET (command)
Sets the centerline offset.
CL_COLOR (command)
Sets the centerline color.
CL_LINETYPE (command)
Sets the centerline linetype.
CL_LINEWIDTH (command)
Sets the centerline pensize. (Same action as CL_PENSIZE.)
CL_PENSIZE (command)
Sets the centerline pensize.
CL_REL_OFFSET (command)
Sets the centerline offset (relative to radius dimension).
CLEAN_DRAWING (command)
Cleans the drawing of duplicated geometry (for example, overlaps).
CLIPBOARD_SIZE

Sets the Windows Clipboard size (plot area) for subsequent plots to the Clipboard.
CLOSE_FILE (function)
Closes the specified file.
CMD_BG_COLOR (function)
Changes the background color of the command line.

152 Creo Elements/Direct Drafting Writing Macros

CMD_TXT_COLOR (function)
Changes the color of the command-line text.
COLOR (function)
Specifies the current geometry and text color.
COLOR_LTAB (function)
Changes the color of the indicated position in the title and the data area of a
logical table.
CONFIGURE_EDITOR (function)
Configures the built-in screen editor.
CONNECT_TABLE (function)
Connects a display table to a logical table.
CONTOUR (command)
Trims all selected elements with other selected elements to create a closed
contour.
CONTROLZ_IS_EOF (function)
Specifies whether a Ctrl-Z character should be interpreted as an end-of-file
character or a normal data byte.
CONVERT_C_TO_B_SPLINE (command)
Converts a selected spline of the old spline type ("Cspline") to a spline of the new
spline type ("Bspline").
CONVERT_DIM_TOLERANCE (command)
Changes an existing tolerance to a different type.
CONVERT_DIM_UNIT (command)
Changes the current units for linear and angular dimensions.
CONVERT_SPLINE (command)
Converts the selected spline to a series of arcs and lines.
COPY_FILE (function)
Copies the specified source files to the destination.
COS (arithmetic function)
Returns the cosine of the argument.
CREATE_DETAIL (command)
Creates a detail view of existing geometry, magnified by the specified factor.
CREATE_DIRECTORY (function)

Brief Description of Commands and Functions 153

Creates a new directory.
CREATE_LTAB (function)
Creates a new logical table. If the table already exists, no error is given and the
command is ignored.
CREATE_POLY (command)
Allows you to create a polyline from existing elements. You can then treat the
polyline as a single element and modify it accordingly.
CREATE_SUBPART (command)
Creates a new part within the active part, using existing elements.
CREATE_VIEWPORT (function)
Creates a new viewport.
CS_AXIS (function)
Redefines the axes of the input coordinate system, leaving the origin fixed.
CS_MIRROR (function)
The specified axis of the input coordinate system is reflected about the other axis.
CS_REF_PT (function)
Changes the origin of the input reference system.
CS_ROTATE (function)
Rotates the input coordinate system about its origin.
CS_SET (function)
For the input coordinate system, changes the origin and the angle of the axes.
CURRENT_DIM_TEXTS (function)
Changes the current attributes for all dimension texts.
CURRENT_DIM_UNITS (function)
Sets the current units for linear and angular dimensions.
CURRENT_DIRECTORY (function)
Sets the current directory to the specified directory.
CURRENT_FONT (function)
Selects the font used for new texts.
CURRENT_HATCH_PATTERN (function)
Defines the current hatch pattern used for newly created hatches.
CURRENT_MENU (function)

154 Creo Elements/Direct Drafting Writing Macros

Specifys the name of the current screen menu.
CURRENT_SPOTLIGHT_ATTR (function)
Allows you to change the default color and linetype that are used with
SPOTLIGHTON.
CURRENT_VERTEX_COLOR (function)
Defines the default color of vertices used in SHOW VERTEX ON and
CURRENT_VIEWPORT (function)
Sets the current viewport.
CURSOR (function)
Selects the small or large cursor.
CURSOR_COORDINATES (function)
Allows you to display the current coordinates of the cursor above the input area.
CUT_MIDDLE

Cuts and deletes a piece out of the middle of an element at the intersection points
with two other elements.
CYAN (function)
Switches the default color to cyan.
C_CIRCLE (command)
Creates a construction circle.
C_COLOR (function)
Sets the current color for construction geometry.
C_LINE (command)
Creates construction lines.
C_LINETYPE (function)
Specifies the current linetype for construction geometry, that is, c_circles and c_
lines.
DASHED (function)
Specifies the linetype.
DASH_CENTER (function)
Specifies the linetype.
DATE (arithmetic function)
Returns date and time. For example, '26-Oct-99 14:26:58'.
DA_DB_ADD (command)

Brief Description of Commands and Functions 155

Adds a new part to the dimension database.
DA_DB_DELETE (command)
Deletes a part/entry from the dimension database.
DA_DB_EXPORT (command)
Extracts an entry from the dimension database and copies it into your current
drawing. The new entry becomes a subpart of the top part.
DA_DB_FILL_TABLE (command)
Clears and refills the dimension database table. Should not be used on the
command line.
DA_DB_INQ (function)
Returns information about the dimensioning database. This function supports the
Dimensioning Acceleration Module screen interface. It should generally not be
used from the command line.
DA_DB_LOAD (command)
Loads a dimensioning database file into memory.
DA_DB_MATCH (command)
Transfers dimensioning from a dimension database entry to drawing elements.
DA_DB_STORE (command)
Stores the dimension database in MI format in a file.
DA_DB_UNLOAD (command)
Unloads the current dimensioning database from system memory.
DA_DB_WIN_CREATE (function)
Creates a window to display the dimensioning database. Should not be used from
the command line.
DA_DB_WIN_LOC (function)
Sets the location for the dimension database window. Should not be used from the
command line.
DA_DIM_ANGLE (command)
Creates one or more angle dimensions.
DA_DIM_ARC (command)
Creates one or more arc dimensions.
DA_DIM_AUTO_LOC (function)
Sets the placement parameters for automatically positioned dimensioning.
DA_DIM_AUTO_STRATEGY (function)

156 Creo Elements/Direct Drafting Writing Macros

Sets the level of intersection checking that is done when automatically positioning
dimensions.
DA_DIM_CHAIN (command)
Creates one or more chain dimensions.
DA_DIM_CHAMFER (command)
Creates one or more chamfer dimensions.
DA_DIM_COORD (command)
Creates one or more instances fo coordinate dimensioning.
DA_DIM_DATUM_LONG (command)
Creates one or more instances of datum dimensioning with long base lines.
DA_DIM_DATUM_LONG_SYM (command)
Creates one or more instances of a symmetric dimensioning with long baselines.
DA_DIM_DATUM_SHORT (command)
Creates one or more instances of datum dimensioning with short base lines.
DA_DIM_DELETE (command)
Deletes one or more segments from a datum dimension stack. Also deletes entire
dimensions.
DA_DIM_DIAMETER (command)
Creates one or more diameter dimensions.
DA_DIM_GEO_SENSE (command)
Creates dimensioning for selected elements based on their geometry type.
DA_DIM_HOLE_INSERTION (function)
Controls behavior if new dimensions are located inside a hatched area.
DA_DIM_INCLINE (command)
Allows dimensions with horizontal or vertical attribute to be inclined.
DA_DIM_INSERT (command)
Inserts one or more new segments into a datum dimension stack.
DA_DIM_LINE (command)
Creates one or more single-line dimensions.
DA_DIM_LINE_SYM (command)
Creates one or more symmetric single-line dimensions.
DA_DIM_PD_SCAN (command)

Brief Description of Commands and Functions 157

Creates dimensions for selected elements based on Parametric Design constraints.
DA_DIM_RADIUS (command)
Creates one or more radius dimensions.
DA_DIM_SHORT_SPACE (function)
Sets the spacing between items in a datum dimension stack.
DA_FILTER_ACTIVATE (function)
Enables selection filtering for dimensioning assignments.
DA_FILTER_ADD (function)
Adds a new selection criteria to the current dimensioning selection filter. This
function is best called from the dimensioning acceleration module's screen
interface.
DA_FILTER_CLEAR_GEOTYPES (function)
Clears all geometry-type criteria from the current dimensioning selection filter.
This function is best called from the dimensioning acceleration module's screen
interface.
DA_FILTER_CLEAR_LINETYPES (function)
Clears all linetype criteria from the current dimensioning selection filter. This
function is best called from the dimensioning acceleration module's screen
interface.
DA_FILTER_DEL_COLOR (function)
Clears color criteria from the current dimensioning selection filter.
DA_FILTER_DEL_ORIENT (function)
Clears line orientation criteria from the current dimensioning selection filter.
DA_FILTER_DEL_WIDTH (function)
Clears width criteria from the current dimensioning selection filter.
DA_FILTER_DEL_LINESIZE (function)
Clears linesize criteria from the current dimensioning selection filter.
DA_FILTER_DEL_PENSIZE (function)
Clears pensize criteria from the current dimensioning selection filter. (Same action
as DA_FILTER_DEL_WIDTH.)
DA_FILTER_INQ (function)
Returns information about the dimensioning selection filter. This function
supports the Dimensioning Acceleration Module screen interface. It should
generally not be used from the command line.
DA_FILTER_REFRESH_LINEWIDTH (function)

158 Creo Elements/Direct Drafting Writing Macros

Updates the contents of the pensize selection filter table. Should not be used from
the command line. (Same Action as DA_FILTER_REFRESH_PENSIZE.)
DA_FILTER_REFRESH_LINEWIDTH (function)
Updates the contents of the pensize selection filter table. Should not be used from
the command line. (Same Action as DA_FILTER_REFRESH_PENSIZE.)
DA_FILTER_REFRESH_LINESIZE (function)
Updates the contents of the linesize selection filter table. Should not be used from
the command line.
DA_FILTER_REFRESH_PENSIZE (function)
Updates the contents of the pensize selection filter table. Should not be used from
the command line.
DA_FILTER_REFRESH_ORIENT (function)
Updates the contents of the orientation selection filter table. Should not be used
from the command line.
DA_FILTER_SET_NAME (function)
Sets an identifying name for the current dimensioning selection filter.
DA_FILTER_STORE (function)
Saves the current dimensioning selection filter to a file.
DA_LINESIZE (function)
Sets the linesize of the dimension.
DA_PENSIZE (function)
Sets the pensize of the dimension.
DA_MOVE_DIMENSION (command)
Moves one or more dimensions.
DA_NULL (function)
Support function for the Dimensioning Acceleration Module screen interface.
Does nothing.
DA_STYLE_APPLY (function)
Applies the current style parameters to the selected dimensions.
DA_STYLE_DEFER_UPDATE (function)
Prevents updates of the style display viewport.
DA_STYLE_ENABLE_UPDATE (function)
Enables updates of the style display viewport.
DA_STYLE_GET (function)

Brief Description of Commands and Functions 159

Makes the dimensioning style parameters of a selected dimension the current
dimensioning style.
DA_STYLE_INQ (function)
Returns information about the current dimensioning style. This function supports
the Dimensioning Acceleration Module screen interface. It should generally not
be used from the command line. Should not be used from the command line.
DA_STYLE_TYPE (function)
Selects a new dimensioning style.
DA_STYLE_UPDATE (function)
Updates the style display viewport.
DA_STYLE_WIN_CREATE (function)
Creates a window to display the current dimension style.
DA_STYLE_WIN_LOC (function)
Sets the location for the style display viewport. Support function for the
Dimensioning Acceleration Module screen interface. Should not be used from the
command line.
DA_STYLE_WIN_RAISE (function)
Raises the style display viewport.
DA_WRITE_DIM_SETTINGS_MACRO (function)
Creates a macro file that contains all current dimensioning style settings.
DDE_ADD_TOPIC (function)
Adds a new topic string to the list of recognized DDE topics.
DDE_CLOSE (arithmetic function)
Closes a named DDE conversation.
DDE_ENABLE (function)
Enables Creo Elements/Direct Drafting to act as a DDE server and act on requests
from DDE clients.
DDE_EXECUTE (arithmetic function)
Sends a command string to the application indicated by the given conversation
handle.
DDE_INITIATE (arithmetic function)
Initiates a DDE conversation with a given application on a given topic. Returns a
conversation handle for use in subsequent DDE commands.
DDE_REMOVE_TOPIC (function)

160 Creo Elements/Direct Drafting Writing Macros

Removes a specified topic string from the list of recognized DDE topics.
DDE_REQUEST (arithmetic function)
Asks a remote DDE application for the string value of the indicated data item.
DDE_SEND_ACK (arithmetic function)
Sends a DDE acknowledgement message for a given conversation handle.
DDE_WITHHOLD_ACK (arithmetic function)
Prevents the sending of a DDE acknowledgement message following execution of
an action text. The active DDE conversation handle is returned instead.
DEFINE (function)
Defines a macro having the specified name.
DEFINE_CATALOG (function)
Defines the information to be printed by the CATALOG function.
DEFINE_FONT (function)
Defines a new font.
DEFINE_KEY (function)
Defines the function of the specified function key. Such a key is called a "Hot"
key, "Smart" key, or "Soft" key.
DEFINE_MOUSE_KEY (function)
Defines mouse keys 1, 2, and 3.
DELETE (command)
Deletes the selected elements.
DELETE_CURRENT_INFO (function)
Deletes the current info.
DELETE_DIMENSION (command)
Deletes dimensions.
DELETE_DIM_POSTFIX (command)
Allows you to delete an identified postfix.
DELETE_DIM_PREFIX (command)
Allows you to delete an identified dimension prefix.
DELETE_DIM_SUBFIX (command)
Deletes a dimension subfix.
DELETE_DIM_SUPERFIX (command)

Brief Description of Commands and Functions 161

Deletes a dimension superfix.
DELETE_DIM_TOLERANCE (command)
Allows you to delete the tolerance of the selected dimension.
DELETE_ELEM_INFO (command)
Deletes all info for the selected elements.
DELETE_FONT (function)
Deletes the definition of the specified font.
DELETE_HATCH (command)
Deletes the selected hatch.
DELETE_LABEL (command)
Deletes, from the active part, all label information generated by the
DELETE_LTAB_ROW (function)
Deletes the indicated row from the named user table.
DELETE_MACRO (function)
Deletes a specified macro, or all macros.
DELETE_MENU (function)
Deletes the screen menu definition.
DELETE_TABLE (command)
Delete an existing unsecured table.
DELETE_VIEWPORT (function)
Deletes the specified viewport.
DIM_ANGLE (command)
Creates an angle dimension.
DIM_ARC (command)
Creates an arc dimension.
DIM_ARROW (function)
Specifys the type of dimension arrow.
DIM_BREAK_RESTORE (function)
Controls the dimension and extension lines after modification.
DIM_BROKEN (function)
Specifies how the dimension lines are to be drawn if the dimension text does not
fit inside the dimension extension lines.

162 Creo Elements/Direct Drafting Writing Macros

DIM_CATCH_LINES (function)
Controls the dimension elements that can be picked.
DIM_CATCH_RANGE (function)
Sets the catch range of dimension text to the middle of the extension lines.
DIM_CHAIN (command)
Creates chain dimensioning.
DIM_CHAMFER (function)
Allows you to create a JIS chamfer dimension.
DIM_COLOR (function)
Sets the color for the extension and dimension lines.
DIM_CONVERT_UNIT (command)
Specifys dimensional units.
DIM_COORD (command)
Creates coordinate dimensioning.
DIM_CURSOR_POSITION (function)
Specifys the position of the cursor when locating dimensions.
DIM_DATUM (command)
Specifys dimension position.
DIM_DATUM_LONG (command)
Creates datum dimensioning with long base lines.
DIM_DATUM_SHORT (command)
Creates datum dimensioning with short base lines.
DIM_DATUM_STEP (function)
Specifies the space between the dimension lines of a datum dimension.
DIM_DEC_PLACE (function)
Specifies number of decimal places for dimensions.
DIM_DEG_MIN_SEC (function)
Sets degrees minutes and seconds for dimensions.
DIM_DIAMETER (command)
Creates a diameter dimension.
DIM_DIAMETER_LINE (function)
Sets diameter lines.

Brief Description of Commands and Functions 163

DIM_EXTENSION_LENGTH (function)
Sets the current length between the arrow and the end of the extension line.
DIM_FONT (function)
Specifies dimension fonts.
DIM_FORMAT (function)
Allows you to specify the units for line and angular dimensions.
DIM_FRAME (function)
Specifies whether dimension text should have a frame.
DIM_FT_INCH_SIGN (function)
Specifies feet/inch options.
DIM_LINE (command)
Creates a single line dimension.
DIM_LINEWIDTH (function)
Sets the pensize of the extension and the dimension lines. (Same action as DIM_
PENSIZE.)
DIM_PENSIZE (function)
Sets the pensize of the extension and the dimension lines.
DIM_LINES_COLOR (function)
Specifies the color of dimension lines.
DIM_MIN_SPACE (function)
Sets the current minimum space between the geometry and the dimension lines.
DIM_NUMBER_FORMAT (function)
Specifies the number format for dimensions.
DIM_OFFSET_LINE (function)
Specifies the offset of the dimension extension line from the dimension line.
DIM_OFFSET_POINT (function)
Specifies the offset of the dimension extension line from the geometry.
DIM_POSTFIX (function)
Allows you to add a postfix string to a dimension text.
DIM_PREFIX (function)
Allows you to add a postfix string to a dimension text.
DIM_RADIUS (command)

164 Creo Elements/Direct Drafting Writing Macros

Creates a radius dimension.
DIM_RADIUS_LINE (function)
Sets the dimension radius line ON/OFF.
DIM_SCALE (function)
Specifies the dimension scale.
DIM_SELECT_BY_TEXTBOX (command)
Controls how the dimension is selected when box-selection is used.
DIM_STAGGER_RESTORE (function)
Controls the dimension and extension lines after modification.
DIM_SUBFIX (function)
Allows you to add a subfix string to dimension text.
DIM_SUPERFIX (function)
Allows you to add a superfix string to dimension text.
DIM_TEXT_COLOR (function)
Specifies the color of dimension text.
DIM_TEXT_FRAME_COLOR_MODE (function)
Specifies the dependency of the dimension text frame color on either the
dimension main text color or the dimension line color.
DIM_TEXT_GAP (function)
When a dimension line is broken to allow a dimension to be inserted, sets the
current gap between dimension text and dimension lines.
DIM_TEXT_HOLE (command)
Makes holes in an existing hatch for the selected dimension text.
DIM_TEXT_LOCATION (function)
Specifies whether current text dimensions should be above, on, or below the
dimension line. For vertical dimension lines, "below" means nearer the geometry.
DIM_TEXT_ORIENTATION (function)
Specifies the current orientation for dimension text.
DIM_TEXT_RATIO (function)
Specifies the dimension text ratio.
DIM_TEXT_SIZE (function)
Specifies the dimension text size.
DIM_TEXT_SPACE (function)

Brief Description of Commands and Functions 165

When dimension text is placed above or below a dimension line, specifies the
space the text and line.
DIM_TOLERANCE (function)
Specifies the current tolerance type.
DIM_UNDERLINE_EDITED (command)
Puts an underline on a dimension that has been edited.
DIM_UNITS (function)
Specifies dimension units.
DIM_UPDATE (command)
Used to find, mark and process dimension components, whose appearance would
change after recalculation.
DISPLAY (function)
Evaluates a token and displays the result on the command line. You must then
press any key or digitize any point.
DISPLAY_LIST (function)
Enables/disables the use of display list for the selected viewports.
DISPLAY_NO_WAIT (function)
Evaluates a token and displays the result on the command line. No user action is
required.
DIV (arithmetic function)
Integer division with any fractional part truncated.
DOTTED (function)
Switches the default linetype to dotted.
DOT_CENTER (function)
Switches the default linetype to dot_center.
DOT_GRID (function)
Turns the dot grid on or off in the specified viewports.
DRAWING_SCALE (command)
Scales the geometry, by the specified factor, with respect to the plotter paper.
DRAW_CURR_PART_ON_TOP (function)
Controls the redraw of the current part (on top or z-level).
DUMP_SCREEN (function)
Dumps the contents of the graphics to the specified file.

166 Creo Elements/Direct Drafting Writing Macros

DUMP_SCREEN_DEFAULTS (function)
Sets the parameters for the DUMP_SCREEN function.
DUMP_SCREEN_LANG (function)
Allows you to select the printer language for the DUMP_SCREEN function (see
DUMP_SCREEN).
ECHO (function)
Opens or closes the ECHO file.
EDIT_CURRENT_INFO (function)
Allows you to edit the current info, which is the info assigned to every new
element.
EDIT_DIM_POSTFIX (command)
For the selected dimension text, allows you to edit the postfix.
EDIT_DIM_PREFIX (command)
For the selected dimension text, allows you to edit the prefix.
EDIT_DIM_SUBFIX (command)
Allows you to edit the subfix of the identified dimension text.
EDIT_DIM_SUPERFIX (command)
Allows you to edit the superfix of the identified dimension text.
EDIT_DIM_TEXT (command)
Allows you to edit the selected dimension text.
EDIT_DIM_TOLERANCE (command)
Allows you to edit the tolerance of the selected dimension text.
EDIT_ELEM_INFO (command)
Allows you to edit the info of the specified element.
EDIT_ENVIRONMENT (function)
Allows you to edit a list of commands that establish the current environment. The
environment consists of units, dimension defaults, hatch pattern, and so on.
EDIT_FILE (function)
Allows you to edit the specified file with the built-in text editor.
EDIT_MACRO (function)
Allows you to edit the specified macro with the built-in text editor.
EDIT_PART (command)
Makes the specified part the active part.

Brief Description of Commands and Functions 167

EDIT_PORT (function)
Specifies the viewport used by the built-in screen editor.
EDIT_TEXT (command)
Allows you to edit the specified text.
ELLIPSE (macro)
Draws splines that approximate ellipses.
ELSE (pseudo-command)
Conditional operator.
ELSE_IF (pseudo-command)
Conditional operator.
ENABLE_BREAK (function)
Resets the break handling back to the default setting (macros are interrupted by
pressing the BREAK key).
END (command)
Terminates the current command or function.
END_DEFINE (pseudo-command)
Indicates the end of a macro definition.
END_IF (pseudo-command)
Indicates the end of an "IF - statement".
END_LOOP (pseudo-command)
Indicates the end of a loop in a macro.
END_PART (command)
Same as EDIT_PART PARENT.
ENTER (function)
Evaluates a token. The result is displayed on the command line.
EQUIDISTANCE (command)
Creates an equidistant contour.
ERROR_LOG (function)
Saves warnings and error messages generated by the system in internal memory.
ERROR_STR (arithmetic function)
Displays the first error message issued by the system after error trapping was
enabled by TRAP_ERROR.

168 Creo Elements/Direct Drafting Writing Macros

EXIT (command)
Terminates the session. Control is returned to the host operating system. You must
confirm with CONFIRM to avoid accidental exit.
EXIT_IF (pseudo-command)
Condition statement that indicates when a loop should be terminated.
EXOR (arithmetic function)
Exclusive OR. Returns 1 if exactly one argument (of two) is 0. Otherwise returns
1.
EXP (arithmetic function)
Returns e (2.718...) raised to the power of the argument.
FALSE (arithmetic function)
Returns 0.
FBROWSER (function)
File browser functionality.
FILLET (command)
Produces a fillet having the specified radius.
FOLLOW (function)
Causes the origin of the coordinate system to be at the most recently input point.
FONT_EDITOR (Command)
Creates and modifies Creo Elements/Direct Drafting fonts.
FRACT (arithmetic function)
Returns the fractional part of the argument.
GATHER (command)
Brings existing elements into the active part.
GET_ELEM_INFO (function)
Changes the current info to be the same as the info of the selected element.
GET_PID (arithmetic function)
Displays the process ID of the running program.
GET_PROPERTIES (function)
Changes the current properties to be the same as the properties of the selected
element.
GET_TYPE (function)
Returns the type of token specified. It is an enhancement of the TYPE command.

Brief Description of Commands and Functions 169

GREEN (function)
Switches default color to green.
GRID_FACTOR (function)
Specifies the distance between grid points or ruler ticks.
HATCH (command)
Creates hatches.
HATCH_ANGLE (function)
Sets the current hatch angle.
HATCH_COLOR (function)
Sets the current hatch color.
HATCH_DIST (function)
Sets the current hatch distance.
HATCH_LINETYPE (function)
Sets the current hatch linetype.
HATCH_REF_PT (function)
Sets the current hatch reference point.
HELP (function)
Displays the section of the HELP file that describes the required keyword.
HELP_PORT (function)
Defines the viewport used by the HELP function.
HIGHLIGHT_LTAB (function)
Changes the highlight state of the indicated position in the data area of the named
user table.
HL_CHANGE_COLOR (macro)
Changes the color for all hidden lines computed by the HL_GENERATE_HIDDEN
command.
HL_CHANGE_LTYPE (macro)
Changes the linetype for all hidden lines computed by the HL_GENERATE_
HIDDEN command.
HL_DEFAULT_FACE_COLOR (function)
Specifies the default face color.
HL_DELETE_FACE (command)
Deletes covering faces. The faces selected must be in the current part.

170 Creo Elements/Direct Drafting Writing Macros

HL_GENERATE_FACE (command)
Specifies covering faces. A covering face covers all geometry with a lower z-
value.
HL_GENERATE_HIDDEN (command)
Causes transition to the hidden-line-generation mode.
HL_GEN_ALL_PART (command)
Specifies z-value settings and face generation for a whole part.
HL_INQ_CURR_Z_VALUE (function)
Returns the current z-value assigned to each newly created component by default.
HL_INQ_FACE_COLOR (function)
Returns the rgb-color-value of the specified face.
HL_INQ_LOAD_OFFSET (function)
Returns the value of the load offset in the z-direction.
HL_INQ_LOAD_VALUE (function)
Returns the mode in which the load value / offset was specified, and the value
itself.
HL_INQ_RELATION_OFFSET (function)
Displays the current relation offset in the z-direction.
HL_INQ_Z_VALUE (function)
Returns the z-value of the specified element, or the minimum or maximum z-
value of the entire assembly.
HL_REDRAW_MODE (function)
Toggles between the Creo Elements/Direct Drafting normal redraw mode and the
hidden-line redraw mode.
HL_SET_COLOR (function)
Sets the color for the hidden lines.
HL_SET_CURR_Z_VALUE (function)
Defines a z-value that is assigned to each newly created component by default.
HL_SET_FACE_COLOR (command)
Sets or changes the background color of covering faces.
HL_SET_KEEP_COLOR (function)
Defines whether elements keep their color during the hidden line generation
process.

Brief Description of Commands and Functions 171

HL_SET_LINETYPE (function)
Sets the linetype for the hidden lines.
HL_SET_LOAD_VALUE (function)
Defines a load offset in the z-direction.
HL_SET_RELATION_OFFSET (function)
Defines an offset in the z-direction that is used to compute a z-value specified as
an ABOVE/BELOW/BETWEEN relation to another element.
HL_SET_Z_VALUE (command)
Assigns or changes z-values.
HL_SHOW_HIDDEN (macro)
Makes hidden lines visible or invisible.
HL_VISUALIZE (function)
Allows you to view all elements selectively on certain z-values or to show faces
on certain levels in different colors.
HSL_COLOR (function)
Allows you to set a new color (hue,saturation,luminosity).
ICONIFY_WINDOW (function)
Iconifies the Creo Elements/Direct Drafting window.
IF (pseudo-command)
Boolean expression.
IGNORE_BREAK (function)
When enabled from a macro the BREAK key will have no effect.
INIT_PART (command)
Creates a new, empty part immediately below the active part. Makes this new part
active.
INIT_SUBPART (command)
Creates a new, empty part immediately below the active part. Makes this new part
active.
INPUT (function)
Temporarily redirects the input stream from the keyboard, or mouse to the
specified text file. (When you use the INPUT command within a macro, it must be
used with the qualifier IMMEDIATE, see also INPUT on page 38.)
INQ (arithmetic function)
Returns an element of a system array. These values can be set using

172 Creo Elements/Direct Drafting Writing Macros

INQ_ELEM (function)
Writes information about the specified element to the system array. This
information can be retrieved using INQ.
INQ_ENV (function)
Writes information about the system environment to the system array. This
information can be retrieved using INQ.
INQ_PART (function)
Writes information about the magnification factor of a part to the system array.
This information can be retrieved using INQ.
INQ_SELECTED_ELEM (function)
Writes information about the identified element into the system inquiry array. It
can then be retrieved with INQ (see INQ).
INQ_TABLE (function)
Allows you to obtain information about the specified table.
INSERT_LTAB_ROW (function)
Inserts rows into the named user table.
INT (arithmetic function)
Returns the integer part of the argument. For example, INT(PI) is equal to 3.
ISOMETRIC (command)
Allows you to create an isometric view.
KEEP_CORNER (function)
With OFF, the lines or arcs between the corner and the fillet or chamfer are
deleted. With ON, the corner remains a corner.
KNOB_BOX_FACTOR (function)
Specifies the sensitivity of the knobs.
LABEL (command)
Generates label information for the selected points, lines, arcs, and circles in the
active part.
LAST_POSTFIX (function)
Allows you to use the previous postfix as the current postfix.
LAST_PREFIX (function)
Allows you to use the previous dimension prefix as the current dimension prefix.
LAST_SUBFIX (function)
Allows you to use the last subfix as current subfix.

Brief Description of Commands and Functions 173

LAST_SUPERFIX (function)
Allows you to use the last superfix as current superfix.
LAST_TOLERANCE (function)
Sets the previous tolerance to the current tolerance.
LAST_WINDOW (function)
Restores the previous window of the current viewport.
LEADER_ARROW (function)
Specifies the terminator used for new leader lines.
LEADER_LINE (command)
Creates a leader line.
LEN (arithmetic function)
For a string argument, returns the length of the string.For a vector argument,
returns the length of the vector from the origin to the argument point.
LET (function)
Defines a macro or a variable.
LG (arithmetic function)
Returns the decimal logarithm (base 10) of the argument.
LINE (command)
Creates a line.
LINEPATTERN (function)
Specifies the current linetype for the components that are to be created with the
current active command.
LINESIZE (function)
Specifies the current linesize used for all new real geometry except construction
geometry and POINT.
LINETYPE (function)
Specifies the current linetype.
LINEWIDTH (function)
Specifies the current pensize used for all new real geometry except construction
geometry and POINT. (Same action as PENSIZE.)
LINE_GRID (function)
Turns the line grid on or off.
LIST_FONTS (function)

174 Creo Elements/Direct Drafting Writing Macros

Gives a list of all fonts defined and all fonts used. Also gives the name of the
current font.
LIST_GLOBAL_INFO (function)
Lists all info used by all elements in memory.
LIST_MACRO_NAMES (function)
Outputs the names of all currently defined macros to the specified destination.
LN (arithmetic function)
Returns the natural logarithm (base e) of its argument.
LOAD (command)
Loads into memory a part from the specified file.
LOAD_FONT (command)
Loads into memory all text fonts sorted in the specified file.
LOAD_MACRO (function)
Loads all macros stored in the specified file into memory.
LOAD_MODULE (command)
Activates the specified application module.
LOCAL (pseudo-command)
Defines a local variable within a macro.
LONG_DASHED (function)
Switches the default linetype to long_dashed.
LOOP (pseudo-command)
Defines a loop that is repeated until the boolean expression in an EXIT_IF clause
evaluates to be logical true.
LOWER_WINDOW (function)
Causes the Creo Elements/Direct Drafting window to be lowered beneath all other
windows on the Windows® desktop.
LTAB_COLUMNS (arithmetic function)
Displays the number of columns in the named logical table.
LTAB_ROWS (arithmetic function)
Displays the number of rows in the named logical table.
LTAB_TITLES (arithmetic function)
Displays the number of title strings in the named logical table.
LWC (arithmetic function)

Brief Description of Commands and Functions 175

Lowercase. Converts uppercase characters to lowercase.
MAGENTA (function)
Sets the default line color to magenta.
MAKE_TMP_NAME (arithmetic function)
Returns a unique filename for temporary use.
MATCH (arithmetic function)
Returns 1 if the first string is matched by the pattern specified by the second
string, otherwise returns 0.
MAX_FEEDBACK (function)
Specifies the amount of element tracking in MODIFY and STRETCH commands.
MEASURE_ANGLE (function)
Measures the angle between two specified elements.
MEASURE_AREA (function)
Measures the area enclosed by the specified circle, arc, spline, or fillet.
MEASURE_COORDINATE (function)
Measures the coordinates of the selected point.
MEASURE_DISTANCE (function)
Measures the distance between two specified points.
MEASURE_LENGTH (function)
Measures the length of the specified line, circle, arc, fillet, or spline.
MEASURE_RADIUS (function)
Measures the radius of the specified circle, arc, or fillet.
MENU (function)
Defines the appearance and function of the screen menu slots.
MENU_LAYOUT (function)
Defines the shape and location of a screen menu.
MENU_STATUS (function)
Defines the status of a screen menu.
MERGE (command)
Causes two elements to be merged into a single element.
MIRR (arithmetic function)
Returns the mirror image of a vector about a virtual mirror line.

176 Creo Elements/Direct Drafting Writing Macros

MOD (arithmetic function)
Returns the remainder of a division.
MODIFY (command)
Modifies elements with the options MOVE, MIRROR.
MODIFY_DIM_LINES (command)
Puts breaks in existing dimension and extension lines.
MOVE_DIMENSION (command)
Moves the selected dimension.
MOVE_TABLE (function)
Moves an existing table to a specified screen location. Only those tables not
secured against move can be relocated.
NEW_SCREEN (function)
Redraws the entire screen.
NOT (arithmetic function)
Returns 1 if the argument equals 0. Otherwise returns 0.
NUM (arithmetic function)
Returns the decimal equivalent of the first ASCII character in a string. For
example, NUM('hullo') is 104.
ON_ERROR (function)
The specified string is used as input at the occurrence of the next error.
OPEN_INFILE (function)
Opens the named file for reading, using the READ_FILE function.
OPEN_OUTFILE (function)
Opens the named file for writing, using the WRITE_FILE function.
OR (arithmetic function)
Returns 1 if both arguments are non-zero. Otherwise, returns 0.
ORIGIN (function)
In the specified viewport, the symbol for the the origin of the input coordinate
system is turned off or on.
OUTPUT_HP15 (function)
Switches the output mode for kanji text to HP15 code.
OUTPUT_HP16 (function)
OUTPUT_HP16 switches the output mode for kanji text to HP16 code.

Brief Description of Commands and Functions 177

OUTPUT_STRING (function)
Writes the contents of |string| to its output device.
OVERDRAW (command)
Used to overdraw construction geometry. This command replaces the contents of
the overdraw macro.
PARAMETER (pseudo-command)
Used in macro definition to indicate macro parameters.
PART_DRW_SCALE (command)
Allows you to define a drawing scale for a specified part.
PART_DRW_SCALE_REF (function)
Allows you to specify the reference point, from where the part is scaled.
PARTS_LIST (function)
Shows the parts in the active part whose names do not begin with ".". The number
of occurrences of each part is shown.
PASSWORD (function)
Used to enter the enabling password into the system.
PENSIZE (function)
Specifies the current pensize used for all new real geometry except construction
geometry and POINT.
PHANTOM (function)
Sets the current hatch linetype to phantom.
PI (arithmetic function)
Returns a value for pi of 3.14159265358979.
PICK_UTAB_ROW_BY_NAME (function)
Support function for the Dimensioning Acceleration Module screen interface.
Should not be used from the command line.
PICK_VP_PNT (function)
Emulate interactive user pick in a specific viewport, defined by number and
viewportname.
PICTURE_BROWSER (function)
Displays the PICTURE BROWSER window.
PICTURE_LIST (function)
Displays a list of pixmaps loaded in the current session.

178 Creo Elements/Direct Drafting Writing Macros

PLOT (command)
Plots a drawing.
PLOTTER_TYPE (function)
Specifies the type of plotter currently connected.
PLOT_AUTO_ROTATE (function)
Allows you to disable the auto-rotate feature that is part of the firmware on some
raster plotters.
PLOT_CENTER (function)
Specifies whether the drawing should be centered in the plotter viewport.
PLOT_DESTINATION (function)
Specifies the destination of the plot.
PLOT_FORMAT (function)
Defines the maximum plotting area (hard limits).
PLOT_IMAGE_QUALITY (function)
Defines such things as the color palette, resolution, and scaling.
PLOT_LINETYPE_LENGTH (function)
Specifies the length of the pattern for each linetype.
PLOT_PEN_TABLE (function)
Controls the mapping of linetypes and colors to plotter pens and plotter linetypes.
PLOT_SCALE (function)
Specifies the scale factor for the drawing before being plotted.
PLOT_STOP_ON_ERROR (function)
Controls the plot behavior when a drawing does not fit in the plot area.
PLOT_TRANSFORMATION (function)
Defines a mapping for certain elements during plot.
PLOT_VIEWPORT (function)
Locates the plotter viewport within the maximum plotting area specified by
PLOT_FORMAT.
PNT_RA (arithmetic function)
Given a length and an angle, returns a 2D point.
PNT_XY (arithmetic function)
Given an x and a y coordinate, returns a 2D point (vector).

Brief Description of Commands and Functions 179

PNT_XYZ (arithmetic function)
Given an x coordinate, a y coordinate, and a z coordinate, returns a 3D point
(vector).
POINT (command)
Creates point elements.
POLYELEM (command)
Allows you to create a polyline from existing elements. You can then treat the
polyline as a single element and modify it accordingly.
POP_DOWN_LTAB (function)
Causes the named logical table to "pop down".
POP_UP_LTAB (function)
Causes the named logical table to "pop up".
POS (arithmetic function)
Returns the first position of a substring within a string.
PRE_VIEW (command)
Lets you preview a drawing before loading it.
PRINT_TABLE (function)
Prints a display table in a file.
PROMPT_LIST (function)
Saves up to 500 system prompts in system memory.
PURGE_FILE (function)
Deletes the specified files from the disk.
PUT_PROPERTIES (command)
The properties of the selected elements are changed to the current properties.
RAC_CHECK (command)
Updates new layout data coming from Creo Elements/Direct Modeling with
documentation data added to an older version of this layout.
RAISE_WINDOW (function)
Causes the Creo Elements/Direct Drafting window to rise to the top of all other
windows on the Windows desktop.
RC_ACCURACY (function)
Specifies the accuracy when comparing two MI files.
RC_CHECK (command)

180 Creo Elements/Direct Drafting Writing Macros

Compares two parts and all their subparts and stores the result of the comparison
as info texts for the parts elements.
READ (function)
Accepts user input from the command line, and assigns the data to a variable.
READ_FILE (function)
Reads one line of text from the specified file and assigns the string to the specified
variable.
READ_LTAB (arithmetic function)
Returns the value in the named logical table.
RECALL_BUFFER (function)
Saves up to 63 input lines. These lines can be recalled using the [Prev] and
[Next] keys.
RECALL_WINDOW (function)
The window of the current viewport is changed to the window stored using
STORE_WINDOW.
RED (function)
Sets the default line color to red.
REDRAW (function)
Redraws the contents of the current viewport.
REDRAW_SCENE (function)
Redraws a scene viewport.
RENAME_ELEMENT (command)
Renames or copies an element, including ALL revisions and versions of that
element.
RENAME_PART (command)
Renames the active part.
RENOVATE (function)
Restores the contents of selected viewports.
REPEAT (pseudo-command)
Defines a loop which is repeated until the boolean expression in the UNTIL clause
evaluates to be logical true.
REQUEST_PRINT_SETUP (function)
Sets whether or not the Windows Print Manager displays its own dialog whenever
plots or screendumps are sent to the Print Manager.

Brief Description of Commands and Functions 181

RESET_PART_NUMBER (command)
Renumbers all "unique" part numbers beginning at the TOP part.
RESTORE (command)
Recovers archived elements and their related files from 'source' to the database.
RGB_COLOR (function)
Allows you to specify a new color (red,green,blue).
RND (arithmetic function)
Returns a pseudo-random Xnumber in the range 0 < = X < 1.
ROT (arithmetic function)
Returns the point (vector) rotated about the origin by the given angle.
ROTATE_DIM_TEXT (command)
Rotates the selected dimension text by the specified angle.
ROUND (arithmetic function)
Returns the argument, rounded to the nearest integer. For example, ROUND
(4.4999) equals 4.
RPT (arithmetic function)
Returns the required number of copies of a string.
RTL_COLOR (command)
Sets reference-line color.
RTL_DST_GAP (command)
Sets reference-line gap (at destination).
RTL_LINETYPE (command)
Sets reference-line linetype.
RTL_LINEWIDTH (command)
Sets reference-line pensize. (Same action as RTL_PENSIZE.)
RTL_PENSIZE (command)
Sets text reference-line pensize.
RTL_SRC_GAP (command)
Sets reference-line gap (source).
RULER (function)
Turns the ruler on or off in the specified viewports.
RUN (function)

182 Creo Elements/Direct Drafting Writing Macros

Returns to the operating system shell prompt.
SAVE (command)
The drawing in memory is saved to the specified file.
SAVE_ENVIRONMENT (function)
Outputs the environment to the specified destination.
SAVE_FONT (function)
Saves all fonts, or a specified font, to the specified file.
SAVE_LTAB (function)
Saves the named logical table to "output spec" (see help for OUTPUT_SPEC for
details).
SAVE_MACRO (function)
Outputs the named macro, or all macros, to the specified destination.
SAVE_MENU (function)
Outputs the current screen menu definition to the specified destination.
SAVE_TABLE (function)
Saves a display table set up in a file.
SAVE_VIEWPORT (function)
Outputs the current viewport definitions to the specified destination.
SCREEN_TRANSFORMATION (function)
Defines a mapping for certain elements during redraw.
SCROLL_LTAB (function)
Scrolls display tables connected to the named logical table so the specified row is
at the top of the display.
SEARCH (command)
Specifies the directories in the search list.
SECURE_LTAB (function)
Secures the user table named. A secured user table cannot be deleted
SECURE_MACRO (function)
Prevents macros from being listed, edited, saved, or traced.
SECURE_TABLE (function)
Secures a display table against deletion. After securing, the table cannot be deleted
or redefined.
SELECT_DIM_ARROW (function)

Brief Description of Commands and Functions 183

Specifies the current dimension line terminator.
SELECT_FROM_LTAB (function)
Performs a select operation on the source table.
SGN (arithmetic function)
Returns -1 if the argument is negative, 0 if the argument is 0, and 1 if the
argument is positive.
SHARE_PART (command)
Causes the specified part to become shared.
SHOW (function)
Selectively turns elements on or off. Shows elements in different colors, Shows
only the outline as a box.
SHOW_CPOLY (function)
Shows the control polygon of B-splines.
SHOW_PART (function)
Changes the way parts are displayed in the current viewport.
SHOW_TABLE (function)
Displays or erases an existing table.
SHOW_TABLE_PAGE (function)
Displays a query-page that has been attached to the specified display table.
SIN (arithmetic function)
Returns the sine of the argument.
SL_COLOR (command)
Sets the symmetry-line color.
SL_LINETYPE (command)
Sets the symmetry-line linetype.
SL_LINEWIDTH (command)
Sets the symmetry-line pensize. (Same action as SL_PENSIZE.)
SL_PENSIZE (command)
Sets the symmetry-line pensize.
SL_OFFSET (command)
Sets the symmetry-line offset.
SMASH_POLY (command)

184 Creo Elements/Direct Drafting Writing Macros

Allows you to smash a polygon into its single elements.
SMASH_SUBPART (command)
Brings all the elements of the selected part into the active part, and deletes the
subpart. The selected part must be a subpart of the active part.
SNID (arithmetic function)
Returns the product number and serial number of an HP-HIL security device. If no
security device is present, returns the product number and serial number of the
computer.
SOLID (function)
Sets the default linetype to solid.
SORT_LTAB (function)
Sorts a user table based upon the columns specified.
SPLINE (command)
Creates a spline.
SPLINE_CONVERSION (function)
Converts splines created with an earlier version of the program into B-splines.
SPLIT (command)
Splits lines, circles, arcs, fillets, and splines.
SPLITTING (function)
Automatic splitting and merging is turned on or off.
SPOTLIGHT (function)
The active part remains the same. All other geometry is redrawn in magenta color
and with dashed lines.
SQR (arithmetic function)
Returns the square of the argument.
SQRT (arithmetic function)
Returns the square root of the argument.
STATLINE_RESET (function)
Re-activates the status line if it has been automatically disabled.
STORE (command)
Stores the drawing to the specified file. (Uses MI format 2.30.)
STORE_202 (command)
Stores the drawing with MI format 2.02.

Brief Description of Commands and Functions 185

STORE_210 (command)
Stores the drawing with MI format 2.10.
STORE_211 (command)
Stores the drawing with MI format 2.11.
STORE_221 (command)
Stores the drawing with MI format 2.21.
STORE_230 (command)
Stores the drawing with MI format 2.30.
STORE_231 (command)
Stores the drawing with MI format 2.31.
STORE_FONT (function)
Stores all fonts, or the specified font, to the named file.
STORE_IN_RECALL_BUFFER (function)
Stores the given string into the recall buffer for further use.
STORE_MACRO (function)
Stores the named macro, or all macros, to the specified destination.
STORE_WINDOW (function)
Stores the window coordinates of the current viewport.
STR (arithmetic function)
Returns the ASCII representation of the argument. For example,
STRETCH (command)
Stretches lines, circles, arcs, splines, and leader lines.
STRUCTURE (function)
Query to display hierarchical structures.
SUBSTR (arithmetic function)
Returns a substring of a string.
SYMBOL_PART (command)
Causes the selected part to become a symbol.
SYMLINE (command)
Creates a symmetry line.
TABLE_COLUMN (function)
Sets the cell attributes in the data columns of an existing unsecured table.

186 Creo Elements/Direct Drafting Writing Macros

TABLE_LAYOUT (command)
Allows you to create a new table of a specified shape at a specified location.
TABLE_SCROLL_STEP (function)
Sets the scroll step of a display table while using the scroll bar.
TABLE_TITLE (function)
Sets the attributes of title slots for an existing table that is not secured against
changes in title.
TAN (arithmetic function)
Returns the tangent of the argument.
TEXT (command)
Creates texts.
TEXT_ADJUST (function)
Specifies the position of the text origin for new texts.
TEXT_ANGLE (function)
Specifies the current text angle.
TEXT_FILL (function)
Turns the filling of characters on or off.
TEXT_HOLE_INSERTION (function)
Inserts a text window in a hatched area.
TEXT_FRAME (function)
Sets the type of the current text frame.
TEXT_LINESPACE (function)
Sets the current linespacing for new texts.
TEXT_RATIO (function)
Sets the current ratio of character width to height.
TEXT_SIZE (function)
Sets the current text height.
TEXT_SLANT (function)
Sets the current text slant.
TEXT_TO_GEO (command)
Converts text to geometry.
TIME (arithmetic function)

Brief Description of Commands and Functions 187

Returns the number of seconds since midnight.
TONE (function)
Generates an audible tone having specified frequency, duration, and amplitude.
TRACE (function)
Opens or closes the TRACE file.
TRAP_ERROR (function)
Defines the behavior in case of an error. Without TRAP_ERROR all execution will
be stopped when an error occurs. After TRAP_ERROR is enabled the fact that an
error has happened is just noted, but execution does not stop.
TRIM_ONE (command)
Allows you to trim or extend an element to intersect precisely with another
element.
TRIM_TWO (command)
Allows you to trim or extend two elements to intersect with each other.
TRIM (arithmetic function)
Returns a string formed by stripping all leading and trailing blanks from the
argument.
TRIMMING (command)
Automatic Trimming (removal of non-visible parts of splines after splitting) is
switched ON/OFF.
TRUE (arithmetic function)
Returns 1.
TRUE_COLOR_PLOTTING (command)
Enables true color plotting and turns off plot transformation.
TRUNC (arithmetic function)
Returns the integer portion of a real number.
TYPE (arithmetic function)
Returns the type of the specified token.
TXT_WINDOW (command)
Specifies a text window in a hatched area.
UA_ANGLE_GRID (function)
Sets the angle increment used by COPILOT.
UA_CENTER_CATCH_RANGE (function)

188 Creo Elements/Direct Drafting Writing Macros

Specifies the portion of each line's length that COPILOTwill treat as the center
for catching.
UA_DISTANCE_GRID (function)
Sets the length increment used by COPILOT.
UA_GET_DESIGN_INTENT (arithmetic function)
Responds with the on/off status of Design Intent.
UA_PERPENDICULAR_CATCH_RANGE (function)
Specifies the portion of lines, circles, and arcs that COPILOTwill treat as
perpendicular for catching.
UA_TANGENT_CATCH_RANGE (function)
Specifies the portion of circles and arcs that COPILOTwill treat as tangent for
catching.
UA_SET_CATCH_DELAY (function)
Sets the amount of time that the cursor must be motionless before COPILOT catch
information is displayed.
UNITS (function)
Specifies the current units for distances and angle.
UNLOAD_MODULE (command)
Unloads a module.
UNSHARE_PART (command)
Causes a shared part to be unshared.
UNTIL (pseudo-command)
Boolean expression
UPC (arithmetic function)
Converts lowercase characters to uppercase.
UPDATE_SCREEN (function)
All device or driver buffers are flushed to the screen. The status line and menu are
updated.
USE_MULTILINE_HATCH (function)
Allows you to select two different hatching processes for hatches with a distance
of 0.
VAL (arithmetic function)
Converts a numeric string to a number.
VERSION (function)

Brief Description of Commands and Functions 189

Displays information on the CAD software version.
VIEW (function)
Causes the selected part to be viewed in the current viewport.
WAIT (function)
Causes the system to do nothing for the number of seconds specified.
WHILE (function)
The next code section is executed as long as the boolean expression following the
WHILE statement is true.
WHITE (function)
Sets the default line color to white.
WINDOW (function)
Allows you to control what part of the drawing is shown in the current viewport.
WINEXEC (arithmetic function)
Launches the Windows application named in the given command string.
WRITE_FILE (function)
Writes a line of text to a specified file.
WRITE_LTAB (function)
Writes new values to the named user table.
X_OF (arithmetic function)
Returns the X coordinate of a vector.
YELLOW (function)
Y_OF (arithmetic function)
Returns the Y coordinate of a vector.
Z_OF (arithmetic function)
Returns the Z coordinate of a vector.

190 Creo Elements/Direct Drafting Writing Macros

A
Logical and Display Tables

What are Logical and Display Tables?... 193
Logical Tables ... 193
Display Tables... 195
Concept of Connecting Display to Logical Table... 195
Logical Table Access Functions.. 196
LTAB_COLUMNS.. 196
LTAB_ROWS.. 197
LTAB_TITLES ... 197
POP_DOWN_LTAB... 198
POP_UP_LTAB... 199
READ_LTAB ... 200
SAVE_LTAB.. 201
SCROLL_LTAB ... 201
SELECT_FROM_LTAB.. 202
Display Table Functions ... 203
TABLE_COLUMN ... 204
TABLE_LAYOUT... 207
TABLE_TITLE... 211
CHANGE_TABLE_SIZE .. 213
CONNECT_TABLE ... 213
DELETE_TABLE... 214
MOVE_TABLE .. 214
PRINT_TABLE.. 215
SAVE_TABLE ... 216
SECURE_TABLE .. 217
SHOW_TABLE.. 217
TABLE_SCROLL_STEP .. 218
User Table Functions ... 219
COLOR_LTAB... 219
CREATE_LTAB ... 220
DELETE_LTAB ... 221

191

DELETE_LTAB_ROW ... 222
HIGHLIGHT_LTAB .. 222
SECURE_LTAB .. 223
SORT_LTAB ... 223
WRITE_LTAB.. 224
Using Logical and Display Tables—Example 1... 225
Defining a User Table .. 225
Defining a Display Table... 226
Interacting with Display Table ... 227
Using Logical and Display Tables—Example 2... 229
Defining the First User and Display Tables... 229
Defining the Second User and Display Tables.. 231
Interacting with the User and Display Tables.. 234
Comments .. 235

This appendix provides you with the information needed to use logical and display
tables.
It describes the structures of a logical table and a display table, and explains the
concept of connecting a display table to a logical table.
Then it describes the functions to access logical tables, and the commands and
functions you need to define and use user tables.
Also, it describes the commands and functions you need to define and use display
tables.
Finally, there are two examples to show you a typical procedure for defining a
logical table and a display table, mapping a display table to a logical table, and
using these tables.

Note
The description and examples in this appendix assume that you are already
familiar with macro programming in Creo Elements/Direct Drafting.

192 Creo Elements/Direct Drafting Writing Macros

What are Logical and Display Tables?
Logical and display tables are techniques used to present a large amount of data in
tabular format. It helps the user read and understand the data. Another advantage
of using these techniques is that the user can select items from these tables as
input to a command or function, thus enhancing the user-interface of the system.
You can use logical and display tables where you often need to manipulate and
display lists of data. Refer to "Using Logical and Display Tables - Example 1" and
"Using Logical and Display Tables - Example 2" to see the benefits of using them.
The following sections describe the structures of a logical table and a display
table, and explain the concept of connecting a display table to a logical table.

Logical Tables
A logical table is essentially an internal data-structure defined by the system or the
user.
The system-defined logical tables contain system data. Although they are both
readable and writable, you must not change the layout or data in system-defined
logical tables. You are only allowed to read data from system-defined logical
tables.
The user-defined logical tables, also called user tables, contain user data, and they
are both readable and writable. You may create and change the layout of user-
defined logical tables. Also, you can both read data from and write data to user-
defined logical tables.
Generally, a logical table consists of three main components:

1. An array of N records identified by a number from 1 to N, where each record
contains M values also identified by a number from 1 to M. In other words, it
is similar to a two-dimensional N x M matrix of values. The number of
records in an array can vary, but the number of values in each record must
remain the same for all records.

Note
Values in a logical table can be either text strings or numbers.

2. L title strings identified by numbers from 1 to L. Title strings are text strings
which enable you to provide additional information, typically, for the titles of
a display table. Refer to the section "Display Table" for details.

Logical and Display Tables 193

Note
If you do not need any title strings, you do not have to define them. Also, you
can have no data in a title string, that is, an empty title string.

3. States of values in all records. Each value has an associated state to indicate
that value as selected or active. This information is particularly useful. For
example, if a user has selected some data from a display table as input for a
command, this data can be highlighted to indicate the user's choices.

4. Foreground (display) and background colors of each cell in the table.
The following shows a schematic diagram of a logical table:

Figure 31. Logical Table

194 Creo Elements/Direct Drafting Writing Macros

Display Tables
A display table is a table used to display the contents of a logical table on the
screen. A display table can be defined by the system or the user. Generally, it
consists of the following components:

• Titles such as column headings and sub-headings
• A data area containing columns of values
• An optional VERTICAL scroll bar, which appears on the right-hand side of

the table. No horizontal scroll bar is allowed.
An example of a display table is shown below:

Figure 32. Display Table

Concept of Connecting Display to Logical Table
As described in the previous sections, there are two types of tables: logical tables
and display tables. A logical table is an internal data-structure which stores the
actual data, whereas a display table acts as a window for the user to view the data
in a logical table. A display table also enables the user to interact with a logical
table to change its data.
Each logical or display table is given a unique name when it is defined, and you
can define as many logical or display tables as you need.
A display table can access and view a logical table only if it has been connected to
that logical table. You can connect more than one display table to a logical table,
so that if you have a logical table with a large amount of data, you can use display
tables to view different parts of the logical table.
The advantage of this technique is that data stored in a logical table is presented
consistently to the user, and the display tables are automatically updated when the
data in the logical table is changed. It also saves you the work of defining the
same display tables again.
The following diagram shows the mapping of a display table to a logical table:

Logical and Display Tables 195

Figure 33. Mapping Display to Logical Table

The arrows in the previous diagram indicate the way in which the items in the
logical table are mapped to the items in the display table.
The title strings in the logical table are usually mapped to the table-heading and
column-headings in the display table. You can map the data columns in the logical
table in any order to the data columns in the display table. You can also map only
some of the data columns in the logical table to the display table.

Logical Table Access Functions
Logical table access functions enable you to access any logical tables, whether
they are system-defined or user-defined. These functions are:

• LTAB_COLUMNS

• LTAB_ROWS

• LTAB_TITLES

• POP_DOWN_LTAB

• POP_UP_LTAB

• READ_LTAB

• SAVE_LTAB

• SCROLL_LTAB

• SELECT_FROM_LTAB

The following sections describe these functions in detail:

LTAB_COLUMNS
This command enables you to enquire and return the number of columns in the
specified logical table.

196 Creo Elements/Direct Drafting Writing Macros

The format of the command is as follows:
LTAB_COLUMNS 'Logical table name'

An example of the command is given below:
LTAB_COLUMNS 'logtable1'

LTAB_COLUMNS requires a parameter, which is the name of the logical table to
enquire. In this example, the logical table is logtable1
As the LTAB_COLUMNS command returns a value, this value has to be assigned
to a variable, as shown in the following example. A typical use of the LTAB_
COLUMNS command is:
LET num_columns (LTAB_COLUMNS 'logtable1')

which means the LTAB_COLUMNS command returns the number of columns in
the logical table logtable1 and then LET assigns it to the macro variable num_
columns.
The returned value is a number.

LTAB_ROWS
This command enables you to enquire and return the number of rows in the
specified logical table.
The format of the command is as follows:
LTAB_ROWS 'Logical table name'

An example of the command is given below:
LTAB_ROWS 'logtable1'

LTAB_ROWS requires a parameter, which is the name of the logical table to
enquire. In this example, the logical table is logtable1
As the LTAB_ROWS command returns a value, this value has to be assigned to a
variable somewhere. A typical use of the LTAB_ROWS command is:
LET num_rows (LTAB_ROWS 'logtable')

which means the LTAB_ROWS command returns the number of rows in the logical
table logtable1 and then LET assigns it to the macro variable num_rows.
The returned value is a number.

LTAB_TITLES
This command enables you to enquire and return the number of title strings in the
specified logical table.
The format of the command is as follows:
LTAB_TITLES 'Logical table name'

An example of the command is given below:
LTAB_TITLES 'logtable1'

Logical and Display Tables 197

LTAB_TITLES requires a parameter, which is the name of the logical table to
enquire. In this example, the logical table is logtable1
As the LTAB_TITLES command returns a value, this value has to be assigned to
a variable somewhere. A typical use of the LTAB_TITLES command is:
LET num_titles (LTAB_TITLES 'logtable1')

which means the LTAB_TITLES command returns the number of titles in the
logical table logtable1 and then LET assigns it to the macro variable num_
titles.
The returned value is a number.

POP_DOWN_LTAB
This command enables you to make the specified logical table pop down at the
next available opportunity. When a logical table pops down, all display tables
connected to it are removed from the screen.
Pop down requests are first held in a buffer until the system is ready to accept
interactive input from the user or UPDATE_SCREEN is called. Only then does it
start processing the pop down requests.
The format of the command is as follows:
POP_DOWN_LTAB 'Logical table name'

An example of the command is given below:
POP_DOWN_LTAB 'logtable1'

POP_DOWN_LTAB requires a parameter, which is the name of the logical table to
pop down. In this example, the logical table is logtable1

198 Creo Elements/Direct Drafting Writing Macros

Note
• When the POP_DOWN_LTAB command pops down a logical table, all display

tables connected to this logical table are removed from the screen. If you want
to remove only one of the display tables, you can use the SHOW_TABLE
command with option OFF to do it.

• When the POP_DOWN_LTAB command removes a display table from the
screen, it restores the saved bit-map image of the screen area under the
removed display table, so that it looks the same as before. However, a special
situation may arise, when you have overlapping display tables. For example,
the saved bit-map image of a screen area contains an entire or a part of a
display table which has already been removed from the screen since it was
saved in the bit-map image. When the bit-map image is restored, this display
table appears again on the screen. However, it does not exist as far as the
system is concerned, so you may see on the screen a partial or an entire table
which you cannot remove with the TABLES OFF command. If this situation
occurs, you can use the NEW_SCREEN command to remove it from the screen.
The NEW_SCREEN command regenerates the actual contents of the entire
screen.

POP_UP_LTAB
This command enables you to make the specified logical table pop up at the next
available opportunity. When a table pops up, all display tables connected to it are
displayed on the screen.
Pop up requests are first held in a buffer until the system is ready to accept
interactive input from the user. Only then does it start processing the pop up
requests.
The format of the command is as follows:
POP_UP_LTAB 'Logical table name'

An example of the command is given as below:
POP_UP_LTAB 'logtable1'

POP_UP_LTAB requires a parameter, which is the name of the logical table to
pop up. In this example, the logical table is logtable1.

Logical and Display Tables 199

Note
• When you use the POP_UP_LTAB command on a logical table, all display

tables connected to this logical table are displayed on the screen. If you want
to display only one of the display tables, you can use the SHOW_TABLE
command with option ON to do it.

• When the POP_UP_LTAB command displays a display table on the screen, it
saves a bit-map image of the screen area under the display table, When the
display table is removed from the screen using the POP_DOWN_LTAB, the
area is restored to its original image.

READ_LTAB
This command enables you to read the values from a certain area in the specified
logical table.
The format of the command is as follows:
READ_LTAB 'Logical table name'
(Row-number Column-number) or (TITLE Title-string-number)

An example of the command is given below:
READ_LTAB 'logtable1'
2 3

READ_LTAB requires two parameters. The first parameter is the name of the
logical table to read from. In this example, the logical table is logtable1. The
second parameter is the position of the data to be read from the specified logical
table, which is 2 3 in this example, that is, row 2 and column 3 of the specified
logical table.
If you want to read a value from the title string of the specified logical table, you
specify TITLE 5 instead of 2 3 to indicate title string 5.
As the READ_LTAB command returns a value, this value has to be assigned to a
variable somewhere. A typical use of the READ_LTAB command is:
LET my_value (READ_LTAB 'logtable1' 1 4)

which means the READ_LTAB command reads the value from the fourth column
of the first row in the logical table logtable1, and then LET assigns it to the
macro variable my_value.
The returned value may be a string or number. If the specified position contains no
value, an empty string is returned instead.

200 Creo Elements/Direct Drafting Writing Macros

SAVE_LTAB
This command enables you to save the contents of the specified logical table.
The format of the command is as follows:
SAVE_LTAB 'Logical table name'
SCREEN or ((or DEL_OLD or APPEND) 'filename')

An example of the command is given below:
SAVE_LTAB 'logtable1'
DEL_OLD 'file1.tbl'

SAVE_LTAB requires two parameters. The first parameter is the name of the
logical table to save. In this example, the logical table is logtable1. The
second parameter indicates the output destination to which the specified logical
table is saved. In this example, the output destination is the file file1.tbl with
the option DEL_OLD, which means if file1.tbl already exists, it is
overwritten.
If you specify a file as the output destination, you can alternatively use option
APPEND or no option at all. APPEND means the specified logical table is
appended to the end of the specified file if it exists. If it does not exist, the
specified file is created. If you do not specify any option, the specified file is
created provided no other file of the same name exists. If the specified file already
exists, an error message is displayed and the command is aborted.
Alternatively, you can specify the screen as the output destination by specifying
SCREEN instead of DEL_OLD and file1.tbl in the above example. But, the
advantage of saving a table in a file is that you can subsequently use the INPUT
command to input this file to redefine the table.

SCROLL_LTAB
This command enables you to scroll display tables connected to the specified
logical table, so that the specified row is at the top of the display.
The format of the command is as follows:
SCROLL_LTAB 'Logical table name'
Row-number

An example of the command is given below:
SCROLL_LTAB 'logtable1'
3

SCROLL_LTAB requires two parameters. The first parameter is the name of the
logical table to scroll. In this example, the logical table is logtable1. The
second parameter indicates the row to be scrolled to the top of the display table,
which is 3 in this example.

Logical and Display Tables 201

SELECT_FROM_LTAB
This command enables you to select rows from a logical table, called the source
logical table, according to certain user-specified criteria, and to write the positions
of matching rows to the logical table sys_select. Optionally, the command also
enables you to copy the matching rows to another logical table, called the
destination logical table.
The format of the command is as follows:
SELECT_FROM_LTAB 'Source Logical table name'
COLUMN Column-number
or (= or <> or > or < or >= or <=)
'Selection-string' or Selection-number
END or (or APPEND 'Destination Logical table name')

An example of the command is given below:
SELECT_FROM_LTAB 'logtable1'
COLUMN 1
>=
10
END

SELECT_FROM_LTAB requires five parameters. The first parameter is the name
of the source logical table, from which you want to select data. In the above
example, the logical table is logtable1. The second parameter is the position of
the column used for selection which is COLUMN 1, that is, the first column, in the
above example. The third parameter is the selection operator which is >=, that is,
greater than or equal to, in the above example. Alternative operators you can
specify are =, <>, >, < and <=. The fourth parameter is the selection string or
value which is 10, that is, the number 10 and not string '10' , in the above
example. The fifth parameter is either END or the name of the destination logical
table to which the selected rows are copied. In the above example, END is
specified and it means the end of the command.
In short, the above example means it selects rows from the source logical table
logtable1 if COLUMN 1 of a row contains a value = 10, and writes the
positions of the selected rows to the logical table sys_select.
If, for example, the logical table logtable1 contains the following data:
1 20
5 25
10 11
22 17
43 13

and you run the macro program in the above example. The result is that the logical
table sys_select contains the following data:
3
4
5

because only rows 3, 4 and 5 of logtable1 satisfy the selection criteria.

202 Creo Elements/Direct Drafting Writing Macros

Another example of the command is:
SELECT_FROM_LTAB 'logtable1'
COLUMN 2
=
'PARTS'
APPEND 'logtable2'

In short, the above example means it selects rows from the source logical table
logtable1 if COLUMN 2 of a row contains a string = 'PARTS', and it writes
the positions of the selected rows to the logical table sys_select. In addition,
it will APPEND, that is, copy the selected rows to the end of the destination logical
table logtable2.
When you specify the option APPEND, the command assumes the specified
logical table already exists. If you do not specify the option APPEND, the
command assumes the specified logical table does not exist and a new logical
table with the specified name is created.
If, for example, the logical tables logtable1 and logtable2 contain
respectively the following data:
PISTON DRAWING 4
BOLTS PARTS 10
NUTS PARTS 10
CRANKSHAFT DRAWING 1
WASHERS PARTS 10

and
WHEEL ASSEMBLY 2
FRAME ASSEMBLY 1
HANDLE ASSEMBLY 1

and you run the macro program in the above example. The result is that the logical
tables sys_select and logtable2 contain respectively the following data:
2
3
5

and
WHEEL ASSEMBLY 2
FRAME ASSEMBLY 1
HANDLE ASSEMBLY 1
BOLTS PARTS 10
NUTS PARTS 10
WASHERS PARTS 10

because only rows 2, 3 and 5 of logtable1 satisfy the selection criterion. You
can see the contents of rows 2, 3 and 5 of logtable1 are copied and appended
to the end of logtable2.

Display Table Functions
A display table provides a means to display all or selected contents of a logical
table. Refer to the section "Display Tables" for details.

Logical and Display Tables 203

The following sections describe the commands and functions that you need to
define the layout of a display table and to use the display table. There is also an
example of defining a display table.

Note
In the listing of each command format in the following sections, the normal-font
text indicate they are part of the format, so you must specify them as they appear
here. The italic text indicate you must replace them with some suitable strings or
values. The empty lines are there to help you read the format and understand its
structure. The word or means there are two or more options, one of which you can
choose for a parameter.

The commands for defining a display table are:

• TABLE_COLUMN

• TABLE_LAYOUT

• TABLE_TITLE

Refer to the section "Defining a Display Table" in the section "Using Logical and
Display Tables - Example 1" for details of how to define a display table.
The following sections describe each of the above commands in detail.

TABLE_COLUMN
This command enables you to set the attributes of the slots in the data columns of
an existing display table.

Note
This command can only operate on a display table that has not been secured
against change by the SECURE_TABLE command.

The format of the command is as follows:
TABLE_COLUMN 'table name'
COLUMN column-number
display color
background color
Logical-table-column-number
FORMAT Format-precision or 'Numeric string'
CENTER or LEFT or RIGHT
'Action Text'
END

204 Creo Elements/Direct Drafting Writing Macros

An example of the command is given below:
TABLE_COLUMN 'table1'
COLUMN 1
blue
yellow
1
FORMAT 2
LEFT
'LINE'

COLUMN 2
red
green
2
FORMAT 3
RIGHT
'CIRCLE'

END

Note
In the above example, the numbers on the left hand side are NOT part of the
format. They are there to help you refer to each line in the example. The empty
lines are there to help you read the example and understand its structure.

Line 1 contains TABLE_COLUMN and the name of the display table whose
columns are to be defined.
Line 2 specifies COLUMN 1, which means column 1 of the display table is to be
defined.
Line 3 specifies the display color for text in the column. In this example, blue is
specified. If you need to use a different color, you can follow the description in
section Line 3 of TABLE_LAYOUT for specifying a color.
Line 4 specifies the background color of the column. In this example, yellow is
specified. If you need to use a different color, you can follow the description in
section of TABLE_LAYOUT for specifying a color.
Line 5 specifies the position of the column in the connected logical table to be
shown in this column in the display table.
Line 6 specifies FORMAT 2, which means the format-precision for floating-point
numbers is two significant figures. For example, if the floating-point number is
123.0, the actual number will be 120. If the number is 12.6, the actual number will
be 13. The default format-precision is half the width of the column.

Logical and Display Tables 205

Or, you can specify a numeric string such as '+1.2345' , which means the
number will be signed, four decimal places, left-zero and right-zero suppressed.
Use the HELP command to refer to the DIM_FORMAT function for details about
the format of this numeric string.
Line 7 specifies LEFT, which means the data in the column is to be left-justified.
You can specify one of two other possible values, CENTER and RIGHT, which
mean center-justified and right-justified respectively.
Line 8 specifies the action text LINE in the column. You can specify any text
string that is a valid system command.
You can specify a string of the format @s#, which means the text string comes
from the title string of number # in the logical table connected with this display
table. For example, if @s3 is specified, it means that the extra string 3 of the
connected logical table is the actual text string specified. If you specify @t3, it
means the extra string 3 of the connected logical table in single quotes is the
actual text string specified. @s3 and @t3 are the same except that @t3 has two
single quotes, one before and one after the extra string 3.
You can also specify a string of the format @v#, which means the text string
comes from the data in column # of the logical table connected with this display
table. For example, if @v4 is specified, it means that the data in column 4 of the
connected logical table is the actual text string specified. If you specify @q4, it
means the data in column 4 of the connected logical table in single quotes is the
actual text string specified. @v4 and @q4 are the same except that @q4 has two
single quotes, one before and one after the data in column 4.
You can even specify a text string of the form LINE @s4 @v2. If the extra string
4 and data in column 2 of the connected logical table are TWO_PNTS and 33,33
respectively, the actual text string is LINE TWO_PNTS 33,33.
Lines 10 to 16 is another block of parameters similar to Lines 2 to 8 to define
another column in the title of the display table.
Line 17 specifies END to indicate the end of the TABLE_COLUMN command.

206 Creo Elements/Direct Drafting Writing Macros

Note
You can include as many blocks of parameters similar to Lines 2 to 8 as required,
provided they are within the commands TABLE_COLUMN and END.

The above example can actually be rearranged as:
TABLE_COLUMN 'table1'

COLUMN 1 blue yellow 1 FORMAT 2 LEFT 'LINE'
COLUMN 2 red green 2 FORMAT 3 RIGHT 'CIRCLE'

END

If a block of parameters can fit into a line, this format may be easier to read
and compare. The important point is that parameters must be separated by at
least one space or tab character.

TABLE_LAYOUT
This command enables you to create a new table with the required layout.
The format of the command is as follows:
TABLE_LAYOUT 'table name'
'Logical table name'
display color
background color
WIDTH width
HEIGHT height
ROWS row
FRAME_WIDTH frame-width
HORIZONTAL Line-color Linetype
VERTICAL Line-color Linetype
SCROLL_BAR Foreground Color background color width
Point 1 and/or Point 2

TITLE_LAYOUT
Height of Row 1 'Layout String'
Height of Row 2 'Layout String'
:
END

COLUMN_LAYOUT
Height of Each Data Row 'Layout String'

END

An example of the command is given below:
TABLE_LAYOUT 'table1'
'query_results'
white

Logical and Display Tables 207

black
WIDTH 30.0
HEIGHT 28.0
ROWS 10
FRAME_WIDTH 1
HORIZONTAL white solid
VERTICAL white solid
SCROLL_BAR blue white 30
0,0

TITLE_LAYOUT
40 ' '
20 ' | | | | '

END

COLUMN_LAYOUT
20 ' | | | | '

END

Note
In the above example, the numbers on the left hand side are NOT part of the
format. They are there to help you refer to each line in the example. The empty
lines are there to help you read the example and understand its structure.

Line 1 contains the command TABLE_LAYOUT and the name you specify for this
display table.
Line 2 specifies the name of the logical table for this display table. In this
example, query_results is specified. By default, the logical table name is the
same as the display table name.
Line 3 specifies the display color for the frame and text in the display table. In this
example, white is specified. However, you can specify any of the other colors
already defined in the system such as red, yellow, green, cyan,
magenta, blue or black.
If you need to use a color that is not one of the above eight defined in the system,
you can specify the command rgb_color followed by the decimal values of the
colors red, green and blue in that order. For example, if you want pure red, green
or blue, you specify rgb_color 1 0 0, rgb_color 0 1 0 or rgb_color 0 0
1 respectively. By combining these three colors, you can define a certain required
color such as rgb_color 0.5 0.42 0.8, which means 0.5 of red, 0.42 of
green and 0.8 of blue.

208 Creo Elements/Direct Drafting Writing Macros

Line 4 specifies the background color of the display table. In this example,
black is specified.
If you need to use a different color, you can follow the description in section Line
3 for specifying a color.
Line 5 contains WIDTH and the table width 30.0 characters. This value can be
fractional, for example 35.5 and must be greater than a certain minimum width.
If you do not specify this parameter, the minimum width for fitting the table is
used.
Line 6 contains HEIGHT and the table height 28.0 characters. This value can be
fractional, for example 35.5 and must be greater than a certain minimum height.
If you do not specify this parameter, the minimum height for fitting the table is
used.
Line 7 contains ROWS and the number of data rows 10 required in the display
table. This parameter can be fractional, for example 10.5 . It is useful to use this
parameter only when the width and height of the table are not explicitly specified.
Line 8 contains FRAME_WIDTH and the frame-width value 1. This parameter can
take a value of either 0, 1 or 2.
Line 9 contains HORIZONTAL, the horizontal-line color white and its type
solid. If you need to use a different color for the horizontal lines, you can
follow the description in section Line 3 for specifying a color. If you need to use a
different linetype, you can specify one of the other linetypes already defined in the
system such as dotted, dashed, long dashed, dot center, dash
center, phantom or long dotted. If you specify just OFF after
HORIZONTAL, there will be no horizontal lines in the display table.
Line 10 contains VERTICAL, the vertical-line color white and its type solid.
If you need to use a different color or linetype, you can follow the description in
section Line 9 for specifying a color or linetype. If you specify just OFF after
VERTICAL, there will be no vertical lines in the display table.
Line 11 contains SCROLL_BAR, the foreground color blue, the background
color white, and the scroll-bar width 30 pixels.
Line 12 specifies the coordinates (0,0) in pixels of the lower-left-hand corner of
the display table. Optionally, you can also specify the coordinates of the upper-
right-hand corner of the display table.
Line 14 contains TITLE_LAYOUT, which is the parameter to specify the layout
of the title in the display table.
Line 15 specifies the height 40 pixels of the first title row and the layout string '
', which indicates the number of slots and the width of each slot. In this example,
there is only one slot of 50 characters wide.

Logical and Display Tables 209

Line 16 specifies the height 20 pixels of the second title row and the layout string
' | | | | ', which indicates the number of slots and their widths. In this
example, there are five slots of 14, 6, 3, 14 and 9 characters wide. The bar |
separates the slots.

Note
In this example, there are only two rows in the title. If you have more, they can be
specified in a similar format.

Line 18 contains END to mark the end of the TITLE_LAYOUT parameter.
Line 20 contains COLUMN LAYOUT, which is the parameter to specify the layout
of the data columns and rows in the display table.
Line 21 specifies the height 20 pixels of each data row and the layout string' | |
| | ', which indicates the number of columns and their widths. In this example,
there are five columns of 14, 6, 3, 14 and 9 characters wide. The bar | separates
the columns.
Line 23 contains END to mark the end of the COLUMN_LAYOUT parameter and
the TABLE_LAYOUT command.

Note
You can specify the size of a display table by a combination of the parameters
WIDTH, HEIGHT, Point 1 and Point 2 in the the TABLE_LAYOUT command.
Also, you can specify the width of the title area in TITLE_LAYOUT and the width
of the column area in COLUMN_LAYOUT. If the width table specified in TABLE_
LAYOUT is different from the width in TITLE_LAYOUT or COLUMN_LAYOUT,
the width in TABLE_LAYOUT will take precedence. So, the width of the display
table will always be the width specified in TABLE_LAYOUT.

For example, if the width in TABLE_LAYOUT is 18 columns and the width in
TITLE_LAYOUT or COLUMN_LAYOUT is 9 columns as follows:
40 ' | | '

the width of the display table will be 18 columns, and the width of the titles
and columns will then change to 18 columns, but the proportion of the titles
and columns will be maintained as follows:
40 ' | | '

210 Creo Elements/Direct Drafting Writing Macros

TABLE_TITLE
This command enables you to set the attributes of the slots in the title of an
existing display table.

Note
This command can only operate on a display table that has not been secured
against change by the SECURE_TABLE command.

The format of the command is as follows:
TABLE_TITLE 'table name'
display color
background color
'display text' 'Action Text'
(Row, Column of Slot) or (BOX Row1, Column1 to Row2, Column2 of Slots)
:
Repeat the above four lines if you need to define other title-slots
:
END

An example of the command is given below:
TABLE_TITLE 'table1'
blue
yellow
'LINE' 'LINE'
1 1

green
white
'@s2' '@s1'
BOX 1 2 2 3

END

Note
In the above example, the numbers on the left hand side are NOT part of the
format. They are there to help you refer to each line in the example. The empty
lines are there to help you read the example and understand its structure.

Line 1 contains the command TABLE_TITLE and the name of the display table
whose title is to be defined.
Line 2 specifies the display color for text in the slot. In this example, blue is
specified. If you need to use a different color, you can follow the description in
section Line 3 of "TABLE_LAYOUT" for specifying a color.

Logical and Display Tables 211

Line 3 specifies the background color of the slot. In this example, yellow is
specified. If you need to use a different color, you can follow the description in
section Line 3 of "TABLE_LAYOUT" for specifying a color.
Line 4 specifies the display text LINE in the slot and the associated action text
LINE.
A display text is a text string shown in the display table. Its associated action text
is also a text string, that contains a valid system command and is sent to the
system when the corresponding display text is selected from the display table on
the screen.
You can specify any valid text strings in these parameters. You can also specify a
string of the format @s#, which means the text string comes from the title string
of number # in the logical table connected with this display table. For example, if
@s3 is specified in one of these parameters; it means that the extra string 3 of the
connected logical table is the actual text string specified.
You can even specify a text string of the form UNITS=@s2. If the extra string 2
of the connected logical table is Meters, the actual text string is UNITS=
Meters.
If you specify a text string of the form UNITS=@t2. and the extra string 2 of the
connected logical table is Meters, the actual text string is UNITS='Meters' .
Line 5 specifies 1 1, that is, row 1 and column 1, as the position of the slot to be
defined. You can also specify a box of slots by using the parameter BOX. For
example, BOX 1 2 3 3 as in Line 10 means that the slots from row 1, column 2 to
row 3, column 3 form the box required.
Lines 7 to 10 is another block of parameters similar to Lines 2 to 5 to define slots
in the title of the display table.
Line 11 specifies END to indicate the end of the TABLE_TITLE command.

Note
You can include as many blocks of parameters similar to Lines 2 to 5 as required,
provided they are within the commands TABLE_TITLE and END.

The above example can actually be rearranged as:
TABLE_TITLE 'table1'

blue yellow 'LINE' 'LINE' 1 1
green white '@s2' '@s1' BOX 1 2 2 3

END

If a block of parameters can fit into a line, this format may be easier to read
and compare. The important point is that parameters must be separated by at
least one space or tab character.

212 Creo Elements/Direct Drafting Writing Macros

The commands for handling a display table are:

• CHANGE_TABLE_SIZE

• CONNECT_TABLE

• DELETE_TABLE

• MOVE_TABLE

• PRINT_TABLE

• SAVE_TABLE

• SECURE_TABLE

• SHOW_TABLE

• TABLE_SCROLL_STEP

and they are described in detail in the following sections.

CHANGE_TABLE_SIZE
This command enables you to change the size of existing display tables which
have not been secured internally against size-change by the program.
The format of the command is as follows:
CHANGE_TABLE_SIZE 'table name' Point 1 Point 2

An example of the command is given below:
CHANGE_TABLE_SIZE 'disptable1' 100,100 1000,800

CHANGE_TABLE_SIZE requires three parameters, which are disptable1,
100,100 and 1000,800 in this example.
disptable1 is the name of the display table whose size is to be changed.
100,100 and 1000,800 are respectively the x,y coordinates of the lower-left-
hand and upper-right-hand corners of the display table.

Note
The width and height of the display table must be greater than certain minimum
dimensions for every table.

CONNECT_TABLE
This command enables you to connect a display table to a logical table.
The format of the command is as follows:
CONNECT_TABLE 'table name' 'Logical table name'

An example of the command is given below:

Logical and Display Tables 213

CONNECT_TABLE 'disptable1' 'logtable1'

CONNECT_TABLE requires two parameters, which are disptable1 and
logtable1 in this example.
disptable1 is the name of the display table to be connected to the logical table
logtable1.
If this command tries to connect a display table, which is already connected to a
logical table, to another logical table, the existing connection between the display
table and the first logical table is automatically broken before a new connection is
made with the second logical table. This means you can connect only one logical
table to any display at any one time.

DELETE_TABLE
This command enables you to delete an existing display table which has not been
secured.
The format of the command is as follows:
DELETE_TABLE
'table name' or (ALL CONFIRM)

An example of the command is given below:
DELETE_TABLE
ALL CONFIRM

or, simply,
DELETE_TABLE ALL CONFIRM

DELETE_TABLE requires a parameter, which is ALL CONFIRM in this example.
ALL means that the command deletes all the display tables defined in the system.
CONFIRM is to confirm that the command is correct.
Alternatively, you can specify the name of a display table as follows:
DELETE_TABLE 'disptable1'

to indicate that the display table disptable1 is to be deleted.

MOVE_TABLE
This command enables you to move an existing display table to a specific location
on the screen. The display table must not have been secured internally against
move by the program.
The format of the command is as follows:
MOVE_TABLE 'table name1'
(Point 1 Point 2) or
((UPPER or LOWER or RIGHT or LEFT) and/or (OF 'table name2'))
:
END

214 Creo Elements/Direct Drafting Writing Macros

An example of the command is given below:
MOVE_TABLE 'disptable1'
UPPER OF 'disptable2'
100,100 150,400
END

Note
In the above example, the numbers on the left hand side are NOT part of the
format. They are there to help you refer to each line in the example.

Line 1 contains the command MOVE_TABLE and the name disptable1 of the
display table to be moved.
Line 2 specifies UPPER to indicate a move to the top of the screen. You can
alternatively specify one of the other directions such as LOWER, RIGHT or LEFT
to indicate a move to the bottom, right or left respectively of the screen.
You can optionally specify OF and the name of a display table 'disptable2'
after the direction to indicate the move is relative to another display table.
Line 3 specifies 100,100 and 150,400, which are the x,y coordinates of the
reference and destination points of another move.
Line 4 specifies END to indicate the end of the MOVE_TABLE command.

Note
Both Line 2 and Line 3 are valid move parameters, but only specified in different
forms. In other words, there are two moves in this example.

It is possible to specify multiple moves in the MOVE_TABLE command,
provided the parameters are included within MOVE_TABLE and END. The
actual move will be the result of combining all the moves together.

PRINT_TABLE
This command enables you to print the visible contents of a display table to the
screen or into a file.
The format of the command is as follows:
PRINT_TABLE 'table name' or ALL
SCREEN or ((or DEL_OLD or APPEND) 'filename')

An example of the command is given below:
PRINT_TABLE 'disptable1'
DEL_OLD 'file1.tbl'

Logical and Display Tables 215

or, simply,
PRINT_TABLE 'disptable1' DEL_OLD 'file1.tbl'

PRINT_TABLE requires two parameters. The first parameter is the name of the
display table to print. In this example, the display table is disptable1. The
second parameter indicates the output destination to which the specified display
table is printed. In this example, the output destination is the file file1.tbl
with the option DEL_OLD, which means if file1.tbl already exists, it is
overwritten.
If you specify a file as the output destination, you can alternatively use option
APPEND or no option at all. APPEND means the specified display table is
appended to the end of the specified file if it exists. If it does not exist, the
specified file is created. If you do not specify any option, the specified file is
created provided no other file of the same name exists. If the specified file already
exists, an error message is displayed and the command is aborted.
Alternatively, you can specify the screen as the output destination by specifying
SCREEN instead of DEL_OLD and file1.tbl in the above example.

SAVE_TABLE
This command enables you to save the set-up of a display table in a file. A display
table can then be re-created by reading the file using an INPUT command.
The format of the command is as follows:
SAVE_TABLE 'table name' or ALL
SCREEN or ((or DEL_OLD or APPEND) 'filename')

An example of the command is given below:
SAVE_TABLE 'disptable1'
DEL_OLD 'file1.tbl'

or, simply,
SAVE_TABLE 'disptable1' DEL_OLD 'file1.tbl'

SAVE_TABLE requires two parameters. The first parameter is the name of the
display table to save. In this example, the display table is disptable1. The
second parameter indicates the output destination to which the specified display
table is saved. In this example, the output destination is the file file1.tbl with
the option DEL_OLD, which means if file1.tbl already exists, it is
overwritten.
If you specify a file as the output destination, you can alternatively use option
APPEND or no option at all. APPEND means the specified display table is
appended to the end of the specified file if it exists. If it does not exist, the
specified file is created. If you do not specify any option, the specified file is
created provided no other file of the same name exists. If the specified file already
exists, an error message is displayed and the command is aborted.

216 Creo Elements/Direct Drafting Writing Macros

Alternatively, you can specify the screen as the output destination by specifying
SCREEN instead of DEL_OLD and file1.tbl in the above example.

SECURE_TABLE
This command enables you to secure a display table so that it cannot be deleted or
redefined.
The format of the command is as follows:
SECURE_TABLE
'table name' or (ALL CONFIRM)

An example of the command is given below:
SECURE_TABLE
ALL CONFIRM

or, simply,
SECURE_TABLE ALL CONFIRM

SECURE_TABLE requires one or two parameters, which are ALL CONFIRM in
this example. ALL means that the command secures all the display tables defined
in the system. CONFIRM is to confirm that the command is correct.
Alternatively, you can specify the name of a display table as follows:
SECURE_TABLE 'disptable1'

to indicate that the display table disptable1 is to be secured.

SHOW_TABLE
This command enables you to show or not to show a single display table or all
display tables.
The format of the command is as follows:
SHOW_TABLE
ON or OFF
'table name' or ALL

An example of the command is given below:
SHOW_TABLE
ON
ALL

or, simply,
SHOW_TABLE ON ALL

SHOW_TABLE requires two parameters, which are ON and ALL in this example.
ON means to show the display table or tables. You can alternatively specify OFF to
indicate not to show it.
ALL means to run this command on all the display tables defined in the system.
You can alternatively specify the name of a display table for the command.

Logical and Display Tables 217

Note
You can also use POP_UP_LTAB and POP_DOWN_LTAB commands respectively
to show and not to show a display table. Refer to the sections POP_UP_LTAB and
POP_DOWN_LTAB for details.

The differences between SHOW_TABLE ON (or OFF) and POP_UP_LTAB
(or POP_DOWN_LTAB) are as follows:

• SHOW_TABLE shows a display table you specified or all display tables,
whereas POP_UP_LTAB shows all display tables connected to a logical table
you specified.

• POP_UP_LTAB saves a bit-map image of the screen area under the display
table it displays, whereas SHOW_TABLE does not.

TABLE_SCROLL_STEP
This command enables you to set the scroll step of a display table while using the
scroll boxes at the ends of the scroll bar.
The format of the command is as follows:
TABLE_SCROLL_STEP
'table name' or ALL
DEFAULT or number

An example of the command is given below:
TABLE_SCROLL_STEP
ALL
DEFAULT

or, simply,
TABLE_SCROLL_STEP ALL DEFAULT

TABLE_SCROLL_STEP requires two parameters, which are ALL and DEFAULT
in this example.
ALL means this command changes the scroll step of all the display tables defined
in the system. Alternatively, you can specify a display table such as
disptable1 to indicate a particular table whose scroll step is to be changed.
DEFAULT means the scroll step is to be set as the number of data rows in the
display table. Alternatively, you can specify a certain number in data rows such as
5 to indicate the scroll step size.

218 Creo Elements/Direct Drafting Writing Macros

User Table Functions
A user table is a logical table defined by the user, as opposed to one defined by the
system. It has the same data-structure as any logical table. Also, you can connect a
display table to a user table in the same way as to any logical table.
The command for defining a user table is:

• CREATE_LTAB

The commands for handling a user table are:

• COLOR_LTAB

• DELETE_LTAB

• DELETE_LTAB_ROW

• HIGHLIGHT_LTAB

• SECURE_LTAB

• SORT_LTAB

• WRITE_LTAB

The following sections describe each of the above commands in detail.

Note
In the listing of each command format in the following sections, the normal-font
text indicate they are part of the format, so you must specify them as they appear
here. The italic text indicate you must replace them with some suitable strings or
values. The word or means there are two or more options, one of which you can
choose for a parameter.

COLOR_LTAB
This command enables you to specify the foreground (display) and background
colors of any cell in a table.

Note
The command COLOR_LTAB can work on user tables that have been secured with
the command SECURE_LTAB and the option READ_ONLY.

The format of the command is as follows:
COLOR_LTAB 'User table name'
(Row-no Column-no) or (ROW Row-no) or (COLUMN Column-no) or ALL

Logical and Display Tables 219

or (TITLE title string-no or ALL)
(Foreground Color or DEFAULT)
(Background Color or DEFAULT)

An example of the command is given below:
COLOR_LTAB 'usertable1'
3 5
white
blue

COLOR_LTAB requires four pieces of data. The first is the name of the user table
for the command. The second is the position of the area in the specified user table
whose colors are to be changed, and the third and fourth are respectively the
foreground and background colors of the cell.
In the above example, row 3 and column 5 in the user table usertable1 is to
be assigned the foreground color white and background color blue.
You can specify the position in five other ways, for example:

• ROW 5, which means the entire row 5.
• COLUMN 3, which means the entire column 3.
• ALL, which means all rows and columns.
• TITLE 2, which means the second title string.
• TITLE ALL, which means all title strings.
Also, you can specify any valid 10 color names for the foreground and
background colors.
Another example of the command is:
HIGHLIGHT_LTAB 'usertable1'
TITLE 2
black
yellow

which means assigning black as the foreground color of title string 2, and
yellow as the background color.

CREATE_LTAB
This command enables you to create a new user table, and optionally to specify an
estimate of the size in rows and columns of the new user table.
Refer to the section "Defining a User Table" in "Using Logical and Display Tables
- Example 1" for details of how to define a user table.
The optional parameters for the size of the new user table help the system estimate
resources for the user table and make the user table run as efficiently as possible.

220 Creo Elements/Direct Drafting Writing Macros

If the new user table to be created has the same name as an existing system-
defined table which has been secured READONLY, this command is ignored and
an error message is displayed.
If the new user table to be created has the same name as an existing user table
which is not secured, the command simply deletes all data in the existing user
table and adjusts its size according to the rows and columns specified in the
command.
However, if the new user table to be created has the same name as an existing user
table which is secured by the SECURE_LTAB command and the READ_ONLY
option, an error message is displayed.
The format of the command is as follows:
CREATE_LTAB (or Rows) (or Columns)
'User table name'

An example of the command is given below:
CREATE_LTAB
20 6
'usertable1'

CREATE_LTAB requires two pieces of data. The first is the estimate of the size in
rows and columns of the new user table. In the above example, the estimated size
is 20 rows and 6 columns. This size is only an estimate, and not a limit. So, you
can still write data to the table at a position beyond 20 rows and 6 columns. The
second is the name of the new user table which is usertable1 in the above
example.

DELETE_LTAB
This command enables you to delete a user table.
If the specified user table is secured by the SECURE_LTAB command or is locked
because it is currently being used, an error message is displayed.
The format of the command is as follows:
DELETE_LTAB ALL or 'User table name'

An example of the command is given below:
DELETE_LTAB ALL

DELETE_LTAB requires a parameter which is ALL in this example. ALL means
that the command deletes all the user tables.
Alternatively, you can specify the name of the user table as follows:
DELETE_LTAB usertable1

to indicate the user table usertable1 to be deleted.

Logical and Display Tables 221

DELETE_LTAB_ROW
This command enables you to delete a row from the user table.
If the specified user table is secured with the command SECURE_LTAB and the
option READ_ONLY, an error message is displayed.
The format of the command is as follows:
DELETE_LTAB_ROW 'User table name'
ALL or Row-number

An example of the command is given below:
DELETE_LTAB_ROW 'usertable1'
ALL

DELETE_LTAB_ROW requires two pieces of data. The first is the name of the
user table for the command. The second is the position of the row in the specified
user table to be deleted.
In the above example, ALL rows in the user table usertable1 are to be deleted.
Alternatively, you can specify the position of the row as follows:
DELETE_LTAB_ROW 'usertable1'
5

to indicate that row 5 in the user table usertable1 is to be deleted.

HIGHLIGHT_LTAB
This command enables you to switch on or off the highlight of a position in the
data area of the user table.

Note
The command HIGHLIGHT_LTAB can work on user tables that have been
secured with the command SECURE_LTAB and the option READ_ONLY.

The format of the command is as follows:
HIGHLIGHT_LTAB 'User table name'
(Row-no Column-no) or (ROW Row-no) or (COLUMN Column-no) or ALL
or (TITLE title string-no or ALL)
ON or OFF or MARK

An example of the command is given below:
HIGHLIGHT_LTAB 'usertable1'
3 5
ON

222 Creo Elements/Direct Drafting Writing Macros

HIGHLIGHT_LTAB requires three pieces of data. The first is the name of the user
table for the command. The second is the position of the area in the specified user
table whose highlight is to be changed, and the third is the ON/OFF state to switch
the highlight to.
In the above example, row 3 and column 5 in the user table usertable1 is to
be highlighted, that is, ON.
You can specify the position in five other ways, for example:

• ROW 5, which means the entire row 5.
• COLUMN 3, which means the entire column 3.
• ALL, which means all rows and columns.
• TITLE 2, which means the second title string.
• TITLE ALL, which means all title strings.
Also, you can specify OFF to switch off the highlight or MARK to mark the box
with an inner box.
Another example of the command is:
HIGHLIGHT_LTAB 'usertable1'
TITLE 2
MARK

which means highlighting title string 2 with a MARK which is an inner box.

SECURE_LTAB
This command enables you to secure a specified user table so that it cannot be
deleted, but you can still change its contents. If you want to secure a user table
such that it cannot be deleted and its contents cannot be changed, you need to use
the option READ_ONLY.
The format of the command is as follows:
SECURE_LTAB (or READ_ONLY) 'User table name'

An example of the command is given below:
SECURE_LTAB 'usertable1'

SECURE_LTAB requires a parameter to specify the user table to be secured. In
this example, the user table is usertable1.
You can also specify the option READ_ONLY as follows:
SECURE_LTAB READ_ONLY 'usertable1'

so that the contents of usertable1 cannot be changed.

SORT_LTAB
SORT_LTAB sorts a user table based upon the columns specified. REVERSE_
SORT reverses the order of the sorting for the next column specified.

Logical and Display Tables 223

The format of the command is as follows:
SORT_LTAB 'User table name'
Column-no or REVERSE_SORT Column-no
:
(Repeat the last line if you need to specify other columns to sort)
:
CONFIRM

An example of the command is given below:
SORT_LTAB 'usertable1'
REVERSE_SORT 2
CONFIRM

SORT_LTAB requires three pieces of data. The first is the name of the user table
for the function. The second is the sorting order, either forward (ascending) or
reverse (descending). The default is forward sorting. The third is the number of
the column whose data is to be sorted.
Sort order (precedence) of differing types in the same column is:

1. NULL values.
2. numbers.
3. strings.
In the above example, the data in the user table usertable1 is to be sorted in
reverse order according to the data in column 2. CONFIRM indicates the end of the
SORT_LTAB function.
You can also specify more than one column for this function, in which case the
first specified column takes the highest precedence for the sorting. For example:
SORT_LTAB 'usertable1'
REVERSE_SORT 3
1
REVERSE_SORT 2
CONFIRM

Sorting column 3 in reverse order takes the highest precedence over column 1 or
2.
An error will be generated if the table is secured against writing.

WRITE_LTAB
This command enables you to write new values to the specified user table.
The format of the command is as follows:
WRITE_LTAB 'User table name'
(Row-number Column-number) or (TITLE Title-string-number)
Value

An example of the command is given below:
WRITE_LTAB 'usertable1'

224 Creo Elements/Direct Drafting Writing Macros

3 5
26.1

WRITE_LTAB requires three pieces of data.
The first is the name of the user table for the command. The second is the position
in the specified user table to which the value is to be written, and the third is the
value itself.
In the above example, the value 26.1 is to be written to the position row 3 and
column 5 in the user table usertable1.
You can specify the position in another way, for example, TITLE 2, which means
title string 2.
You can specify a 'text string' or a number as a value, for example, 'WHEEL' or
26.1 which are both valid. Also, you can specify a variable name or another
command as the value, for example, RADIUS, which means the value of variable
RADIUS is the value specified, or (READ_LTAB 'logtable1' 2 3), which
means the output from this command is the value specified.

Using Logical and Display Tables—
Example 1
There are some basic steps you need to take to use logical and display tables.
In general, you have to define the required logical table if it is a user table, that is,
a user-defined logical table as opposed to a system-defined logical table, which
you do not need to define. Then, you also have to define the required display table
so that you can map it to the required logical table to view the data in this logical
table.
Once the logical and display tables are defined, you can use the commands and
functions provided to interact with them.
The following sections give examples to show you how to define a user table and
a display table, and how to interact with them.

Note
Refer to the sections "Logical Table Access Functions", "Display Table
Functions" and "User Table Functions" for details of the commands and functions
used in the sections below.

Defining a User Table
There are two main steps to define a user table:

Logical and Display Tables 225

• Create the user table with a specified name and an estimate of its size in rows
and columns.

• Fill the user table with the required data.
The following is an example listing to define a user table:
{
This is the Macro 'UTABLE1' to define a user table called 'Mach_Op'.
It then fills the user table with data in the title string 1 and
from rows 1 to 5 in column 1.
}

DEFINE UTABLE1
CREATE_LTAB 5 2 'Mach_Op'

WRITE_LTAB 'Mach_Op' 1 1 'Type of Machining Operation'
WRITE_LTAB 'Mach_Op' 2 1 'Machine Tool Parameters'
WRITE_LTAB 'Mach_Op' 3 1 'Cutting Tool Parameters'
WRITE_LTAB 'Mach_Op' 4 1 'Workpart Characteristics'
WRITE_LTAB 'Mach_Op' 5 1 'Other Operating Parameters'
WRITE_LTAB 'Mach_Op' TITLE 1 'Characteristics of a Machining Operation'

END_DEFINE

Note
The text within the {} brackets in the above and subsequent listings are only
comments and not a part of the macro program.

You can use a text-editor to create the above listing and save it in a file
utable1.mac.

Defining a Display Table
There are three main steps to define a display table:

• Configure the layout of the display table, which includes the title and the data-
column areas

• Specify the data in the title area
• Specify the data in the data-column area.
The following is an example listing to define a display table:
{
This is the Macro 'DTABLE1' to define a display table called 'Mach_Op'
which maps to the user table 'Mach_Op'. The user table and display table
are called by the same name 'Mach_Op' in this example, but they can be
different.

It then specifies the layout of the title and data areas of the display

226 Creo Elements/Direct Drafting Writing Macros

table, and also specifies the data and their formats to put into the
title and data areas.
}

DEFINE DTABLE1
TABLE_LAYOUT 'Mach_Op'

'Mach_Op'
WHITE BLACK
width 60.250000 rows 10.058824
FRAME_WIDTH 2
HORIZONTAL WHITE SOLID
VERTICAL WHITE SOLID
SCROLL_BAR WHITE BLUE 32
TITLE_LAYOUT
18 ' '
1 ' '
END
COLUMN_LAYOUT

' '
END
TABLE_TITLE 'Mach_Op'

BLACK YELLOW '@s1' '' 1 1
WHITE WHITE '' '' 2 1

END
TABLE_COLUMN 'Mach_Op'

COLUMN 1 GREEN BLACK 1 FORMAT 10 LEFT '@v1'

END
END_DEFINE

You can use a text-editor to create the above listing in a file. However, if you
already have a display table with a similar layout to that required, it is easier to
save the listing of that display table in a file using the SAVE_TABLE command.
Then you use a text-editor to edit the file to the required layout.
Once you have created this listing, you save it in a file dtable1.mac.

Interacting with Display Table
You first have to run Creo Elements/Direct Drafting on your system. Then, before
you can interact with the user and display tables, you have to load their definitions
by entering the following commands at the keyboard in response to the ENTER
COMMAND prompt in Creo Elements/Direct Drafting:
INPUT 'utable1.mac' [Return]
UTABLE1 [Return]
INPUT 'dtable1.mac' [Return]
DTABLE1 [Return]

The first two commands load the definition of the user table, and the second two
load that of the display table.

Logical and Display Tables 227

You can now start to interact with the user and display tables. First, you can show
the display table Mach_Op on the screen by:
SHOW_TABLE ON 'Mach_Op' [Return]

Then, you move the display table Mach_Op to somewhere in the middle of the
screen by:
MOVE_TABLE 'Mach_Op' LOWER LEFT 0,0 300,300 END [Return]

Note
It is important to use the options LOWER LEFT in the command to make sure that
the move starts from the lower-left-hand corner of the screen. Otherwise, the
move starts from the current position of the table. This means that the table can
possibly move outside the screen.

Then, you print the display table Mach_Op as it appears on the screen in a file
dtable1.prt by:
PRINT_TABLE 'Mach_Op' 'dtable1.prt' [Return]

You can then print that file on a printer.

Note
This is a very useful command if you want to keep a hardcopy of the display table
as it appears on the screen.

Then, you save the display table Mach_Op in a file dtable1.sav by:
SAVE_TABLE 'Mach_Op' 'dtable1.sav' [Return]

Note
This is a very useful command when you want to create a layout for another
display table. If there is already a display table with a similar layout to that
required, you can use this command to save that layout in a file and then edit it
with a text-editor.

Then, you remove the display table Mach_Op from the screen by:
SHOW_TABLE OFF 'Mach_Op' [Return]

228 Creo Elements/Direct Drafting Writing Macros

Using Logical and Display Tables—
Example 2
This section is similar to the section "Using Logical and Display Tables - Example
1", except the example here is more sophisticated. This example uses two user
tables and two display tables. The first user and display tables come from the
example in "Using Logical and Display Tables - Example 1" The second user and
display tables are new and defined in this section.
The following sections give examples to show you how to define the required user
and display tables, and how to interact with them.

Note
Refer to the sections "Logical Table Access Functions", "Display Table
Functionalities" and "User Table and Its Functionalities" for details of the
commands and functions used in the sections below.

Defining the First User and Display Tables
The first user and display tables are the same as those used in "Using Logical and
Display Tables—Example 1" with some minor changes, so you can copy those
files utable1.mac and dtable1.mac to utable21.mac and
dtable21.mac respectively. Then, you can edit them to the required layout
with a text-editor.
The following listing is the first user table in the file utable21.mac:
{
This is the Macro 'UTABLE21' to define the first user table called
'Mach_Op2'. It then fills the user table with data in the title
string 1 and from rows 1 to 5 in column 1.
}

DEFINE UTABLE21
CREATE_LTAB 5 2 'Mach_Op2'

WRITE_LTAB 'Mach_Op2' 1 1 'Type of Machining Operation'
WRITE_LTAB 'Mach_Op2' 2 1 'Machine Tool Parameters'
WRITE_LTAB 'Mach_Op2' 3 1 'Cutting Tool Parameters'
WRITE_LTAB 'Mach_Op2' 4 1 'Workpart Characteristics'
WRITE_LTAB 'Mach_Op2' 5 1 'Other Operating Parameters'
WRITE_LTAB 'Mach_Op2' TITLE 1 'Characteristics of a Machining Operation'

END_DEFINE

Logical and Display Tables 229

Note
The text within the {} brackets in the above and subsequent listings are only
comments and not a part of the macro program.

This macro UTABLE21 is the same as the macro UTABLE1, except the user table
name is called Mach_Op2.
The following listing is the first user table in the file dtable21.mac:
{
This is the Macro 'DTABLE21' to define the first display table called
'Mach_Op2' which maps to the user table 'Mach_Op2'. The first user and
display tables are called by the same name 'Mach_Op2' in this example,
but they can be different.

It then specifies the layout of the title and data areas of the display
table, and also specifies the data and their formats to put into the
title and data areas.
}

DEFINE DTABLE21
TABLE_LAYOUT 'Mach_Op2'

'Mach_Op2'
WHITE BLACK
width 60.250000 rows 10.058824
FRAME_WIDTH 2
HORIZONTAL WHITE SOLID
VERTICAL WHITE SOLID
SCROLL_BAR WHITE BLUE 32
TITLE_LAYOUT
18 ' | '
1 ' '
END
COLUMN_LAYOUT

' '
END
TABLE_TITLE 'Mach_Op2'

BLACK YELLOW '@s1' '' 1 1
BLACK YELLOW 'END' 'SHOW_TABLE OFF 'Mach_Op2' SHOW_TABLE OFF 'Op_Para' END' 1 2
WHITE WHITE '' '' 2 1

END
TABLE_COLUMN 'Mach_Op2'

COLUMN 1 GREEN BLACK 1 FORMAT 10 LEFT '@v1'
END

END_DEFINE

This macro DTABLE21 is the same as DTABLE1 except:

230 Creo Elements/Direct Drafting Writing Macros

• this display table is called Mach_Op2 and mapped to a user table called
Mach_Op2

• there are two columns in the first title row
• the second column in this title row contains the text END and the associated

action text is:
SHOW_TABLE OFF 'Mach_Op2' SHOW_TABLE OFF 'Op_Para' END

which means removing the display tables Mach_Op2 and Op_Para from the
screen, and aborting the current macro program.

Defining the Second User and Display Tables
The second user and display tables are new, so you have to define them. The
following listing defines the second display table:
{
This is the Macro 'DTABLE2' to define the second display table called
'Op_Para' which maps to an unknown user table ''. Mapping
this display table to a user table is done later when the second user
table is defined.

It then specifies the layout of the title and data areas of the display
table, and also specifies the data and their formats to put into the
title and data areas.
}

DEFINE DTABLE2
TABLE_LAYOUT 'Op_Para'

''
WHITE BLACK
width 60.250000 rows 10.058824
FRAME_WIDTH 2
HORIZONTAL WHITE SOLID
VERTICAL WHITE SOLID
SCROLL_BAR WHITE BLUE 32
TITLE_LAYOUT
18 ' | '
1 ' '
END
COLUMN_LAYOUT

' '
END
TABLE_TITLE 'Op_Para'

BLACK YELLOW '@s1' '' 1 1
BLACK YELLOW 'OFF' 'SHOW_TABLE OFF' 'Op_Para' 1 2
WHITE WHITE '' '' 2 1

END
TABLE_COLUMN 'Op_Para'

COLUMN 1 GREEN BLACK 1 FORMAT 10 LEFT '@v1'
END

Logical and Display Tables 231

END_DEFINE

This macro DTABLE2 is the same as DTABLE21 except:

• this display table is called Op_Para and is not mapped to a user table until
later when the second user table is defined.

• the second column in first title row contains the text OFF and the associated
action text is:
SHOW_TABLE OFF 'Op_Para'

which means removing the display table Op_Para from the screen.
Once you have created this listing, you save it in a file dtable2.mac.
The following listing defines the second user table and contains macro commands
to interact with all four tables:
{
This is the macro 'UTABLE2' to define the second user table called 'Op_Para'
and to provide the Macro commands to interact with all four tables.

}

DEFINE UTABLE2
LOCAL OPARA

MOVE_TABLE 'Mach_Op2' LOWER LEFT 0,0 300,300 END
POP_UP_LTAB 'Mach_Op2'
CREATE_LTAB 6 2 'Op_Para'
CONNECT_TABLE 'Op_Para' 'Op_Para'

LOOP

READ STRING 'Select option from CHARACTERISTICS OF A MACHINING OPERATION table:' OPARA

LET OPARA (UPC OPARA)

IF(OPARA="TYPE OF MACHINING OPERATION")
WRITE_LTAB 'Op_Para' TITLE 1 'Type of Machining Operation:'
WRITE_LTAB 'Op_Para' 1 1 'Turning'
WRITE_LTAB 'Op_Para' 2 1 'Drilling'
WRITE_LTAB 'Op_Para' 3 1 'Tapping'
WRITE_LTAB 'Op_Para' 4 1 'Milling'
WRITE_LTAB 'Op_Para' 5 1 'Boring'
WRITE_LTAB 'Op_Para' 6 1 'Grinding

ELSE_IF(OPARA="MACHINE TOOL PARAMETERS")
WRITE_LTAB 'Op_Para' TITLE 1 'Machine Tool Parameters:'
WRITE_LTAB 'Op_Para' 1 1 'Size and Rigidity'
WRITE_LTAB 'Op_Para' 2 1 'Horsepower'
WRITE_LTAB 'Op_Para' 3 1 'Spindle Speed and Feedrate Levels'
WRITE_LTAB 'Op_Para' 4 1 'Conventional or NC'
WRITE_LTAB 'Op_Para' 5 1 'Accuracy and Precision Capabilities'
WRITE_LTAB 'Op_Para' 6 1 'Operating Time Data'

232 Creo Elements/Direct Drafting Writing Macros

ELSE_IF(OPARA="CUTTING TOOL PARAMETERS")
WRITE_LTAB 'Op_Para' TITLE 1 'Cutting Tool Parameters:'
WRITE_LTAB 'Op_Para' 1 1 'Material Type'
WRITE_LTAB 'Op_Para' 2 1 'Material Composition'
WRITE_LTAB 'Op_Para' 3 1 'Physical and Mechanical Properties'
WRITE_LTAB 'Op_Para' 4 1 'Type'
WRITE_LTAB 'Op_Para' 5 1 'Geometry'
WRITE_LTAB 'Op_Para' 6 1 'Cost'

ELSE_IF(OPARA="WORKPART CHARACTERISTICS")
WRITE_LTAB 'Op_Para' TITLE 1 'Workpart Characteristics:'
WRITE_LTAB 'Op_Para' 1 1 'Material Type'
WRITE_LTAB 'Op_Para' 2 1 'Hardness of Material'
WRITE_LTAB 'Op_Para' 3 1 'Geometric Size and Shape'
WRITE_LTAB 'Op_Para' 4 1 'Tolerances'
WRITE_LTAB 'Op_Para' 5 1 'Surface Finish'
WRITE_LTAB 'Op_Para' 6 1 'Initial Surface Condition'

ELSE_IF(OPARA="OTHER OPERATING PARAMETERS")
WRITE_LTAB 'Op_Para' TITLE 1 'Other Operating Parameters:'
WRITE_LTAB 'Op_Para' 1 1 'Depth of Cut'
WRITE_LTAB 'Op_Para' 2 1 'Cutting Fluid'
WRITE_LTAB 'Op_Para' 3 1 'Workpart Rigidity'
WRITE_LTAB 'Op_Para' 4 1 'Fixtures and Jigs'
DELETE_LTAB_ROW 'Op_Para' 6
DELETE_LTAB_ROW 'Op_Para' 5

ELSE
BEEP
DISPLAY "UNKNOWN OPTION"

END_IF
SHOW_TABLE ON 'Op_Para'
END_LOOP

END_DEFINE

Once you have created this listing, you save it in a file utable2.mac.
Although the above listing is essentially to define the second user table, it also
provides macro commands to interact with all four tables.
Below is an explanation of the macro program:

• DEFINE UTABLE2 marks the beginning of this macro UTABLE2.
• LOCAL OPARA declares a local variable OPARA.
• MOVE_TABLE 'Mach_Op2' LOWER LEFT 0,0 300,300 END moves the

display table Mach_Op2 to position 300,300 on the screen.
• POP_UP_LTAB 'Mach_Op2' displays the user table Mach_Op2.
• CREATE_LTAB 6 2 'Op_Para' defines a user table Op_Para of six rows

and two columns in size.
• CONNECT_LTAB 'Op_Para' 'Op_Para' connects the display table Op_

Para to the user table Op_Para.

Logical and Display Tables 233

• LOOP marks the beginning of the loop whose end is marked by END_LOOP.
• Within this loop, it first asks the user to select an option from the table by:

READ STRING 'Select option from CHARACTERISTICS OF A MACHINING
OPERATION table:' OPARA

The user can select an option from the specified table and the associated action
text is taken as the input to the variable OPARA.

• LET OPARA (UPC OPARA) converts the input text to upper case.
• Then, there are IF ELSE_IF and END_IF statements to check the contents

of the variable OPARA, which can be one of five possible values. Depending
on its value, the appropriate data is written to the user table Op_Para.

• You notice the two DELETE_LTAB_ROW statements which you need to delete
the data left from the previous selection in rows 5 and 6 of the user table Op_
Para. Otherwise, this data will also be displayed in the display table Op_
Para.

• If OPARA contains none of the possible values, a message UNKNOWN OPTION
is displayed.

• END_IF marks the end of the IF statement.
• SHOW_TABLE ON 'Op_Para' displays the display table Op_Para.
• END_LOOP marks the end of the LOOP statement.
• END_DEFINE marks the end of the DEFINE statement.

Interacting with the User and Display Tables
You first have to run Creo Elements/Direct Drafting on your system. Then, before
you can interact with the user and display tables, you have to load their definitions
by entering the following commands at the keyboard in response to the ENTER
COMMAND prompt in Creo Elements/Direct Drafting:
INPUT 'utable21.mac' [Return]
UTABLE21 [Return]
INPUT 'dtable21.mac' [Return]
DTABLE21 [Return]
INPUT 'dtable2.mac' [Return]
DTABLE2 [Return]
INPUT 'utable2.mac' [Return]

The first four commands load the definition of the first user and display tables,
and the second three load that of the second display and user tables.
You can now run the user and display tables using the command:
UTABLE2 [Return]

234 Creo Elements/Direct Drafting Writing Macros

The macro program UTABLE2 first displays the Characteristics of a
Machining Operation table and the prompt Select option from
CHARACTERISTICS OF A MACHINING OPERATION table:. You can select
any of the five options in that table, and a second table is displayed to show the
options under the option selected.
Now, there are two display tables on the screen and the macro program loops back
to prompt for another input. You can try all five options and see how the second
display table changes its contents accordingly. You can also try an empty option,
and a message UNKNOWN OPTION is displayed.
You notice there is a text OFF on the upper-right-hand corner of the second
display table. If you select that, the second display is removed from the screen.
However, the macro program is still running and prompts for another input. If you
select an option from the first display table, the second display table appears again
with the appropriate contents as selected.
You also notice there is a text END on the upper-right-hand corner of the first
display table. If you select that, both the first and second display tables are
removed from the screen, and the macro program ends.

Comments
This example provides an indication of what you can do with logical and display
tables. You can take the idea further to develop more sophisticated display and
logical tables, and use more than two levels of tables.

Logical and Display Tables 235

Index

A
ABS function, 99
addition of vectors, 67
alpha terminal, 17
ANG function, 98
arrow key, 26

B
body, macro, 38
boolean expression
0, 50
1, 50
parentheses with, 50

Break key, 23
leave editor without saving, 19

C
C programming language, 46
case
lower, 36
upper, 36

CHANGE_TABLE_SIZE command,
213
CLOSE_FILE function, 85
color, 76
COLOR_LTAB command, 219
command
CHANGE_TABLE_SIZE, 213
COLOR_LTAB, 219
CONNECT_TABLE, 213
CREATE_LTAB, 220
DELETE_LTAB, 221
DELETE_LTAB_ROW, 222
DELETE_TABLE, 214

HIGHLIGHT_LTAB, 222
LTAB_COLUMNS, 196
LTAB_ROWS, 197
LTAB_TITLES, 197
MOVE_TABLE, 214
POP_DOWN_LTAB, 198
POP_UP_LTAB, 199
PRINT_TABLE, 215
READ_LTAB, 200
SAVE_LTAB, 201
SAVE_TABLE, 216
SCROLL_LTAB, 201
SECURE_LTAB, 223
SECURE_TABLE, 217
SELECT_FROM_LTAB, 202
SHOW_TABLE, 217
SORT_LTAB, 223
TABLE_COLUMN, 204
TABLE_LAYOUT, 207
TABLE_SCROLL_STEP, 218
TABLE_TITLE, 211
WRITE_LTAB, 224

commands
defining display table, 203
defining user table, 219
editor, 29
using display table, 211
using user table, 219
word processing, 25

comments
cannot be nested, 41
in macros, 40

compiling
macro, 20

concatenate strings, 40
concept

237

connecting display to logical table,
195

CONNECT_TABLE command, 213
connecting display to logical table
concept, 195

construction lines, macro, 104
control statements, 47
coordinates, 66
copying text, 28
CREATE_LTAB, 107
CREATE_LTAB command, 220
current environment, 61
current line, 29

D
data files, reading, 95
debugging a macro, 20
defensive programming, 56
defining display table
commands, 203

defining user table
commands, 219

definition, macro, 36
Delete key, 26
DELETE_LTAB command, 221
DELETE_LTAB_ROW command, 222
DELETE_MACRO, 20
DELETE_TABLE command, 214
descriptor, file, 83, 85
diagrams, syntax, 39
display table, 195, 203
components, 195
defining (example 1), 226
functions, 203
interacting with (example 1), 227
introduction, 193

DISPLAY_NO_WAIT function, 40
drawing, saving, 18

E
ECHO for creating macros, 111

ECHO function, 109-110
EDIT_FILE command, 19
EDIT_PORT command, 26
editing keys, 26
editor, 25
for writing macros, 25
keyword, 29
leave without saving, 19
marker, 29
string, 29

editor commands, 25, 29
Adjust Center, 30
Adjust Fill, 30
Adjust Justify, 30
Copy, 30
Delete, 30
Load, 30
Move, 30
Next, 31
Overwrite, 31
Replace, 31
Set Escape, 31
Set Left Margin, 32
Set Marker, 32
Set Right Margin, 32
Write, 32

efficient code, 57
END command, 76
and recursive loop, 52

End key, 26
END_DEFINE function, 38
end-of-file marker, 85
environment, current, 61
ESC key, leave editor without saving,
19
example 1
defining display table, 226
defining user table, 225
interacting with display table, 227
using logical and display table, 225

example 2

238 Creo Elements/Direct Drafting Writing Macros

defining first user and display tables,
229
defining second user and display
tables, 231
interacting with user and display
tables, 234
using logical and display table, 229

execution sequence, 47
expression
built-in, 58
parentheses with, 58

F
false, boolean expression, 50
file
descriptor, 83, 85
for storing macros, 19
opening, 83, 85
pointer, 85
storing macros, 19
writing to, 85

filename, same as macro name, 19
format
TABLE_COLUMN, 204
TABLE_LAYOUT, 207
TABLE_TITLE, 211

Fortran programming language, 92
functions
accessing logical table, 196
display table, 203
user table, 219

functions, in PL/I, Fortran, 92

G
GETENV function, 64
global variables, 40, 90

H
hatch patterns, 140
HELP_PORT command, 26

hidden lines, viewing, 107
HIGHLIGHT_LTAB command, 222
HL_INQ_Z_VALUE, 107
HL_INQ_Z_VALUE function, 64
Home key, 26

I
IF ... ELSE_IF ... ELSE ... END_IF
construct, 49
indentation, 56
defensive programming, 56

input
user, for macros, 37

INPUT command, 19-20, 38
INQ expression, 62
INQ_ELEM function, 63
INQ_ENV function, 62
Insert key, 26

K
keys, editing, 26
keywords
example, 82
upper case, 36

L
LEN function, 85
LET function, 40
parentheses with, 51

linefeed character, 82
linetype, 76
loading
macro, 20

LOCAL pseudo-command, 72
local variables, 37, 40, 45
logical and display table
using (example 1), 225
using (example 2), 229

logical and display tables, 192
logical table, 193

Index 239

access functions, 196
components, 193
introduction, 193

loop
recursive, in syntax diagram, 52

LOOP ... EXIT_IF ... END_LOOP
construct, 48
LOOP pseudo-command, 76
lower case, 36
LTAB_COLUMNS command, 196
LTAB_ROWS command, 197
LTAB_TITLES command, 197

M
macro
body, 38
comments in, 40
compiling, 20
consists of, 36
debugging, 20
definition, 36
expansion, 90
geometry, 71, 75
hidden lines, viewing, 107
indenting lines, 56
loading, 20
polygon, 106
running, 20
slot, 105
stopping, 23
storing, 19
substitution of in-line code, 90
using commands in, 58
what is it?, 18

macro examples
arrowhead, 72

macros
applications for, 18
nesting, 40, 90
separate files for, 19

markers

setting, 27
system-defined, 27

MOVE_TABLE command, 214

N
nested comments, 41
nested macros, 40

O
OPEN_INFILE function, 83
OPEN_OUTFILE function, 85

P
parameters, 37
passing to macro, 92

parentheses
using, 50
with boolean expressions, 58

Pascal programming language, 46
PL/I programming language, 92
PNT_RA function, 98
PNT_XYoperator, 66
point, definition, 66
pointer, file, 85
POP_DOWN_LTAB command, 198
POP_UP_LTAB command, 199
POS function, 85
PRINT_TABLE command, 215

R
READ function, 46, 72, 76
READ_FILE function, 85
READ_LTAB command, 200
readonly
SECURE_LTAB, 223

recording inputs, 109
recursive loop, in syntax diagram, 52
REPEAT ... UNTIL construct, 49
running a macro, 20

240 Creo Elements/Direct Drafting Writing Macros

S
save macro, Ctrl-D, 19
SAVE_LTAB command, 201
SAVE_TABLE command, 216
saving a drawing, 18
screening bad input, 57
SCROLL_LTAB command, 201
SECURE_LTAB command, 223
SECURE_TABLE command, 217
SELECT_FROM_LTAB command,
202
sequence of execution, 47
set marker command, 27
setting markers, 27
SHOW_TABLE command, 217
simple code
defensive programming, 56

single quotes
for strings, 36

SORT_LTAB command, 223
splitting a line, macro, 104
stopping a macro, 23
STORE command, 39
store macro, Ctrl-D, 19
storing a macro, 19
STR function, 40
string concatenation, 40
SUBSTR function, 85
subtraction of vectors, 69
syntax diagrams, 39
system array, 62

T
TABLE_COLUMN
format, 204

TABLE_COLUMN command, 204
TABLE_LAYOUT
format, 207

TABLE_LAYOUT command, 207
TABLE_SCROLL_STEP command,
218

TABLE_TITLE
format, 211

TABLE_TITLE command, 211
TECHO function, 109
title string, 193
token, parentheses with, 51
trace
file, 53
program, 52

true, boolean expression, 50

U
upper case, 36
user input, 37
user table, 193
defining (example 1), 225
functions, 219

using display table
commands, 211

using logical and display table
example 1, 225

using user table
commands, 219

V
VAL function, 99
variable
names, conflicting, 45
types, 46

variable names
defensive programming, 56

variables
global, 40, 90
local, 37, 40, 45

vectors, 67
addition, 67
subtraction, 69

vectors, for a spigot, 98

Index 241

W
WAIT function, 40
WHILE ... END_WHILE construct, 47
WRITE_FILE function, 85
WRITE_LTAB, 107
WRITE_LTAB command, 224

X
X_OF operator, 66

Y
Y_OF operator, 66

Z
Z-levels, viewing, 107

242 Creo Elements/Direct Drafting Writing Macros

	Preface
	What is a Macro?
	Why Use a Macro?
	Creating a File for Your Macros
	Storing Your Macro
	Deleting Your Macro
	Running Your Macro
	Running a Macro from the Command Line

	Debugging Your Macro
	Stopping a Macro

	Using the Editor to Write a Macro
	Using the Keyboard Editing Keys
	How to Enter and Leave the Editor
	Using EDIT_PORT to Enter the Editor Quickly
	How to Set and Use Markers
	Copying Text
	Using the Editor Commands
	Using EDIT_MACRO
	Using the INPUT Command with an Existing File
	Typing the Macro on the Command Line
	Comparison of EDIT_FILE and EDIT_MACRO

	Macro Basics
	What Does a Macro Consist Of?
	DEFINE
	Parameters
	Local Variables
	User Input
	Macro Body
	END_DEFINE
	INPUT

	Minimum Macros
	Syntax Diagrams
	Explaining Local Variables
	Why Use Local Variables?
	Do We Declare Variable Types?
	Using Control Statements
	WHILE ... END_WHILE
	LOOP ... EXIT_IF ... END_LOOP
	REPEAT ... UNTIL
	IF ... ELSE_IF ... ELSE ... END_IF

	Using Parentheses
	Boolean Expressions
	Arithmetic, Algebraic, and Trigonometric Expressions

	Using the Trace Facility
	Indenting the Lines of a Macro
	Defensive Programming
	Macro Commands
	Built-in Operations

	Inquiring about the Environment and Elements
	Using INQ_ENV
	Using INQ_ELEM
	Using GETENV
	Using Other Inquiries

	Quick Review of Points and Vectors
	Points
	Vectors
	Addition of Vectors
	Subtraction of Vectors

	Writing Geometry Macros
	The Arrowhead Macro
	Writing the Arrowhead Macro

	The Panel Macro
	Writing the Panel Macro

	File Input/Output and Text Strings
	What the Macro Will Do
	Analyzing the Macro
	Platform Dependencies

	Calling a Macro from within a Macro
	Passing Parameters to a Macro
	Platform Dependencies

	Using Dimensions Stored in a Data File
	What the Macro Will Do
	Describing the Spigot
	Vector Analysis
	Describing the Data File
	Analyzing the Macro
	Refining the Macro

	Useful Macros
	Drawing Construction Lines at Angles to Existing Lines
	Splitting a Line into Equal Segments
	Drawing a Round-Ended Slot
	Drawing Regular Polygons
	Fitting text around a circular object
	Showing the Different Z-Levels of a Hidden-Line Drawing

	Recording the System Operation
	The ECHO Function
	Using ECHO for Creating Macros

	Using the Interface to Find a Command
	What Command Will You Use?
	Screen Commands and Functions
	Summary

	Customizing
	What Is the Creo Elements/Direct Drafting Environment?
	Customizing the Creo Elements/Direct Drafting Environment
	How Screen Menus are Created
	Menu Variables
	Physical Layout of Menu Slots
	Using Tables for Screen Menus

	Customizing the Screen Menus
	Customizing for Local Directories
	Platform Dependencies
	Example—Create Your Own Directory Menu

	Customizing the Keyboard
	What is a Text Font?
	The System Fonts
	Example—Displaying the Characters in a Font

	How to Create a Text Font
	Storing your Fonts—ASCII Files and BINARY Files

	Customizing the Startup Procedure
	Platform Dependencies
	Customized Startup for the Whole Group
	Customized Startup for the Group and Individual Users
	Creating a Menu for Customized Startup

	Customizing the Hatch Patterns
	The Keyboard Input Characters
	The Keyboard Input Characters

	Brief Description of Commands and Functions
	Logical and Display Tables
	Index

