arbortext:

Programmer's Reference
8.2.2.0

Copyright © 2023 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

Copyright for PTC software products is with PTC Inc. and its subsidiary companies (collectively “PTC”), and
their respective licensors. This software is provided under written license or other agreement, contains
valuable trade secrets and proprietary information, and is protected by the copyright laws of the United States
and other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or
used in any manner not provided for in the applicable agreement except with written prior approval from
PTC. More information regarding third party copyrights and trademarks and a list of PTC’s registered
copyrights, trademarks, and patents can be viewed here: https://www.ptc.com/support/go/copyright-and-

trademarks

User and training guides and related documentation from PTC are also subject to the copyright laws of the
United States and other countries and are provided under a license agreement that restricts copying,
disclosure, and use of such documentation. PTC hereby grants to the licensed software user the right to make
copies of product documentation and guides in printed form, but only for internal/personal use and in
accordance with the license agreement under which the applicable software is licensed. Any copy made shall
include the PTC copyright notice and any other proprietary notice provided by PTC. Note that training
materials may not be copied without the express written consent of PTC. This documentation may not be
disclosed, transferred, modified, or reduced to any form, including electronic media, or transmitted or made
publicly available by any means without the prior written consent of PTC and no authorization is granted to

make copies for such purposes.
UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the

applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

https://www.ptc.com/support/go/copyright-and-trademarks
https://www.ptc.com/support/go/copyright-and-trademarks

Contents

F Y o To UL I a1 € TN T [S PSPPI 27
Getting Started ... 31
Supported Program and Script Languagescccoeuiiiiiiiiiiiieiie e 33
Arbortext Object Model (AOM) OVEIVIEWcccouuiiiiiiiiieeiii e 35
Introduction to the Arbortext Object Model (AOM)..........iviiiiiiiiiiiiiiieeei, 36
Introduction to the Document Object Model (DOM).........cooiviiiiiiiiiiiiiiiieceiin, 36
Using the DOM Support in AOMo 37
CUStomM ApPPLICAtIONS .. ceiee e 39
Overview of Custom Programs and ScriptScccooviiiiiiiiiiiiiiicce e 40
Description of the Custom Directory Structure ... 41
Using the Custom Directory for Custom Applicationscccoeeviiiiiiinennnn. 51
Description of the Application Directory Structureccoiviiiiiiiiiieenenn. 52
Using the Application Directory for Custom Applications............c...cccoevevvnnenann. 55
Deploying Zipped Customizationscoveuiiiiiiiiiii e 57
Specifying the JavaScript Interpreter Enginec.cooooeiiiiiiiiiiiiiieee 58
UsiNG the AOIM ... e 59
Using ACL With the AOM ..o 61
Using the Acl INterfaceoooiiuiiiiii e 62
Using Java to AcCeSS the AOMoouiiiiiiiii e 63
Java Interface OVEIVIEWuuiiiiiiiii e 64
JAVA ANA ACL ... 64
Java Virtual Machine (JVM) Managementcccooviiiiiiiiiiiiiie e 67
Accessing the Java Consoleccoouuiiiiiiiiiii e 68
AOM PaCKAGES......uuiiiiiii e 68
Compiling Your AOM Java Programcccouuiiiiiiiiinieiiii e 70
Using an IDE to create Your AOM Java Programccoeeiiiiiiiiiniiieeiineeees 70
Making Classes Available to the Embedded JVMcooiiiiiiiiiiiiiiins 71
Java Access 1o DOM EXENSIONS......cc.uuuiiiiiiiiieiiiii e 71
Java Interface EXCEPLiONScouui i 71
Accessing the Java CoNnsSOIEcoooiuiiiiiiii e 72
Debugging Java Applicationso 73
Sample Java Code........coouiii s 74
Using JavaScript to Access the AOMcooviiiiiiii i 75
JavaScript Interface OVErvieW............co.oiiiiiiiiiiii e 76
JavaScript @NA ACLooeii e 76
JavaScript LImitationsccooiiiiiii e 79

JavaScript Language EXIENSIONSoeiiiiiiiiiiiie e 80
JavaScript Global ObJECES.........uuuiiiiiiii e 82
Calling Java from JavaSCript........ccouuiiiieiii e 84
JavaScript Interface Error Handlingcooiiiiiiiiiiiii e 85
Specifying the Interpreter for .js Filescooiiiiiiiiiii e 86
Sample JavaScript Codecooiiiuiiiiii e 86
Using COM 1o AcCessS the AOMuuiiiiiii e 87
COM Interface OVEIVIEWcceeuiiiiieeie e e e 88
Registering and Unregistering Arbortext Editor as a COM Server..................... 89
Accessing COM Using JScript or VBSCrIpt.......coooviiiiiiiiii e 90
COM ODbjects and ACL ..o e 90
COM Error HandliNg........cceuueeieii e 91
SamMPIe COM COUEo 93
Using JScript to Access the AOMooiiiiiiiiii e 95
JScript Interface OVEIVIEWccooviiiiii e 96
JSCHPt WIth ACL ..o 96
JScript LIMItationScoovn i 98
AOM Interfaces Specific 10 JSCHPL........iiiiiiiiii e 99
JScript Global ObjJECESccvuiiiiiii 99
JScript Exception Handlingoooiiiiiiiiii e 99
Specifying the Interpreter for . s Files ... 100
Sample JSCriPt COUE. ... i e 100
Using VBScript to Access the AOM ..o 101
VBScript Interface OVerview ... 102
VBSCHPt and ACL ... 102
VBScript LImitationsoouei e 102
AOM Interfaces Specific to VBSCIPt........cooviii e 103
VBScript Global ObJECtScccuniiiiiii e 103
VBScript Error Handling........coou i 103
Sample VBSCript COOE.......ouueiiiiieie e 104
Programming and Scripting Techniquescooiiii e, 105
Overview of Programming and Scripting Techniquesccccooeiviiiiiinneeeennnnnn. 107
Basic Document Manipulation Using the DOM and AOMccccooiiiiiiieiinn, 109
OVEBIVIBW ...ttt et e e ettt e e e e ettt s e e e ettt e e e eett e e e e eetn s e eeeesbnaaaees 110
Opening, Closing, and Saving doCUmMeNtS............cccoeviiiieeiiiiieciie e, 110
Traversing a Document Using the DOM and AOMccoeeeiviiiiiiecciieeeenn. 111
INSEIING TeXE .. i 113
Using Range to Select and Delete Contentccovvviiiiiiiiii e, 114
Selecting, Copying, Moving Content............ccooevviiiiiiiiiiie e 116
Y= 3 £ N 119
L0 YT 11 120
Event Interfaces.......oooi i 120
Event Modules and DOMAINSc.uuviiiniiiiieieie e 122
Application-Dependent Featureso 125

4 Programmer's Reference

Notes and Limitationsouu i 126
EVENt HaNAIErS 126
Y=Y o A 1Y/ 0T PP 131
Working With Tablescouu e 155
Working with Tables OVerview...............oviiiiiiiiiii e 156
Example: Inserting and Modifyinga Table ... 157
Example: Inserting a Column Based on the Current Selection 158
Example: Identifying a Document Type's Table Model Support 160
Working with XSL CompoSitionc.cuuiiiiiiiiiic e 163
L@ YT 1 P 164
Related AOM Interfaces and Methodsccoiiiiiiiiiiiiii e, 164
Example: Composingan HTML Fileccoiiiiiiiiii e 165
Line Numbering in Arbortext Editor and Arbortext Publishing Engine 169
Line Numbering OVErvIEW.oooiuuiiiiii e 170
Applying Line NUMDEISiii e 170
Building a Basic Line Numbering Application.............cccoooiiiiiiiiiiin. 172
Line numbering application building reference...........ccccooooiiiiiiiiinnn. 173
INEEITACES ... e 183
g (=T = Lo T @ A=Y Yo N 185
W3C AbstractView interface ... 193
document attribute 194
ACHINTEITACE ... e 195
DOMDocument method...........oooiui i 196
(3017 (@15 031114 Lo T 196
Eval method ... 196
EXxecute Method..... oo 197
GetCMSODbject Methodiiiiiei e 197
GetCMSSeSSION METhOduiiiiii e 197
GetVar MEtNOMoooii e 198
GetWindow Method.........ooiiiiie e 198
SetVar Methodo 198
ActivexEventinterface...... ..o 199
initActivexEvent method ... 200
ADOoCUMENT INTEITACE ... i e 201
ATISelectionType enumerationooooiiiiii e 203
MarkupType enumerationoooouiiiiiii e 203
SaveFlags enumeration............c.ooiiiiiiii e 203
CloneFlags enNUMEration............ccuuuiieiiiiiii e e e 205
ModifyRefFlags enumerationcccoooiiiiiiiiii e 206
CMSObjects attributeooeiviiii 207
AClld attribDULE ... 207
directory attribute ... 207
insertionPoint attribute. ... 208

Contents 5

MarkupType attribUte...........cooei s 208
mModified attribULeoeiiiee 208
name attribUte. 208
optionNames attribute ... 209
properties attribute ... 209
selectionType attribute ... 209
tables attribute ... 209
tableSelection attributecooui i 209
textSelection attribute....... ..o 210
canRenameNode method...........cooouiiiiii i 210
cloneDocument Method........ ..o 210
ClOSE MELNOA ... e 211
editBegin Method ..o 212
editENd Method ... e 213
generateEntityName method ... 213
getElementsByAttribute method ... 214
getElementsByAttributeNS method ... 214
getOption Method ... e 215
modifyReferences method........ ..o 215
(1=Yo [0 300 0= 1 o o IR PPN 217
SAVE MELNOM. oo e 217
setOptioN MEthod............ooiiiii e 219
UNAO METNOA ..o 220
undoBoundary Methodoieiiiii s 220
UNdoClear Methodooiiiiiiiii e 220
ADocumentEntityEventinterface..............coooiiiiiiii 221
object attribute ... 222
relatedDocument attribute ..o 222
relatedNode attribute............ooi i 222
FesSUlt attribDULe ... 222
initADocumentEntityEvent method ... 222
ADocumentEventinterface............ooiiiii i 225
detail attribute 226
relatedDocument attribute ... 226
relatedWindow attribute ... 226
targetEncoding attributeo 226
targetURI attribute....... ..o 226
initADocumentEvent method............coiiiiii 227
ADOCUMENTTYPE INLEITACEceeveiieieeii e 229
doctypeName attribute ... 230
doctypeURI attributeoioiiii 230
tableModels attribute ..o 230
tableModelCells Methodc..iiiiiiiii e 230
tableModelRoOW Method ..o 231
tableModelSupport method...... ..o 231
tableModelTables Methodcooviiiiiiiii e 232

Programmer's Reference

tableModelTableTitle method ..., 232
tableModelTags method ... 233
tableModelWrappers method ..o 233
AEdIEVENE INTEITACEeeeeie e 235
bufferName attribute ... 236
detail attribULeo 236
relatedRange attribute............ooo 236
INITAEdItEVENt Methodoeee e 236
AEIEMENT INTEITACE . ..oiieeieeee e 239
ATIContentType enumeration............cc.iviiiiiiiii e 240
tableCell attribULEeeeii e 240
tableColumn attributecooouiiii 240
tableGrid attribUuteccoviiii e 241
tableRow attribute ..., 241
tableRule attribute..........coiiii 241
tableSet attribULE..... ... 241
tagContentType attributeocooviiii i 241
getElementsByAttribute method ... 242
getElementsByAttributeNS methodcccooiiiiiiiii e, 242
getinternalAttribute method..............ooiii i 243
getinternalAttributes method ... 243
isTableMarkup methodooiiiii e 243
removelnternalAttribute methodcooiiiiii 244
setinternalAttribute method ..., 244
AEVENTINIEITACE 245
EventDomain enumerationooouiiiiiiiiii e 246
EventModule enumerationcoooiiiiiiiiii e 246
domain attribute ..., 247
moduleType attribute......... ..o 248
ANOAE INTEITACE.. ... it e 249
ATIElementAttributeSelector enumeration...............coooooviiiiiiiiiiii e 250
CMSODbject attribute........cooeueiii 250
contentModel attribute............coooo i, 250
dialog attribute 251
enclosingCell attribute ... 251
enclosingCMSODbject attribute...........ciiiiiii 251
firstOID @ttriDULE......cee e 251
[oToT aTR=1 1151 01U | (=N 252
ICON2 AttHDULE ... 255
1aStOID attribULE......ce e 258
tableNoDelete attribute............ccooooeieii 258
tableObject attribute ... 258
userDataKeys attribute ... 258
COllAPSE MELNOA. ... e 259
contextPath method ..., 259
Contents 7

distanceTo MEthOd.......... i e 259
eXPaNd METNOM ... oo e 260
getGraphicPath method.............oooiiiii e 260
insertTable Method.............oo e 261
setCMSObject Methodcoouiiii e 262
AOMEXCEPLioN EXCEPLION ... 263
AOMODJECE INTEITACE. ...t e e e e eeaeas 265
ObjectType enumerationoooouiiiiiii e 266
objectType attribute..........coooii i 267
ApPlIication INtErfaceooiiiiiiie e 269
LoadFlags enuUmMErationccouiiiiiii e e e 271
MessageBoxFlags enumerationcoooiiiiiiiii 273
OptioNnScope enNUMEratioNc.uuiiiiiiiiii i e 274
= Lo 1= 1141 o 10 - 274
activeDocument attribute ... 274
activeSession attribute ... 275
activeWindow attribute ... 275
adapterQNames attribute ... 275
customProperties attribute ... 275
documents attribute...... ... 276
domimplementation attribute. ... 276
event attribute 276
haveWindows attribute ... 276
initDoNne attribute.o 276
ISES attribute ... 277
lastErrorDetail attribute....... ... 277
name attribute. 277
optionNames attribute ... 277
path attribute ... 278
userProperties attribute ... 278
alertMethod ... 278
CONFIrM MELhOd ... o 278
constructObject Method..............coiiiiiiiii e 279
createComposer Methodoooiiiiiiii i 279
createDialogFromDocument method ..o 280
createDialogFromFile method...........coooniiii i 280
createEvent method ... 280
createPropertyMap methodoooiiiii i 281
createScriptContext Method............coooiiiiiiii 281
createStringList Method...........oooiii i 282
createTableObjectStore methodc.oiiiiii i 282
createTableTilePlex method............ooiiiii e 282
createWindow method. 283
1= 5o 0 1 T=1 10 o T 288
getAdapter method ... 288
getCustomDirectory method ... 288

Programmer's Reference

getlocale Methodcoviinii e 289
getLocalizedMessage method............cc.iiiiiiiiiiiiii e 290
getoption Method ... 291
getOptionScope Methodooouiiiiii e 291
getScriptContext methodooooiiii i 291
logicalldEXists Method..........couiiiii e 292
logicalldToSession Methodcooiuuiiiii e 292
MessageBoX MEthOd. 292
openDocument Methodoiiiiii e 294
PNt MEthOd ... e 295
Prompt MEthOdcooii e 296
QUItMELNOMA ..o e 296
registerlOAdapter method ... 297

0] N 971 1 Vo o N 297
setOption Method...........oo e 297
ApplicationEvent iNterfacecouiiiiiiiii e 299
detail attribute ... 300
initApplicationEvent method............ccooiiii 300
ARANGE INTEITACE ... i e 301
MarkupFlags enumerationccouiiiiiiiiiie e 303
allowedInsertElements attributeccooooiiiiii i 303
allowedSurroundElements attributeccoooiiiiiiiii 304
contextString attribute ... 304
eNdOID attribUL ...ceeeeee e e 304
endPos attribute. ... 304
StartOID attribuleeeeee e 305
canlnsertNode Method e 305
canlnsertNodeWithFixup method ..o 305
insertNodeWithFixup method 306
insertParsedString Method 306
toMarkupString Method ..o 307
toMarkupStringEx method ... 307
L O N 11 01 (=Y 7= Vo TN 309
ISIA @tFIDULE ... 31
name attribute. 312
ownerElement attribute..... ... 312
schemaTypelnfo attributecoooiiiiii e, 312
specified attribute. ... 312
value attribute 313
W3C CDATASECHON iNterfaCe........c.viieiiiie e 315
W3C CharacterData interface ... 317
data attribute ... 318
length attribute..... ... 318
appendData MethOd..........oouiiiie e 318
deleteData method............oo i 319
Contents 9

insertData Method.............. i 319
replaceData method...........ooouiiiiii e 320
substringData method ... 320
W3C CharacterDataEditVAL interface ... 323
canAppendData method....... oo e 324
canDeleteData method..........oooo i 324
caninsertData methodo e 324
canReplaceData method ... 325
canSetDatamethod ... 325
isWhitespaceOnly method ... 325
CMSAdapter iNtEIfaCE........ccovei i 327
aclld attribULE ... 328
name attribute. 328
qualifiedName attribute..............cooeiiiii e 328
valid attribute ... 328
conNNECt MEhOd ... 328
createEvent method ... 329
getUserData method ... 330
hasFeature method 330
setOldUserData methodcooviiiiiiiii e 330
setUserData methodcoooeiiiii e 331
CMSAdapterConnectEvent interface...........oooviuii i 333
initCMSAdapterConnectEvent method ..., 334
CMSAdapterDisconnectEventinterface............ooooiiiiiii i 335
currentUser attribute ... 336
initCMSAdapterDisconnectEvent methodcccooeiiiiiiiiii e, 336
CMSBrowseltem iNterfaCecocvuiiiii e 337
CMSItemType enuMErationcoooiiiiiiiiiiiiiii e 338
CMSLockStatus enumerationoccueiiiiiiiiiie e 338
applyOverlay attribute ... 339
displaylcon attribute 339
fullPath attribute. e 339
itemType attribute ... 340
lockStatus attribute ..o 340
logicalld attribute.........oouuii 340
name attribute. 340
revision attribute ... 340
CMSBrowselterator interface............coooviiiiiii i 343
getNext method 344
hasNext Method....... ... 344
CMSEXCEPLION €XCEPLION ...ceuiieieiii et 345
CMSEXxceptionCode enuUMErationoceeuuiiiieiiiiiiieeeiiii e 346
CMSODbJECt INTEITACE ... ceeeiii e 351
CMSSaveFlags enumeration ... 353

Programmer's Reference

Contents

CMSLockFlags enumeration.............ccoiiueeiiiiiiiii e 353
CMSObjectClassType enumeration............ccceuiieeiiiiiieeeiiii e 353
CMSObjectLockStatusType enumeration.............cccoeeviveeiiiieiiie e 354
CMSBurstFlags enumerationocouiiiiiiiiiiie e 354
ACHd AttriDULE ... 355
allReferences attributec.ooviiiiieii 355
cmsObjectType attribute ... 355
cmsPathName attribute ... 356
comment attribute ... 356
contentType attribute...... ... 356
creationDate attributeooeniei 357
enclosingObject attributeoi i 357
encoding attribULe ..o 357
eNd attriDULE ...cveieee e 358
fullTextindexed attribute.............ooiieii e 358
hasChildRefs attribute ..o 359
instanceDoctypeName attribute ..o 359
iISFolder attributeoouiiii e 359
isLatestVersion attribute ... 360
isVirtualDocContainer attribute.............ccooiiiiiii 360
lockable attribute. ..o 360
lockOWNeEr attribUtecovniieii s 361
lockStatus attribute ... 361
lockStatusDisplay attribute...............ooiiiiii 361
logicalld attribute.o 362
modificationDate attributecooviiviiiii s 362
modified attribULeccoveiii 362
name attribute. ... 362
objectClass attribute...........ooooiiiii 363
permission attribute............ooo i 363
POId @tIFIDULE. ... e 363
publicld attribute ... 364
readOnly attribute ... 364
SESSION AIHDULE......cei e 364
SIZE AttrIDULE ... 365
start attribULeoeeee 365
systemld attribute........ ..o 365
tagName attributeo 366
Valid @ttHDULE ...eece e 366
VErsioN attribULeo 366
bUrSt MEthOdo 367
cancelCheckout method ..., 367
checkin Methodcooiei e 367
checkoUut Method ..o 368
createEvent Methodoovieii e 368
deleteObject Methodcoouiii e 369
getAttribute method...... ... 369

11

getAttributes Method ... 370
getChildren MethOd........couuuiiiii e 370
getParents Method. 370
getUserData method ... 371
getVersions Method ... 371
invokeExtension method.............ooi 371
MOVE MELNOM. it aaas 372
releaseReference method ..o 372
SAVE MELNOM.o 372
setAttribute method ..., 373
setAttributes methodo, 373
setOldUserData methodovviiiiiiii e 374
setUserDatamethod ... 375
CMSODbjectEVeNnt INtEIfaCeceiiiiieiiie e 377
end attribULe ... 378
errorCode attribUteccovviii i 378
errorMessage attribute ... 378
flags attribULecovnii s 378
resUlt attribUte........ o 378
Start attribute ... 379
iNitCMSObjectEvent methodccoooiiiiii i, 379
CMSODbjectList iNterface..........oooieuuiiie e 381
length attribute ... 382
M MELNOM ..o 382
releaseReferences method ..o 382
CMSSESSION INTEITACE. 383
CMSBurstBoundaryType enumeration............cc.oveiuuiiieineiiieeee e 385
CMSBuUrstPolicy enumerationcoeiiiiiiiiiie e 385
CMSCreateFlags enumerationc.oiiiiiiiiiii e 385
CMSOperationEnabledType enumeration...............ccccoveeeiiiiiiiiie i, 386
CMSSessBurstFlags enumeration............cooeviiiiieiiiiinieee e 386
ACHd AttribDULE ... 387
adapter attribute.... ... 387
burstPolicy attribute............ooo i 388
burstUserOverride attribute..............cccoooiiiii 388
connected attribULeooou i 388
currentUser attribute ... 389
defaultFolder attribute ..o 389
fullTextSearch attribute ..o 389
objectReuse attribute ... 390
sessionToken attribute............ooii i 390
burstDocument Methodo 390
clearBurstConfig method ..o 392
createEvent method ... 392
createFoldermethod ... 393
createNewObject method ... 393

Programmer's Reference

createObjectFromSubtree methodcoooiiiii i, 394
disconnect Methodoviiii e 395
getAttribute method..........ooo i 395
getBurstBoundaryType method ... 396
getDefaultCreatelnfo methodoooiiiiiii i 396
getFile MethOd.o 397
getFileMappingEntry method ... 398
getGraphicCreatelnfo method ..., 398
getRangeCreatelnfo method..........ccoooii i, 399
getUserData method ... 400
iNVOKEEXIeNSION MEthOd. e 401
logicalldToPoid Methodiiiiiii e 401
ObjeCtEXiSts Methodcooviiii 402
poidToLogicalld method............oooiiiii e 402
putFile method........ ..o 402
refreshObjectStatus method ..., 403
SEArCh MEthOd e 404
setAttribute method 404
setFileMappingEntry method ... 404
setOldUserData Methoduuiiiiiiiiieeei e 405
setUserData method ... 406
verifyOperationEnabledInCurrentState methodcccoocoiiiiiiiiinnn. 407
CMSSessionBurstDocumentEvent interfaceccoooeeiviiiiiiiiiiiii e, 409
canOverride attribUute.............i i 410
document attribute 410
errorCode attribULEiii e 410
errorMessage attribute 410
flags attribULeooee 411
folderLogicalld attribute ... 411
topLevelName attribute ... 411
initCMSSessionBurstDocumentEvent method...............cooooiiiii i, 411
CMSSessionConstructEvent interface.............coooiiiii e 413
errorCode attribute ... e 414
errorMessage attribute ... 414
result attribute 414
initCMSSessionConstructEvent methodccooooiiiiiiiiii 414
CMSSessionCreateEvent interface..........cooovveviiiiiiiiiiiee e 417
eNd attriDULE ... 418
errorCode attribULEiii e 418
errorMessage attribute ... 418
flags attributeoooee 418
folderLogicalld attribute ... 418
NAME AtNDULE. ... 419
ObjType attribute ... 419
resUlt attribUuLe 419
start attribULeceee 419
Contents 13

14

version attribute ... 419
initCMSSessionCreateEvent method.............c.ocoiiiiiiiii i 420
CMSSessionDisconnectEvent interface............cooooviiiii i 423
currentUser attribute ... 424
initCMSSessionDisconnectEvent method ... 424
CMSSessionFileEvent interface......... ..o 425
errorCode attribute ... 426
errorMessage attribute ... 426
folderLogicalld attributeiiiiiiiii e 426
localPath attribute ... 426
logicalld attribUte. 426
notation attribute ... 427
objectName attribute ... 427
FeSUlt attribDULE 427
initCMSSessionFileEvent method ..o 427
W3C Comment iNterfaCeoveeeiieiee e 429
ComponentinterfaCe.coouniii s 431
ComponentType enuUMErationoooiui i 432
componentType attributeo 432
firstChild attribute e 432
[astChild attribute ... 432
nextSibling attribute.............o 433
ownerWindow attribute 433
parentComponent attribute ... 433
previousSibling attributeccooiii i 433
textattribute ... 433
appendChild Methodcooouiiiiii e 434
insertBefore Method ... 434
isSameComponent Methodccoooviiiiiii i 435
removeChild method ... 435
replaceChild methodoiiiiiiii e 436
(070] 10T oo 1-T=T a1 1 (=1 o = Vo7 X 437
getDefaultParameters method ..., 438
getParamDocumentation method ..., 438
getParamEnumerationValues method ..., 438
getParamLabel method ... 438
getParamType method ... 439
isParamRequired methodo 439
runPipeline method ... 439
ControlEVENt INTEITACE.cceeei i 441
initControlEvent Methodcooiiiiii e 442
Dialog iNtEIrfACEcieeieieee s 443
dialogView attribute.......... ... 444
W3C Document interfaceoooeeiiiiiie e 445

Programmer's Reference

doctype attribUute 447
documentElement attribute ... 447
documentURI attribute ... 447
domConfig attributecouueii 448
implementation attribute ... 448
iNnputEncoding attribute............coouni i 448
strictErrorChecking attribute. ... 449
XMIENcoding attribute...........viiii 449
xmlStandalone attribute........ ..o 449
XmIVersion attribute..... ..o 450
adoptNode Methodooe e 451
createAttribute Method ... 453
createAttributeNS method ... 453
createCDATASection method.coouiiiii e 454
createComment method ... 454
createDocumentFragment method ... 455
createElementmethod ... 455
createElementNS method............oooi i 456
createEntityReference method ... 456
createProcessinglnstruction method.............ooooii i 457
createTextNode method ... 458
getElementByld method ... 458
getElementsByTagName method ..o 458
getElementsByTagNameNS methodccooooiiiiiiiiiiie i, 459
importNode method............o i 459
normalizeDocument method ... 461
renameNode MEthOd.o 462
W3C DocumentEditVAL interface...........ovveeiiiii e 465
continuousValidityChecking attributec.oiii 466
getDefinedElements method...........cooiiiiiii e 466
validateDocument method ... 466
W3C DocumentEventinterface...........cooooiii i 469
createEventmethod ... 470
W3C DocumentFragment interfaceoviviiiiiiiie e 471
W3C DocumentRange interface............ovoiiiiiiiiiiiii e 473
createRange mMethod......... ... 474
W3C DocumentType iNterfacecoouuuiiiiiiiiii e 475
entities attribute 476
internalSubset attribute.............cooi 476
name attribute. 476
notations attribute ... 477
publicld attribute ... 477
systemld attribute. 477
W3C DocumentView interfacec.uiviiiiiiiiiiici e 479
defaultView attribute...........cooooiii 480

Contents 15

16

W3C DOMConfiguration interfaceuviiiiiiiiie e 481
canSetParameter method ..o, 488
getParameter method...........coooiiii i 488
setParameter method ... 489

W3C DOMEXCEePtion €XCePHIONccunieei e 491
ExceptionCode enumeration..............oooeiiiiiii i 492

W3C DOMImplementation interface...............coeeiiiiiiiiiiiie e 495
createDocument method ..., 496
createDocumentType method ... 496
getFeature method....... ... 497
hasFeature method ... 498

W3C DOMStringList iNterfacecc.uviiviiiiiii e 501
length attribUuteo 502
containS MEthOd ... 502
HEM METNOA ... 502

W3C Element interfaceoouieieiiie e 503
schemaTypelnfo attribute ... 505
tagName attribute ... 505
getAttribute method...........o 505
getAttributeNS method ... 506
getAttributeNode method............oooi 506
getAttributeNodeNS method ... 506
getElementsByTagName method ... 507
getElementsByTagNameNS method ..., 507
hasAttribute Method ... 507
hasAttributeNS method ... 508
removeAttribute Method ... 508
removeAttributeNS method..........c.oooiiii i 508
removeAttributeNode method ... 509
setAttribute Method ... 509
setAttributeNS method ... 510
setAttributeNode Method ... 511
setAttributeNodeNS methodcooeiiiiiii 511
setldAttribute method ... 512
setldAttributeNS Method..........coviiei e, 513
setldAttributeNode method ..., 513

W3C ElementEditVAL iNterface.........ccoiviiiiie e 515
ContentTypeVAL enumerationoooiiiiiiiiiiiiiei e 517
allowedAttributes attribute ..., 517
allowedChildren attributeooeieiii e 518
allowedFirstChildren attribute..............cooiiii 518
allowedNextSiblings attribute ... 518
allowedParents attribute ..., 518
allowedPreviousSiblings attributec.oooi i, 519
contentType attribute. 519

Programmer's Reference

requiredAttributes attribute............coooi i 519
canRemoveAttribute method..............coi 519
canRemoveAttributeNS method ..o, 519
canRemoveAttributeNode method..............ccooiii i, 520
canSetAttribute method ... 520
canSetAttributeNS method ... 520
canSetAttributeNode method ... 521
canSetTextContent method............coiiiiiii e 521
isElementDefined method...........ooeniinii e 521
isElementDefinedNS methodooniiniiiii e 522
W3C Entity interface 523
inputEncoding attribute ... 525
notationName attribute ... 525
publicld attribute ... 525
systemld attribute. 525
xmMIEncoding attribute..........ooooniii 526
xmiVersion attribute. ..., 526
W3C EntityReference interface............oiviiiiiiiiiiiii e 527
W3C EVENtINEITACE ... e 529
PhaseType enumeration.......... ..o 530
bubbles attribute ... 530
cancelable attribUteoouiei 530
currentTarget attribute ... 530
eventPhase attribute ..., 531
target attribute ... 531
timeStamp attribute ... 531
type attribute. ... 531
INIEEVENt Method ... e 531
preventDefault method ... 532
stopPropagation method............c.ooiii i 533
W3C EventEXception eXCeptionccovuiiiiiiiii e 535
EventExceptionCode enumerationcooooiiiiiiiieiiiiiin e 536
W3C EventListener interfaceooooeiiiiii e 537
handleEvent Methodoooeiii e 538
W3C EventTargetinterface...... ... e 539
addEventListener method............oooieiii 540
dispatchEvent method............oooiii i 540
removeEventListener method ..o 541
W3C EXCeptioNnVAL €XCEPLIONciieiiiiiiiie et e s 543
ExceptionVALCode enumeration..............uuiiiiiiiiini i 544
Y T 0] = =TT 0] (=] = (o = N 545
Lo 18 471 (o T 546
MeENUEVENT INTEITACEieeie e 549
initMenuEvent method...........oooiii 550

Contents 17

MeENUIEM INtEITACEcve i 551
checked attribute ... 552
enabled attribute ..., 552

W3C MoUSEEVENt INTEITACEceeeeeeeeeee e 553
altKey attribute. 554
button attribute. ... 554
clientX attributeoovii 554
clientY attribute ... 554
ctriKey attribute. 554
metaKey attribute............oooi 555
relatedTarget attributeo 555
screenX attribUte 555
SCreenY attribULE 555
shiftKey attribute ... 556
initMouseEvent method ... 556

W3C MutationEvent INterfaceo.uvveieiii e 559
AttrChangeType enumMErationooiiiiiiiiii i 560
attrChange attribute ... 560
attrName attribute ..., 560
NEewValue attribute ..o 560
prevValue attribute ... 561
relatedNode attribute...... ... 561
initMutationEvent method ... 561

W3C NamedNodeMap interfacecoooouiiiiiii e 563
length attribute ... 564
getNamedItem Methodcoooviiiiiii e 564
getNamedItemNS method ... 564
M METNOA ..o 564
removeNamedltem method ... 565
removeNamedlitemNS method............ccooiiiiiii e 565
setNamedlitem method ..., 566
setNameditemNS method ..., 566

W3C NameList iNterfaceocouiiiiiii e 569
length attribute ... 570
CoNtaiNS MEhOdoviei e 570
coNtaiNnSNS MEthOd 570
getName MEthOdcooiiiiiii e 570
getNamespaceURI method............ooooiiiiii e 571

W3C NOAE INTEITACE.o 573
NOdeType ENUMETALIONcouuuiiiiiiii e 576
DocumentPosition enumerationccooiiiiiii i 577
attributes attribute ..., 578
baseURI attribute ... 578
childNodes attribute ... 579
firstChild attributeceeeee e 579

Programmer's Reference

[astChild attribute ... 579
localName attribute ... 579
namespaceURI attribute ... 580
NextSIbling attribute............oooi i 580
nodeName attribute............cooi i 580
nodeType attribute ... 580
nodeValue attributeooviiiii e 581
ownerDocument attribute............coo e 581
parentNode attribute ... 581
prefix attribute 582
previousSibling attributeo 582
textContent attribute ... 583
appendChild Mmethod ... e 584
cloneNode MEthOd e 584
compareDocumentPosition method.............coooi i 585
getFeature method............o e 585
getUserData method ... 586
hasAttributes method ... 586
hasChildNodes Method ... 587
insertBefore Method ... 587
isDefaultNamespace method ... 587
iISEquaINOdE MeEthOd........couiii s 588
isSameNode Method...........oo i 589
isSupported Methodcoooiiii 589
lookupNamespacePrefix method...............coooi i 590
lookupNamespaceURI methodccooiiiiiiiiii e 590
[0OKUPPrefix Methodiiiii e 590
normalize Methodooe i 591
removeChild Methodcoooiiii e 591
replaceChild methodooiiiiiiii e 591
setUserDatamethod ... 592
W3C NOdeEditVAL INterfaCe........coeeieie e 593
validationState enumeration.............ocooi i 594
validationType enumerationcoii i 594
defaultValue attribute.............oo i 594
enumeratedValues attribute ..., 595
canAppendChild Method ... 595
caninsertBefore method ... 595
canRemoveChild method ... 596
canReplaceChild method..............oooiii 596
nodeValidity method ..o 596
W3C NOodeList iNterfacecccuuiiiiiieiiii e 597
length attribute ... 598
ITEM MELNOA ... e e 598
W3C NOotation interfaceooouuiiiie e e 599
publicld attribute ... 600

Contents 19

systemid attribute. ... 600
W3C Processinglnstruction interface.............cooooiiiiiiiii e 601
data attribute ... e 602
target attribute ... 602
PropertyMap interface....... .o 603
DataType enumerationcooouiiiiiiii e 604
keys attribute ... 604
modified attribute ... 604
containsKey Method.............ooiii i 604
getDataType method e 605
getNumbermethod ... 605
getString MEthodoouuiii 605
getStringList method ... 606
PUINUMbBEr Method ... e 606
PUESIANG METhOd ... 606
PUtStringList Methodcoouiiiii 606
remMOVE METNOM. e e 607
W3C Range iNterface...........v oo e 609
CompareHow enumerationoooi i 610
collapsed attributecoiii e 610
commonAncestorContainer attribute ... 610
endContainer attributeoooiu i 611
endOffset attribute ... 611
startContainer attributeo 611
startOffset attribute..........c.oooiii i, 611
cloneContents Methodoooiiii e 612
cloneRange Method ..o e 612
collapse MEthOd.o 612
compareBoundaryPoints method ... 613
deleteContents Methodccoooiiiiiii e 613
detachmethod.........coooii 614
extractContents method ..., 614
insertNode Method.............ooiiii s 614
selectNOde MEthOdcoeii e 615
selectNodeContents method................cooiiiii i 616
SEtENAd MEhOd ... 616
SetENdAFtEr methodooviiiiii e 617
setEndBefore method...........oooviiiiiiiiiii 618
SetStart MELhOd ... 618
setStartAfter Methodoooeeii 619
setStartBefore method ... 620
surroundContents method ..o 620
tOStHNG MEthOd .. .o e 621
W3C RangeException eXCeption...........oi i 623
RangeExceptionCode enumerationooooeuiiiiiiiiiinic e 624

Programmer's Reference

ScriptContext INterface..........coooouii i 625
SCHPITYPE €NUMETALION ...cieeiiii e 626
addTypeLibFlags enumerationccoouiviiiiiiiiie e 626
addNamedlitem method ... 626
addTypeLib MethOd..........ii e 627
loadScriptFile Method. ... 627
loadScriptText Method....... ... 627
terminate Method e 628

StringListinterface ... 629
length attribute ... 630
APPENA MELNOM. ... e e 630
IteM MELhOd ... e 630
setltem Methodo 630

TableCell INTEITACE it 633
cellAbove attribUuteoiii e 635
cellBelow attribute ..o 635
cellLeft attribute ..o 635
cellRight attributecooniii e 635
column attribULe ..o 635
contents attribute ... 636
MUItiCEll @ttribULEcee e 636
onBottomMulticellEdge attribute..............oooiiiiiiii 636
onLeftMulticellEdge attribute..........coooiiii 636
onRightMulticellEdge attribute............ccoooiiiiii e, 636
onTopMulticellEdge attribute ... 637
0TV = 11141 o 1) - N 637
ruleAbove attributeo 637
ruleBelow attribute ... 637
ruleLeft attribute...... .o 637
ruleRight attribute. 637
spanned attribute 638
spanning attribute 638
deleteFontPImethod...... ..o 638
fiNdFONtPI Method. e 638
inSameColumn Method 639
INSAMEROW METhOdoi i 639
instantiate Method....... ..o 639
isSAdjacent Methodcoouii 640
nextGalleyCell Methodouiiiiiii e 640
previousGalleyCell methodccoooviiiiiii e, 640
rectangle MethOd e 640
SPAN METNOA. ... o 641
UNSPAN MELNOA oo 641

TableColumn iNtEITACEcee e e 643
bottomCell attributeo 644
cellCount @ttribULE e 644

Contents 21

Cells AttribULE ... 644
columnLeft attribute...........oieie 644
columnRight attribute ... 644
first @trIDULE ..oveeeeee s 645
INdeX attribute 645
[aSt AtNIDULE ... 645
ruleAbove attribUteovie 645
ruleBelow attribute ... 645
rulesLeft attributeooviiei 646
rulesRight attribute ... 646
suppressed attribute. 646
topCell attribULe ... 646
CellMETNOG. .. e 646
TableEXxception eXCePlioN.........cciu i 649
TableExceptionCode enumeration.............ccoeiiiiiiiiiiicie e 650
LE=1 o) (=Y €T BT 01 (=T 7= (7= 651
Cells attribute ... 652
columnCount attributecoieiei 652
columns attribute ... 652
firstGalleyCell attributeiiiiiii e 652
gridAbove attribute...... ..o 652
gridBelow attribute ..o 653
INAEX AttHDULE ... 653
lastGalleyCell attributeoooiiiiii 653
FOWCOUNt AttHDULE.ce e 653
FOWS AttHDULEee e e 653
rules attribUte.........oo e 654
addColumn MELhOd..... ..o 654
AddROW MELhOQ. 654
CeIIMETNOG. .. e 655
COlUMN MELNOA e 655
deleteColumn method ... 655
deleteRowW Methodo 656
hlineRuleList Method........ ... e 656
insertColumns Method ... 656
insertROWS Method ... 657
FOW METNOM ..o e, 657
FUIE METNOA ..o e 658
SPHEMELNOA. 658
viineRUIELIStMEthod, 659
TableMUICEll INtEITACE 661
spanningCell attribute............coooiiiiii 662
TableObject INtErfacev i 663
TYPE ENUMETAtION ...cuiiiiiiii e e 664
Direction enUMErationoiuiiiii i 664

Programmer's Reference

ExamineWhatColspec enumeration...............cccoeiiiiiiiiiiii i 665
Orientation eNUMErationcouiiiiiiii e 665
document attribute 665
elementattribute 665
grid attribULE ... e 666
modifiable attribute............ccoooi i 666
Setattribute ... 666
tableModel attribute............ooo i 666
toid attribute ... 666
type attribute.o 667
clearAttributes method ... 667
deleteAttribute method ... 667
deletePrivateColspecs method.......... ..o 667
deleteSpanspecs method ... 668
getAttribute Method............uiiiii 668
minimizeAttributes method...............oi 668
renameColspec Method ... 669
renameColumns MEthod ..o 669
renameSpanspeCc Method. ..o 670
setAttribute method ..., 670
TableObjectStore INterfacecoouiiiiiii i 671
length attribUteo 672
addObject Method........ccoouuiii e 672
deleteObject MEthOdcoovniii i 672
fiNdObject MEthOd........coeei e 672
M MELNOM ... s 672
multicellFilter methodooi i 673
TableRectangle interface...... ..o 675
Cells @ttribULe ... e 676
cellsSAbove attribute...... ... 676
cellsBelow attribute ... 676
cellsLeftattribute.........ooooiii 676
cellsOnBottomEdge attribute ..o 676
cellsOnLeftEdge attributecooviiiiiiiii e 677
cellsOnRightEdge attribute ..o 677
cellsOnTopEdge attribute............ccoooviiiiiii e, 677
cellsRight attribute ... 677
height attribute..... ... 677
lowerLeft attribute ... 678
lowerRight attribute ... 678
rulesAbove attribute ... 678
rulesBelow attribute...... ... 678
rulesLeft attribute ... 678
rulesRight attribute..........oouii s 679
upperLeft attribute. ... 679
upperRight attribute............ooo i 679
Contents 23

Valid attriibULe ... 679
WIAth @trDULE ... 679
copyRectangle method..........coouiiiii i 680
SPAN METNOM. ...t e 680
TablEROW INTEITACEoeeeeieeee e 681
cellCount attribUecveieieeee e 682
Cells AttriDULE ... 682
first @ttrDULE ..oeeeeeeeee s 682
INdeX attribULEo 682
last @ttiDULE 682
[eftCell attribute. ..o 683
rightCell attribute.... ... 683
FOWADOVE attribULe 683
rowBelow attribute ... 683
ruleLeft attribute..... ... 683
ruleRight attribute...........ccoo i 684
rulesAbove attribute ..o 684
rulesBelow attribute............cooiiiiii 684
suppressed attribUte..........coiiiii 684
CellMETNOd 684
TabIERUIE INEITACEce i 687
cellAbove attributeo 688
CellBElOW attribUte........cvieeee e 688
CellLeft attribDULEoeieiie e 688
cellRight attribute ... 688
endColumnindex attribute...........oovieiii 688
endRowIndex attribute ..o 689
orientation attribute ..o 689
ruleAbove attribute....... ..o 689
ruleBelow attributeoovieie 689
ruleLeft attribute..... ..o 689
ruleRight attribute..... ... 690
startColumnindex attribute.............cooeiiiii 690
startRowlIndex attribute...........cooiiiiii 690
suppressed attribute............ooiiiiii 690
TableSet INtEITACEve i 691
gridCount attribute ... 692
grids attribULe....... o 692
markupRange attribute ... 692
title AttriDULE. ... 692
F=To [0 L€ To I g <Y i Vo Lo [692
deleteGrid MEethOd 693
deleteTitle MEtNOA...... ... 693
Grid MELNOA ... 694
INSErtGrid MEthOdcoviiie e 694

Programmer's Reference

TableTilePIEX INTEITACEucvvei e 695
empty attribute ... 696
pasteRectangle attribute. ... 696
Valid attribULE ... 696
addObject Method...........cooiiii 696
addRectangle Method ... 697
(o 1= = Tl 0 0 1= 1 T Yo I 697
clonePlex Method ... 697
deleteFromDocument method...........oovnieniiiii e, 697
getObjects MEthodcoooii e 698
isSelected MEthOdo.oiviei e 699
pasteType Methodi i 700
rectangle Method i 700

W3C TeXEINEITACE ...oveiiieie e 701
isElementContentWhitespace attribute ... 702
wholeText attribute ... 702
replaceWholeText method ... 702
SPIETEXt MEthO. ... e e 703

ToolBarEVent iNterfaCeccoovuiiiiice e 705
initToolBarEvent Method ..o 706

W3C Typelnfo interface.........ooooiuiiii e 707
DerivationMethods enumeration...............coooiiiiiiii e 709
typeName attribute...... ... 710
typeNamespace attribute....... ... 710
isDerivedFrom methodc.oiiniii e 711

W3C UIEVENT INEITACE ceei it e s 713
detail attribute ... 714
View attribute ... 714
INItUIEVENt Method...... ... 714

Ve A (0] (=Y g =T TP 715
ACHd AHFIDULE ... 716
backgroundColor attribute ... 716
foregroundColor attribute.............cooeiiiiii 716
optionNames attribute ... 716
suspendUpdate attribute....... ... 717
WINAOW attribDULE 717
getOption Method ... 717
setOption Method...... ... e 717

WiINOW INtEITACEeeeciieee e 719
DockEnabled enumeration...........co.oveiiiiiii s 721
DockState enumerationooouiiiiiiiii s 722
ACHd AttriDULE ... 722
activeView attribute ..., 722
backgroundColor attributeccoooiiiiiii 723
AOCK AttribDULE ... e 723

Contents 25

dockable attribute. ..., 723
embedded attribUte ... 724
foregroundColor attribute............ccoi i 724
height attribute ... 724
longNativeHandle attribute..............coooiiiiiii i 724
MENUBAr attribute ... 724
MOdal AtHDULE 725
nativeHandle attribute ... 725
optionNames attribute ... 725
ownerNode attribULe ..o 725
parent attribute ... e 726
propertyMap attribute ... 726
SCreenX attribUteo 726
SCrEENY AttriDULE .. ceeeee e 726
VISIDIE @ttHDULE......oeeeee e 726
Width attribute ... 727
activate mMethod ... 727
bringToFront method ... 727
ClOSE MELNOA 727
createEvent method ..., 727
createMenultem method...........coiiniii i, 728
dOCKTO METNOd . .ciie e 728
enableDocking method...........oo i 729
getOption Methodoounii 729
getScriptContext method ... 730
hide MEthOdoe e 730
loadComponentFile method...............coiiiiiiiii i 730
MOVETO METhOo 730
sendToBack Method............ooieiii e 731
SetOpPtioN MEthOd............i i 731
SEtSIZE METNOA ... e e 731
ShOW MEthOdo 732
WINdOWEVENT INTEITACEovieiiiieeee e 733
initWindowEvent method ... 734
WindowEXception €XCeption..........couiiiii e 735
WindowExceptionCode enumeration.............c.coeeiiiiiiiiiiiiiie e, 736
Appendix A. AOM set Options OVEIVIEWccovuiiiiiiiiiiiieec e 737
[T =GN 739

Programmer's Reference

About This Guide

This guide covers the following information:

Part 1: Getting Started — Introduces the AOM and describes supported
program and script languages.

Part 2: Using the AOM — Describes configuration and customizations
necessary to implement custom applications and how to use Java, JavaScript,
JScript, VBScript, COM, and C++ to access the AOM.

Part 3: Programming and scripting techniques — Provides descriptions and
examples of using Arbortext Editor and the AOM to perform basic document
operations and to work with events.

Part 4: Interfaces — Details the W3C and Arbortext interfaces (and their
attributes, enumerations, and methods) supported by the AOM and the
Arbortext Publishing Engine.

Prerequisite Knowledge

The Programmer's Reference assumes advanced skill using Java, JavaScript,
JScript, VBScript, or COM (Component Object Model). If you're creating a
Arbortext Publishing Engine application, you also need to be familiar with Java
servlets, servlet containers, web servers, the HTTP protocol, and the SOAP
protocol.

Documentation for PTC Products

You can access PTC product documentation using the following resources:

Online Help

27

Click Help from the user interface for online help available for the product.

» Reference Documentation

PDFs of reference information are available from the Product Documentation
area of www.ptc.com/support.

Select the Arbortext tab to access the Arbortext Reference Documentation
link.

» Help Center

Help Centers for the most recent product releases are available from the
Product Documentation area of www.ptc.com/support.

Select the Arbortext tab to access the Help Centers link.

You must have a Service Contract Number (SCN) before you can access the
Arbortext Reference Documentation or Help Centers links. If you do not have an
SCN, contact PTC Technical Support or Customer Care Departments using the
contact instructions found in your Customer Support Guide.

Global Services

PTC Global Services delivers the highest quality, most efficient and most
comprehensive deployments of the PTC Product Development System including
Creo, Windchill, Arbortext, and PTC Mathcad. PTC’s Implementation and
Expansion solutions integrate the process consulting, technology implementation,
education and value management activities customers need to be successful.
Customers are led through Solution Design, Solution Development and Solution
Deployment phases with the continuous driving objective of maximizing value
from their investment.

Contact your PTC sales representative for more information on Global Services.

Comments

PTC welcomes your suggestions and comments on our documentation. You can
submit your feedback to the following email address:

arbortext-documentation@ptc.com

Please include the following information in your email:

e Name
* Company
* Product

* Product Release

* Document or Online Help Topic Title

28 Programmer's Reference

https://www.ptc.com/support/
https://www.ptc.com/support/
mailto:arbortext-documentation@ptc.com?subject=Documentation%20Feedback&body=For%20technical%20queries%2C%20contact%20PTC%20Technical%20Support%20at%20http%3A%2F%2Fwww%2Eptc%2Ecom%2Fsupport%2F%2E%0D%0A%0D%0AName%3A%0D%0A%0D%0ACompany%3A%0D%0A%0D%0AProduct%3A%0D%0A%0D%0AVersion%20and%20Datecode%20%28e%2Eg%2E%205%2E3%20M020%29%3A%0D%0A%0D%0AJob%20Title%3A%0D%0A%0D%0AResource%20Center%2C%20Document%20or%20Online%20Help%20Topic%20Title%3A%0D%0A%0D%0AComment%20%28include%20page%20number%20if%20applicable%29%3A%20

Level of Expertise in the Product (Beginning, Intermediate, Advanced)

Comments (including page numbers where applicable)

Documentation Conventions

This guide uses the following notational conventions:

Bold text represents exact text that appears in the program's user interface.
This includes items such as button text, menu selections, and dialog box
elements. For example,

Click OK to begin the operation.
A right arrow represents successive menu selections. For example,
Choose File » Print to print the document.

Monospaced text represents code, command names, file paths, or other
text that you would type exactly as described. For example,

At the command line, type version to display version information.

Italicized monospaced text represents variable text that you would
type. For example,

installation-dir\custom\scripts\

Italicized text represents a reference to other published material. For example,

If you are new to the product, refer to the Getting Started Guide for basic
interface information.

Conventions Used in This Guide

In addition to the conventions listed earlier, this guide uses the following
notational conventions:

Square braces ([]) denote optional parameters which may be omitted. For
example:

insertBefore(newChild[, refChild])

A vertical bar (]) separates parameters in a list from which one parameter must
be chosen or used. For example:

allowinvalidmarkup {on | off}

List of Terms

The following terms are used throughout this guide.

About This Guide 29

* AOM — Arbortext Object Model.

» attributes — [Definition TBD]

* interfaces — [Definition TBD]

* methods — [Definition TBD]

* multicell — A rectangular array of spanned cells in a table.
* OID — [Definition TBD]

* properties — [Definition TBD]

* scripts — [Definition TBD]

* TOID — Table Object Identifier.

Where to Get More Information

Supporting documentation and related Javadoc for Arbortext Editor and Arbortext
Publishing Engine can be found in the Arbortext Editor Help Center. You can
open the Help Center from the Arbortext Editor Help menu. ACL (Arbortext
Command Language) documentation is included in the Help Center and is not the
focus of the Programmer's Reference.

If you're using the Arbortext Publishing Engine, be sure to review Installation
Guide for Arbortext Publishing Engine and Configuration Guide for Arbortext
Publishing Engine for extensive information on Arbortext Publishing Engine
installation, setup, and configuration.

Training classes are also available. For more information, visit www.ptc.com.

If you are looking for more general information on programming or scripting
languages, you may want to consult the following resources:

» Thinking in Java, by Bruce Eckel. Published by Prentice Hall PTR.

* Oracle has extensive Java information available at its web site www.oracle.
com/technetwork/java/index.html. The tutorials are especially helpful to
beginners.

» JavaScript: The Definitive Guide, by David Flanagan. Published by O'Reilly
and Associates Inc.

* Mozilla has extensive JavaScript information available at its web site www.
mozilla.org.

+ ECMA International (European Computer Manufacturers Association) has the
ECMAScript Language Specification, which is the standard used for
JavaScript, available at its web site www.ecma-international.org.

* Microsoft has extensive information about JScript, VBScript, ActiveX
scripting host, and COM available at its web site msdn.microsoft.com.

30 Programmer's Reference

http://www.ptc.com
https://www.oracle.com/technetwork/java/index.html
https://www.oracle.com/technetwork/java/index.html
http://www.mozilla.org
http://www.mozilla.org
http://www.ecma-international.org
http://msdn.microsoft.com

Getting Started

Supported Program and Script

Languages

You can write programs and scripts in several supported languages. The following
table lists the supported languages and their descriptions:

Supported Program and Script Languages

Language Description

Java Cross-platform, object-oriented programming language.

COM Windows Component Object Model. COM is not actually
a language but a standard. It is supported by several
languages, including C++ and Visual Basic.

JavaScript Cross-platform, object-oriented scripting language, not
directly related to Java. The standard it follows is called
ECMAScript.

JScript A COM-based, loosely-typed scripting language, not
directly related to Java but similar to JavaScript.

VBScript A COM-based scripting language that is a subset of the
Visual Basic for Applications programming language.

ACL Arbortext Command Language, a proprietary scripting
language from PTC Inc.

33

Arbortext Object Model (AOM)

Introduction to the Arbortext Object Model (AOM)iviiiiiiiiiiiiiie e 36
Introduction to the Document Object Model (DOM)coouiiiiiiiiiiieiieee e, 36
Using the DOM Supportin AOMoounii e 37

The AOM (Arbortext Object Model) delivers much of ACL's functionality
available to non-ACL programmers. This includes support for the W3C DOM
(Document Object Model) standard. Specifically for Arbortext Editor and
Arbortext Publishing Engine, the DOM is extended with several additional
interfaces, attributes, and methods.

35

Introduction to the Arbortext Object
Model (AOM)

The AOM provides object-oriented programming access to Arbortext Editor and
Arbortext Publishing Engine. The AOM supports the W3C DOM (Document
Object Model) Core and Validation interfaces with extensions, and provides many
additional interfaces for Arbortext-specific features that are not part of the DOM.
The Arbortext extensions to the DOM use a naming convention where A (for
Arbortext) is prepended to the DOM interface name; for example, the Arbortext
extension for the DOM Node interface is ANode.

The AOM supports bindings to Java, COM (Component Object Model), and C++.
The AOM also provides scripting access to its interfaces using JavaScript, JScript,
VBScript, and the ACL (Arbortext Command Language).

The following diagram shows the relationship between Arbortext Editor and
Arbortext Publishing Engine, the DOM and AOM interfaces, and programs or
scripts accessing the DOM and AOM.

COM C++ Programs
Java Programs !
JavaScript VBScript C++ Programs
Jscript
Java COM fonds

Binding Binding Binding

L

DOM and AOKM
Interfaces

:

Arbortext Editor and Publishing Engine

Java programs and JavaScript communicate with the DOM and AOM interfaces
using the Java Binding. COM C++ programs, VBScript, and JScript communicate
with the DOM and AOM interfaces using the COM Binding. C++ Programs
communicate with the DOM and AOM interfaces using the C++ Binding. The
DOM and AOM interfaces communicate with Arbortext Editor and the Arbortext
Publishing Engine.

Introduction to the Document Object
Model (DOM)

The Document Object Model (DOM) is a standards-compliant interface for
examining and modifying an XML or SGML document. The DOM Level 2
specification is a recommendation of the Worldwide Web Consortium (W3C)
comprised of several parts. Arbortext products implement the DOM Level 2
features as described in the following W3C specifications:

36 Programmer's Reference

* Document Object Model (DOM) Level 2 Core Specification (http://www.w3.
org/TR/DOM-Level-2-Core)

* Document Object Model (DOM) Level 2 Views Specification (http://www.w3.
org/TR/DOM-Level-2-Views)

* Document Object Model (DOM) Level 2 Events Specification (http://www.
w3.org/TR/DOM-Level-2-Events)

* Document Object Model (DOM) Level 2 Traversal and Range Specification
(http://www.w3.org/TR/DOM-Level-2-Traversal-Range), range only

Arbortext also implements the W3C Recommendation Document Object Model
(DOM) Level 3 Validation Specification dated 27 January 2004. (http://www.w3.
org/TR/2004/REC-DOM-Level-3-Val-20040127/) The validation interfaces are
implemented for both XML and SGML documents. (The DOM Level 3 Core
interface DOMConfiguration is not implemented in this release.)

Using the DOM Support in AOM

Some considerations and limitations for using DOM through the AOM can help
you determine your approach.

DOM Programming Considerations
The following programming considerations apply to all language bindings:
* Document context

The DOM assumes that the XML document being processed is well-formed,
but makes no assumptions about its validity. Because there is no way to
represent validity without departing from the DOM Level 2 standard, the
Arbortext Editor DOM interface ignores context checking. Therefore, it is
possible for the user-written program to make a document invalid that was
previously valid. However, users can context check the document once the
user-written program returns control to Arbortext Editor. Alternatively, the
user-written program can use the Ac1 interface to perform context checking.

e Performance issues

The DOM allows users to create NodeLi st objects that contain pointers to
every tag with a given name in a document or document subtree. Once
created, a NodeLi st is dynamically updated to reflect every tag insertion or
deletion. The existence of these objects is likely to slow tag insertion and
deletion in Arbortext Editor. Users should delete NodeList objects as soon
after use as practical.

Arbortext Object Model (AOM) Overview 37

http://www.w3.org/TR/2004/REC-DOM-Level-3-Val-20040127/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Val-20040127/

DOM Limitations

The Arbortext implementation of the DOM may be used with SGML documents.
Because the DOM portion of the AOM is XML- and HTML-based, features in
Arbortext Editor that are available only for SGML, but not for XML, are not
supported (such as TGNORE marked sections).

The DOM standard states that management of namespace-qualified elements and
attributes will be performed without the insertion or modification of namespace-
related XML attributes, at least until a document is actually written to disk.
Instead, Arbortext Editor inserts xm1ns and xmlns:prefix XML attributes as
needed to establish and maintain namespace/prefix bindings.

Arbortext Editor does not return the document type's internal subset, if any. The
internalSubset ofthe DocumentType interface will always return a null
string.

Using the DOM with SGML Documents

The DOM is designed to support XML documents. The DOM support for SGML
documents is limited to parallel support for XML. If you'll be working with
SGML documents, the DOM will ignore TGNORE marked sections and RCDATA
sections. If an element in an SGML document contains three sub-elements, and
one of the sub-elements is an TGNORE marked section or an RCDATA section,
user-written DOM programs will see only two sub-elements.

38 Programmer's Reference

Custom Applications

Overview of Custom Programs and ScCriptS..........ccouuiiiiiiiiiiiicii e 40
Description of the Custom Directory Structureooooeiiiiiiiiiiiii e 41
Using the Custom Directory for Custom Applications............c.cccceuieeiiiiiiiii i 51
Description of the Application Directory Structure............cooooiiiiiiiiiii e 52
Using the Application Directory for Custom Applications............ccceevviiiiiiiiiiii e, 55
Deploying Zipped CuStOMIZAtIONS.cuuuiiiiiiii e 57
Specifying the JavaScript Interpreter ENgineooiiiiiiiiiiiiii e 58

39

Overview of Custom Programs and
Scripts

The Arbortext Editor and Arbortext Publishing Engine installations have directory
structures within them where you can place your custom scripts and programs.
The custom and the application directories are described in the following
sections.

The Custom Directory Structure

The Arbortext-path\custom directory has a subdirectory structure
designed to hold your custom programs and scripts and make them automatically
available during the session. At startup, these subdirectories are searched for Java,
JavaScript, JScript, VBScript, ACL, and composer configuration files. You can
also provide custom document types, entities, fonts, graphics, and native shared
libraries and DLLs. The supported file types are automatically accessed if they
reside in the appropriate subdirectory. Implementing your custom files using this
approach takes advantage of the startup sequence to automatically locate your
custom files. The Arbortext-path\custom directory and its subdirectories
are explained in detail in this chapter.

The Application Directory Structure

The Arbortext-path\application subdirectory can contain custom
applications as well as application software distributed by Arbortext. The
application directory must have one or more uniquely named subdirectories,
each containing a specific configuration file, application.xml, that conforms
to a specific format. At startup, the application directory is searched for
subdirectories and the presence of a valid application.xml file. In the
uniquely named subdirectory, all subdirectories of the custom directory are
supported. The custom application in a application then uses these
subdirectories in the same way as the custom directory structure. You can also
have additional subdirectories needed to support the implementation of this type
of custom application. Implementing your custom application using this approach
takes advantage of the startup sequence, supports delivering a completely selt-
contained custom application, and offers the option of setting the conditions for
whether the application should be loaded. The application directory is also
explained in this chapter.

40 Programmer's Reference

Description of the Custom Directory
Structure

When Arbortext Editor or an Arbortext PE sub-process starts, it can access custom
files placed in specific directories. At startup, it automatically looks for compiled
Java files (. class and . jar files), JavaScript, JScript, VBScript, ACL,
document type, publishing configuration and other types of files within the
Arbortext-path\customn directory structure.

You can have one or more custom directories outside the Arbortext-path
install tree. To specify a path list for their locations, set the APTCUSTOM
environment variable. The custom directory must be located using a file system;
HTTP references are not supported.

At startup, some search paths are automatically prepended with the path to a
custom subdirectory. Startup automatically sets some of these search paths using
a symbolic variable as a path specification. You can use symbolic parameters to
represent a search path in the context of the default search path, the location of the
install tree, or the locale.

If a directory supports more than one type of file, the file types are processed in
the following order:

* .acl (Arbortext Command Language) files

* .Js (JavaScript or JScript) files

* .class (Java) files

* .vbs (VBScript) files

For each file type, its files are processed in alphabetical order by file name.

The Arbortext-path\custom directory is processed at startup. If you add
custom applications and document types after startup, they're not recognized
during the session. If you're using Arbortext Editor, it needs to be closed and
restarted. If you're using Arbortext Publishing Engine, you need to stop and restart
the Arbortext Publishing Engine to re-initialize the Arbortext PE sub-processes.

custom.xml File

At the top level of the custom directory is the custom. xml file. Following is
the default version of this file:
<?xml version="1.0" encoding="UTF-8"?>
<!--Arbortext, Inc., 1988-2009, v.4002-->
<ApplicationConfiguration
xmlns="http://www.arbortext.com/namespace/doctypes/appcfg">
<Information>
<!--The following name will be shown in the New dialog
as the category for all document types in this
custom directory that do not specify a category.-->

Custom Applications 41

help5056.html
help5056.html
help2031.html

<Name>Custom Directory Name</Name>
</Information>
</ApplicationConfiguration>

This file is only used when you have a custom document type in the custom\
doctypes subdirectory, and you have not designated a category name for the
document type in the associated document type configuration (.dcf) file’s
NewDialog element. In this case, the name in the custom.xml file’s Name
element is used as the Category name for the document type(s) in the custom\
doctypes subdirectory in the New Document dialog box.

Subdirectory Structure

The following list describes each custom subdirectory and how it's used.
Arbortext Editor and Arbortext Publishing Engine look in these directories for any
references that use a relative path or have no specified path.

42

classes subdirectory
Holds compiled Java .class and . jar files.

The Arbortext Editor and Arbortext Publishing Engine JVM Java class path
holds a list of directories and paths to . jar files. Any files matching * . jar
are prepended to the JVM Java class path. Then the classes parent
directory is prepended, putting it first in the JVM Java class path.

In cases where a class file occurs in more than one . jar file, you can extract
the preferred . class file from its . jar file and place it in a subdirectory
path of the classes directory to control which one takes precedent.

composer subdirectory

Holds publishing configuration files (. ccf, .ent, and .xml files) and can
support a catalog file. Supports one level of subdirectories.

The default path is Arbortext-path\composer. If there are any
subdirectories of the custom\ composer directory, those subdirectories are
prepended to the publishing configuration path. Then the custom)\
composer parent directory is prepended to the path. If the custom\
composer directory contains a catalog file, that directory is also
prepended to the catalog path.

datamerge subdirectory

Holds data merge configuration (. dmf) files specifying queries and their
components. The . dmf file structure is discussed in the Customizer's Guide.

dialogs subdirectory

Holds dialog files that can be accessed from custom applications, such as one
that uses the AOM Application.createDialogFromFile method.

Programmer's Reference

The Arbortext-path\samples\XUI\preferences\pref
exts.zip contains a sample application that adds a tab to the Preferences
window as a way to extend preferences for custom applications. Refer to the
readme. txt file for more information.

If there are any subdirectories of the custom\dialogs directory, those
subdirectories are prepended to the dialog path. Then the custom\dialogs
parent directory is prepended to the dialog path.

ditarefs subdirectory

Holds content referenced by DITA documents when the reference is not
specified as either an absolute path name or a path name relative to the current
document directory. For example, the ditarefs subdirectory could hold
content referenced by topic references, content references, and so forth.
Supports one level of subdirectories.

The default DITA reference path is Arbortext-path\ditarefs. The
DITA references path can be set in the File Locations category of the Tools »
Preferences dialog box. You can also use the set ditapath option or the
APTDITAPATH environment variable to set the default path for DITA
references. If there are any subdirectories of the custom\ditarefs
directory, those subdirectories are prepended to the path. Then the custom\
ditarefs parent directory is prepended to the path.

~ Note

Graphic references from DITA documents are resolved using the graphics
path list.

dictionaries subdirectory

Holds user-defined dictionary files that can be used by the spelling checker.
Supports one level of subdirectories.

The default path is Arbortext-path\lib\proximity\userdict. If
there are any subdirectories of the custom\dictionaries directory,
those subdirectories are prepended to the dictionary path. Then the custom)\
dictionaries parent directory is prepended to the dictionary path.

doctypes subdirectory

Holds a custom catalog file and document type files. Supports one level of
subdirectories. Each document type should reside in a uniquely named
subdirectory of doctypes. The subdirectory should also contain a catalog
file for the custom document type. A doctypes subdirectory can also
contain a subset of the complete document type file set. You can place a

Custom Applications 43

help6488.html
help6487.html

44

document type configuration file . dcf or stylesheets ina \custom)\
doctypes\doctype directory.

You can add a stylesheet to the list of stylesheets that displays when you make
a publishing request using one of the File » Publish choices. Arbortext Editor
and Arbortext Publishing Engine search each \custom\doctypes\
doctype directory and aggregate the list of stylesheets. For example, you
can add stylesheets for the asdocbook built-in document type (asdocbook)
by placing them in Arbortext-path\custom\doctypes\
asdocbook.

If a document does not specify an Editor view stylesheet with a stylesheet
association PI, Arbortext Editor will first search first the document directory,
then the relevant \custom\doctypes\doctype directory, and finally the
original location for the doctype directory.

If the subdirectory contains only a . dcf file, it must conform to a naming
convention that expects the subdirectory and . dcf file name to reflect the
base document type name. For example, you could customize the default
asdocbook asdocbook.dcf file, and put it in Arbortext-path\
custom\doctypes\asdocbook\asdocbook.dcf to override the
built-in . dcf. Note that the document type subdirectory and file name must
be the same as the default document type name for Arbortext Editor and
Arbortext Publishing Engine to find all the relevant document type files.

A DCEF file can reference other files, such as the . pcf, demo.xml, and
template.xml files. Custom versions of these files can be placed with the
.dcf in \custom\doctypes\doctype. If Arbortext Editor and
Arbortext Publishing Engine find a . dcf in the \custom\doctypes\
doctype location, relative path references are resolved by first searching the
same directory as the . dcf and then by searching the document type directory
in the original location.

The default catalog path is Arbortext-path\doctypes. If there are any
subdirectories of the custom\doctypes directory that contain a catalog
file, those subdirectories are prepended to the catalog path. Then the
custom\doctypes parent directory is prepended to the catalog path.

You can place custom tag template files (. tpl)ina custom\doctypes\
doctype\tagtemplates directory. The custom\tagtemplates
directory can also be used as a more generally available location for tag
templates.

Any document type from the custom\doctypes directory is also added to
the list of available document types that are displayed in the File » New dialog
box.

entities subdirectory

Programmer's Reference

Holds file entities. Supports one level of subdirectories.

A file entity is any structurally complete document unit saved as a file. File
entities commonly have an . xm1 file extension.

The default entity path is Arbortext-path\entities. If there are any
subdirectories of the custom\entities directory, those subdirectories are
prepended to the entity path. Then the custom\entities parent directory
is prepended to the entities path.

fonts subdirectory
Holds custom AFM or TFM font metric files (. afm and . t fm).

The default fonts path is Arbortext-path\fonts. If there are fonts in
custom\ fonts, the path is prepended. If the APTTEXFONTS environment
variable is set, the custom\ fonts directory is prepended to it.

formats subdirectory
Holds custom PubTex format files (. fmt).

The default PubTex format path is Arbortext-path\formats. If there
are . fmt files in custom\ formats, the path is prepended. If the
APTTEXFMTS environment variable is set, the custom\ formats directory
is prepended to it.

framesets subdirectory

Holds custom framesets for Publish » For Web. Supports one level of
subdirectories. Framesets are defined in the document type configuration file.

The default frameset path is Arbortext-path\framesets. If there are
any subdirectories of the custom\ framesets directory, those
subdirectories are prepended to the framesets path. Then the custom)\
framesets parent directory is prepended to the frameset path.

graphics subdirectory
Holds graphic files. Supports one level of subdirectories.

The default graphics path is Arbortext-path\graphics. If there are
any subdirectories of the custom\graphics directory, those subdirectories
are prepended to the graphics path. Then the custom\graphics parent
directory is prepended to the graphics path.

importexport subdirectory
Holds Arbortext Import/Export Import project files.
inputs subdirectory

Holds source files for custom macros, program fixes, or other customizations
in a custom. tmx. Refer to Using . tmx files for more information.

Custom Applications 45

help13030.html
help769.html
help5040.html
help6923.html
help10085.html

46

Document type and document . tmx files can be placed in the custom)\
doctypes directory.

Also holds . tex files and source files for hyphenation exception and pattern
rules in .exc and . pat files.

The default source path is Arbortext-path\inputs. Then the
Arbortext-path\custom\inputs directory is prepended to it.

1ib subdirectory

Holds custom versions of the . pdfcf PDF configuration file. The default
path for .pdfcf filesis Arbortext-path\1lib. Thenthe Arbortext-
path\custom\1lib directory is prepended to it. For more information on
creating . pdfcf files, refer to the Customizer's Guide.

In addition, the 1ib subdirectory can hold . wcf files for custom window
classes. For more information on creating . wc £ files for window classes, refer
to the Creating custom window class preferences files in the Arbortext Editor
help.

The 1ib subdirectory can also hold custom versions of the following files:
charent.cf
charmap.cf
installprefs.acl
prted.pro
pubview.cf
pubview. fnt
tfmfont.cf
tfmscaling.cf
tfontsub.cf
wcharset.cf
wfontsub.cf
xcharset.cf
xfontsub.cf

You can specify more than one charent . cf file, as the effects are
cumulative. Refer to the Setting paths for new character set files and
APTCUSTOM environment variable topics in the online help for more
information.

Programmer's Reference

The custom\ 1ib directory also has 1ocale\locale—-name
subdirectories. The default path is the appropriate locale subdirectory of
Arbortext-path\1lib\locale. The locale-specific subdirectory of the
custom\1lib\locale directory is prepended to the default locale path.

The 1locale\ locale—-name can hold custom versions of the .pdfcf PDF
configuration file. For more information on creating . pdfcf files, refer to the
Customizer's Guide.

Each 1ocale\ locale-name directory can hold custom versions of the
following files:

charent.cf
installprefs.acl
ixlang.cf
pubview.cf
pubview. fnt
tfmfont.cf
tfmscaling.cf
tfontsub.cf
wcharset.cf
wfontsub.cf
xcharset.cf
xfontsub.cf

The custom\1ib directory also has a subdirectory to hold native shared
libraries for platform-specific use:

0 dll
Holds Windows dynamic link libraries, or DLL files (.d11).

The path to this directory is prepended to the system PATH environment
variable.

The custom\1ib directory can have an ix1lang subdirectory, which holds
a custom ixlang.cf file and index mapping files like those found in
Arbortext-path\lib\ixlang.

publishingrules subdirectory

Holds publishing rules .prcf files which contain definitions of publishing
rules and publishing rule sets.

pubview subdirectory

Custom Applications 47

48

Holds pubview.cf and pubview. fnt files.

The default path is Arbortext-path\pubview. Then the Arbortext-
path\custom\pubview directory is prepended to it.

scripts subdirectory

Holds . ac1l (Arbortext Command Language), . vibs (VBScript), and . js
(JavaScript and JScript) files. Supports one level of subdirectories.

The scripts in this directory can be called from scripts or applications in the
custom\init directory, which is processed at startup time. Scripts placed
here can be accessed using the source or require ACL commands. A
customized menu item or button can call a script in custom\scripts when
invoked.

If there are any subdirectories of the custom\scripts directory, those
subdirectories are prepended to the load path. Then the custom\scripts
parent directory is prepended to the load path.

stylermodules subdirectory

Holds Arbortext Styler stylesheet modules. Any modules stored in this
directory are automatically available to Arbortext Styler.

tagtemplates subdirectory

Holds . tpl files. You can also put custom tag templates you want associated
with a particular document type into a custom\doctypes\doctype\
tagtemplates directory or in the original location of the document type's
doctype\tagtemplates directory.

If the user clicks the New button from the Tag Templates dialog box, Arbortext
Editor will use the first directory with write access for that user in the tag
template path.

If the APTTAGTPLDIR environment variable is set, this path is prepended to
it.

init subdirectory
Holds .acl, .Js, .class, and . vbs files.

The init subdirectory is processed last at startup time. All files of the
supported application types are executed. No nested subdirectories of
custom\init are supported. This directory is processed after the other
Arbortext-path\custom subdirectories so that its scripts and
applications can rely on paths already established during startup.

If you are putting custom applications on the Arbortext PE server, use the
init directory for your custom .acl, .js, .class files.

Programmer's Reference

help9049.html
help7998.html
help497.html

In the startup process, the custom\init directory is processed after
~main.acl but before arbortext.wcf. See the online help topic Startup
command files for complete startup processing information.

The supported application types are:
0 .acl (Arbortext Command Language) files

Errors are reported to Arbortext Editor or recorded by Arbortext
Publishing Engine to be sent to its HTTP client.

O . js (JavaScript or JScript) files

Errors are reported to Arbortext Editor or recorded by Arbortext
Publishing Engine to be sent to its HTTP clients. You need to specify the
JavaScript interpreter engine to use in processing . j s files. Refer to
Specifying the JavaScript Interpreter Engine on page 58 for more
information.

O .class (Java) files

Java . class files in this directory must be compiled Java classes that are
not part of a named package. You can also put a .class file in custom\
init that calls into a . jar file located in the custom\classes
directory.

The Java class must also implement a public static void

main (String[] args) method, which will be called with an empty
string array. If the . class file does not implement this method, an error
is reported to Arbortext Editor or recorded by Arbortext Publishing Engine
to be sent to its HTTP client.

o .vbs (VBScript) files

Errors are reported to Arbortext Editor.
editinit subdirectory

Holds .acl, .js, .class, and . vbs files. Note that when you run
Arbortext Editor with the —c option, any applications in this subdirectory are
not executed at startup.

All files of the supported application types are executed each time a non-
ASCII document is opened for editing. Files in this directory act on a
document opened in the Edit window. File in this directory act on a document
opened using ACL when the 0x8000 flag is used with the doc_open
function. File in this directory act on a document opened using AOM when the
OPEN EDITINIT flag is used with the Application.openDocument method.

The editinit subdirectory is processed before any document type
command files, document type instance command files, and document
command files.

Custom Applications 49

The supported application types are:

O

.acl (Arbortext Command Language) files

Errors will be reported if the interface is running interactively, otherwise
they will be suppressed.

. Js (JavaScript or JScript) files

Errors will be reported if the interface is running interactively, otherwise
they will be suppressed.

.class (Java) files

Java . class files in this directory must be compiled Java classes that are
not part of a named package. The Java class must also implement a
public staticvoidmain (String[] args) method, which is
called with an empty string array. You can puta .class file in custom)\
init thatcalls into a . jar file located in the custom\classes
directory. Errors will be reported if the interface is running interactively,
otherwise they will be suppressed.

.vbs (VBScript) files

Errors will be reported if the interface is running interactively, otherwise
they will be suppressed.

Error Reporting for the custom\init Directory

Errors caused by mistakes in custom code in the Arbortext-path\custom\
init directory are reported with both the error message and the name of the
initialization file causing the error. Note the following:

If Arbortext Editor is not running interactively (batch mode), no errors are
reported and the errors are not logged.

Arbortext Publishing Engine records errors and reports them to its HTTP
clients in an HTML error page.

ACL, JavaScript, and Java class errors are reported to the Arbortext Editor
interface or held by Arbortext Publishing Engine to be sent to HTTP clients
making requests.

Additional Information

If you are using the AOM, refer to the documentation for
Application.getCustomDirectory. Refer to the XUI section of the
Customizer's Guide for information on extending the Arbortext Editor Preferences
dialog box for your custom application.

50

Programmer's Reference

The following set command options and environment variables affect custom
path search lists. They are documented in the online help.

set catalogpath
set composerpath
set dialogspath
set ditapath

set entitypath
set framesetpath
set graphicspath
set javaclasspath
set libpath

set loadpath

set pdfconfigfile
set tagtemplatepath

set userdictpath

Using the Custom Directory for Custom
Applications

The Arbortext-path\custom subdirectory structure provides the means to
implement custom applications. Where your application should be placed depends
on the application purpose and programming language.

If you're implementing custom applications or scripts, the following information
will assist you in determining the approach and location for your files:

* A custom Java program can be placed in custom\init, which supports a
.class file that must implement a public static voidmain
(String[] args) method. The method will be called at startup with no
arguments (an empty St ring array). If an error occurs, it's reported
interactively for Arbortext Editor or sent to the HTTP client for the Arbortext
Publishing Engine.

A custom Java program can also be placed in custom\classes, which
supports .class or . jar files.

We recommend putting Java applications in the custom\classes directory
and calling or initializing them from the custom\init directory.

Custom Applications 51

Paths to . jar files in custom\classes are automatically prepended to the
embedded Arbortext Editor Java class path. Then the path to custom\
classes is prepended, putting it first in the search order.

* A custom JavaScript, JScript, VBScript, or ACL application can be placed in
custom\init orin custom\scripts. If you place your scripts in the
custom\scripts directory, you can call them from a script or scripts you
place in custom\init (which is processed at startup). Any code that exists
outside a function definition in a script from custom\init is executed at
startup time. Errors are reported if running interactively, otherwise they're
suppressed.

You can create a simple JavaScript example file called simple init.js. The
script should contain the following line:
Application.alert ("Hello from JavaScript");

Put the simple init.js filein Arbortext-path\custom\init.

When the startup process loads scripts from custom\init, you will see a dialog
box showing the Hello from JavaScript message.

Description of the Application Directory
Structure

The Arbortext-path\application subdirectory supports installing an
application into the Arbortext Editor and Arbortext Publishing Engine install
trees. Arbortext Editor and the Arbortext Publishing Engine automatically search
for subdirectories of the application directory at startup.

Arbortext-path\application must contain a uniquely named
subdirectory for each distributed application. Arbortext recommends using the
naming pattern for a unique qualified Java class name:
com.company-name.application-name

Each unique subdirectory of the application directory must also contain an
application.xml configuration file which describes various aspects of the
application, such as its release version and supported versions of Arbortext
products. At startup, Arbortext Editor and the Arbortext Publishing Engine search
the application directory for any subdirectories containing an
application.xml configuration file. The application.xml file contents
provide the criteria to determine whether the application should be loaded. The
application directory must be located using a file system; HTTP references
are not supported.

52 Programmer's Reference

Subdirectory Structure

A subdirectory of the application directory can be structured the same as the
custom directory to take advantage of automatic Arbortext Editor and Arbortext
Publishing Engine startup processes. For example, if the uniquely named directory
contains graphics or entities directories, those directories are
automatically added to the search paths constructed at startup.

An application path could be something like:
application\com.company-name.application-name

Refer to the Description of the custom directory structure on page 41 for the
names and descriptions of each supported subdirectory.

~ Note

When Arbortext Editor or the Arbortext Publishing Engine constructs search
paths, subdirectories of the custom directory take precedence over any
corresponding subdirectories under the application directory. When
search lists are constructed at startup, the first path in any search list will be
the appropriate custom directory followed by any applicable directory under
the application directory. For example, in constructing the graphics
search path list at startup, custom\graphics would precede
application\com.arbortext.sample\graphics. An
application\graphics directory withno application.xml file
will be ignored during startup.

When implementing a custom application using the application directory
structure, you can add supplemental directories as needed to support your
application. However, your application code must be aware of these directories
and how to use them.

Application Startup File

The Arbortext-path\doctypes\appcfgl\application.xml file
provides a basic template for defining information about the custom application.
You can make a copy of doctypes\appcfgl\application.xml touse as a
template to create the file that will eventually be distributed with the application.
The application.xml file must be placed in the application's top level

directory, for example:
Arbortext-path\application\com.company.application-package-name
\application.xml

In the template application.xml file, you can specify a list of elements that
describe the application. If the custom application determines its criteria is not met
and the application is not to be loaded, then these values are ignored. The base

Custom Applications 53

element for the file is the ApplicationConfiguration element. This
element has a required attribute called installType that determines the type of
Arbortext Editor installation for which this application is supported. The
supported value is full meaning the application is only supported in the full
installation of Arbortext Editor. The value any previously indicated whether
compact installation of Arbortext Editor was supported

The following other elements are supported in the application.xml file:
* Name (required)

* Description

* LicenseNumber is only for an application distributed by Arbortext

* Version (required)

e Date

* Copyright

* Vendor

* RequiredApplications is for other applications that are required for
this application to run correctly. You must enter the qualified name for the
application in the qualifiedName attribute and a human-readable name in the
name attribute.

* SupportedProducts

A Product element has attributes for specifying the name (required),
minimum version (required), and maximum version of the Arbortext product
that supports the custom application or application. The Product
specification helps the launching Arbortext product determine whether it
should load this custom application by matching criteria specified in this
section.

The name must be one or more of the following:

O Arbortext Editor

O Arbortext Publishing Engine
O Arbortext Architect

O Arbortext Editor with Styler

The version must follow the convention used by Arbortext products, such as
5.2,5.2 M040, or 5.3.

* SupportedPlatforms

The section is reserved for future use. Windows is currently the only supported
platform.

* GlobalParameters

54 Programmer's Reference

Parameter contains ParameterName and ParameterValue elements
for specifying any global variables that the application may need when it's
launched.

Related Topics

If you are using ACL, refer to the following ACL function descriptions:

* application name function

* get custom dir function

* get custom property function
* get user property function

* set user property function

If you are using the AOM, refer to the documentation for
Application.getCustomDirectory. Refer to the XUI section of the
Customizer's Guide for information on extending the Arbortext Editor Preferences
dialog box for your custom application.

The following attributes from the Application interface are also useful:

* haveWindows

* 1initDone

e 1isE3

* customProperties
* userProperties

° name

Using the Application Directory for
Custom Applications

The Arbortext-path\application subdirectory provides the means to
implement a custom application that uses a special configuration file to determine
whether it should be loaded at startup. The application directory uses the
same principles of structure as the custom directory.

The Arbortext-path\application directory is processed at startup. If
you add a custom application after startup, you must exit and restart Arbortext
Editor or stop and restart the Arbortext Publishing Engine to have it recognized.
You also have the option to issue the f=1nit function to re-initialize the
Arbortext PE sub-processes. Refer to Configuration Guide for Arbortext
Publishing Engine for more information.

Rules for using the application directory are:

Custom Applications 55

help10017.html
help10019.html
help10020.html
help10021.html
help10022.html

Your custom application must be contained in a uniquely named subdirectory
of the application directory.

You must have an application.xml configuration file in the uniquely
named subdirectory that sets the conditions for loading the application.

The same set of subdirectories supported by the custom directory are
supported for the uniquely named subdirectory of the application
directory. At startup, the supported directories are automatically detected and
used in constructing search paths.

Any other subdirectory of the application directory will be ignored at
startup. For example, an application\graphics subdirectory with no
application.xml file will be ignored during startup.

Arbortext has developed proprietary custom applications that are deployed using
the application subdirectory structure. A uniquely named subdirectory
contains all the necessary components to run an application within Arbortext
Editor as well as the Arbortext Publishing Engine.

The following information will help determine an approach for a custom
application.

56

You can have additional subdirectories for your custom application. You are
not limited to the subdirectories supported by the custom directory.
However, these additional directories are not automatically recognized during
the startup process.

Processing each unique application's subdirectories follows the same rules for
processing custom subdirectories. Recall that the application's subdirectories
come after the custom subdirectories in constructing any applicable search
paths for the session.

If you decide not to use a particular supported subdirectory, you can improve
performance by omitting the directory to reduce the length of a search path
that would contain it.

You can use the APTAPPLICATION environment variable to set the path to
one or more application directories.

An application should not write data to its own application directory. An
application user may not have write permission access to this application
directory, for example, any C: \Program Files directories on Windows
(the location where Arbortext Editor and the Arbortext Publishing Engine are
typically installed).

Programmer's Reference

help6190.html

Deploying Zipped Customizations

You can deploy not only custom directories, but also application and
content management system adapters directories in a compressed zip file. Using a
zip file to distribute your customizations has the following advantages:

You can host your customizations on a web server.

In this case, use the HTTP or HTTPS URL to the zip file as the value for the
APTCUSTOM environment variable.

Your customizations will be available to users when they cannot access your
network.

If you use a shared network folder to host your customizations, users do not
have access to those customizations when the network is unavailable. If you
use a zip file to distribute your customizations, Arbortext Editor unzips those
customizations to a directory in the Arbortext Editor cache directory
(.aptcache\zc). At start up, Arbortext Editor checks to see whether the
zip file has been updated. If it has, Arbortext Editor downloads and
uncompresses the updated customizations. If not, Arbortext Editor continues
to use the customizations stored in the local cache. If the network is
unavailable to a user, your customizations are still available to that user in the
local cache. Note that the user must also have a fixed Arbortext Editor license
on their system to work away from the network.

Network traffic might be reduced.

Since the zip file containing your customizations is only downloaded once
over the network, and then only if it has been updated, traffic on your network
might be reduced. If you store your unzipped customizations in a shared
network folder, Arbortext Editor might have to access that folder several times
over the course of a session.

Customizations stored in a compressed zip file are harder to change
accidentally than customizations stored in a directory structure.

Note that you cannot use a zip file to distribute a customized
installprefs.acl inthe custom\1lib directory. You can use the
APTINSTALLPREFS environment variable to specify the location of a custom
installprefs.acl file.

Note also that you cannot include the following font configuration files in the 1ib
subdirectory of a zipped custom directory:

charent.cft
wcharent.cft
wfontsub.cft

charmap.cft

Custom Applications 57

These files are processed before a zipped custom directory when Arbortext
Editor starts up, so the files cannot be processed when deployed in that way.

Specifying the JavaScript Interpreter
Engine

Both JavaScript and JScript files have a . j s file extension. By default, Arbortext
Editor and the Arbortext Publishing Engine interpret . j s files as Rhino
JavaScript files. You should specify the JavaScript interpreter for a JavaScript or
JScript . js file. This is especially important if you have . js files of both types.

We recommend adding a comment line to your script that specifies either the
Rhino JavaScript engine (the default) or the Microsoft JScript engine as shown in
the following examples. The first line of your . js file must be a comment
starting with / /.

To specify the Rhino JavaScript interpreter:
// type="text/javascript"

To specify the Microsoft JScript interpreter:
// type="application/jscript"

The specification can be enclosed in a script tag. Both of the following examples
are a valid specification for JScript:

// <script type="application/jscript">

// type="application/jscript"

You can also specify the JavaScript interpreter using the ACL set
javascriptinterpreter command. You can specify it in an ACL file
placed in the Arbortext-path\custom\init directory, where it will be
processed at startup. For information on setting the interpreter using ACL, see the
online help topic for set javascriptinterpreter.

58 Programmer's Reference

Using the AOM

Using ACL with the AOM

USIiNG the ACIH INTEIMACEcieeei e 62

You can access the Arbortext Object Model (AOM) from the Arbortext Command
Language (ACL). Because the AOM does not currently provide all the
functionality available from ACL, an AOM program may need to call ACL
functions for certain types of customizations. There are several ACL functions
that interface with Java, JavaScript, JScript, VBScript, and COM, which are
documented in the Arbortext Command Language Reference. Each section in this
guide that covers a specific programming or scripting language notes any
language-specific binding issues.

61

Using the Acl Interface

The AOM provides the Acl interface with methods to evaluate an ACL expression
(Acl.eval) or execute an ACL command (Acl.execute). Both methods take
a string object as an argument. This means that any AOM object passed to ACL
must be converted to a string. Likewise, an ACL type returned by Acl.eval is
converted to a string to pass to the AOM.

The expression passed to Acl.eval and the command passed to
Acl.execute are evaluated in the ACL package context of the originating ACL
function that invoked the AOM method, for example, javascript or js
source for JavaScript or a java type function for Java. For document type
and document JavaScript and VBScript customization files automatically executed
by Arbortext Editor or the Arbortext PE sub-process, this is the main package. If
the string passed to Acl.eval or Acl.execute starts with a function call with
a package prefix, then the package declaring the function is used.

~ Note

Be aware that the letter case to use for the Acl interface methods varies
depending on the implementation language being used. If you are working
with Java or Javascript to implement the Acl interface, refer to the Acl class
Javadoc in the Arbortext Editor Help Center for the proper letter case for the
Acl methods.

62 Programmer's Reference

Using Java to Access the AOM

Java INterface OVEIVIEWcooiiiiiiii et e e e e et aees 64
JAVA ANA ACL . e 64
Java Virtual Machine (JVM) Managementoooiiiiiiiiiciii e 67
Accessing the Java CONSOIEcooeeiiiiiiiiii e 68
AOM PACKAGES .. .cvvieiiieiii et e e e e e e 68
Compiling Your AOM Java Program.........ccoeeeiuiiieieiiie e e s 70
Using an IDE to create Your AOM Java Programcccocoiiiiiiieeiiii i 70
Making Classes Available to the Embedded JVM.............cccoiiiiiiiiiiiiiiee e 71
Java Access 10 DOM EXEENSIONScccuuuiiiiiiiiiieeeiii e e e e e e e e 71
Java Interface EXCEPLONScoooiuii i 71
Accessing the Java CONSOIEiiiiiiiiiii e 72
Debugging Java AppliCatIoNScoouuiiiiie e 73
SaAMPIE JAVA COUE ... 74

63

Java Interface Overview

Arbortext Editor and Arbortext Publishing Engine include a Java binding to the
AOM. Using this binding, software developers can use the Java programming
language to write applications for Arbortext Editor or the Arbortext Publishing
Engine.

Arbortext Editor and the Arbortext Publishing Engine implement the Java
interface using the Java Native Interface (JNI). The JNI allows Java code that runs
within an embedded Java Virtual Machine (JVM) to operate with applications and
libraries written in other languages such as C++. In Arbortext Editor and the
Arbortext Publishing Engine, the JNI interacts specifically with the AOM.

Arbortext Editor or an Arbortext PE sub-process creates only one instance of the
JVM per session and initializes it the first time a Java method is executed. The

-7 s startup option may be specified when launching Arbortext Editor to cause the
JVM to be initialized on startup. You can also start the JVM using the java
init ACL function. The JVM is unloaded when you end the current Arbortext
Editor or Arbortext PE sub-process session.

There are several ACL functions of the form java xxx that allow ACL
programs to call a Java static method, a Java instance method, or a Java
constructor, and otherwise interact with Java programs. These ACL functions are
explained in Java and ACL on page 64.

Java Interface Platform Requirements

The Java interface requires access to Oracle’s Java Runtime Environment (JRE),
which is included in the Arbortext Editor or Arbortext Publishing Engine
installation in the Arbortext-path\bin\jre directory.

Refer to the Installation Guide for Arbortext Editor, Arbortext Styler, and
Arbortext Architect or Installation Guide for Arbortext Publishing Engine for the
most recent version support information.

To use a specific JVM, you need to specify it with the Javavmpath ACL set
option. To set the maximum size of the Java Virtual Machine (JVM) memory
allocation pool, use the APTJAVAVMMEMORY environment variable (sets the
size of JVM on startup of Arbortext Editor) or the javavmmemory ACL set
option.

Java and ACL

To call a Java method from ACL, use one of the following java type
functions.

* Jjava_constructor — Calls a Java constructor.

* Jjava constructor modal — Calls a Java constructor in a new thread.

64 Programmer's Reference

* java delete — Deletes a Java object created by java constructor,
java instance,or java static.

* Jjava instance — Calls a Java instance method.

* Jjava_instance modal — Calls a Java instance method in a new thread.
* java static — Calls a Java static method.

* Jjava static modal — Calls a Java static method in a new thread.

* Jjava_init — Tests if the JVM is running and optionally initializes it.

The flow of control in the Java interface usually starts with the execution of a
java type ACL function.Arbortext Editor or the Arbortext PE sub-process
starts its embedded Java Virtual Machine (JVM) at startup, making the distributed
Java classes and user Java classes available. Java . class files placed in the
custom\init directory are automatically executed without the need for the
java_type functions.

The Java programming language supports method overloading, so several
methods in a class may have the same name with different arguments. When
searching for the method to invoke, Arbortext Editor or the Arbortext PE sub-
process will use the first method it finds that has the correct name and correct
number of arguments.

The java type functions use Java reflection methods to analyze the called Java
class or method before calling it, converting the arguments in the java type
function to the data types used by the called Java code. If you include ACL
variables and function calls within your arguments, Arbortext Editor or the
Arbortext PE sub-process will perform the necessary variable substitution and
pass the result to the called Java code. All arguments passed are considered read-
only to the called Java code; the called Java code will not change the value of any
of the passed arguments.

Argument values that originate in ACL and are passed to a class or method can
only be converted to a void, a Java string, or one of the supported primitive data
type. The supported primitive data types are:

s int

* short

* long

+ float

* double
* char

* byte

Argument values that originate as returned data from a previous call to a java
type function can be passed back to a Java class or method. For example, a
called Java method may return a Java structure. This returned object would be

Using Java to Access the AOM 65

placed within the specified ACL return variable name. While this Java structure
could not be used directly within ACL, you could pass it to another Java class or
method by calling a java type function and supplying the return variable name
as an input argument.

Passing Arrays Between Java and ACL

Some ACL functions accept or return array data. Java programs that call these
ACL functions will require additional coding to transfer the array data across the
interface.

For example, if a Java program needs a list of the available tag names in a
document, it can use the Acl.eval Java method to call the tag names ACL
function. This ACL function returns an integer for the total number of available
tag names to the Java method, but it stores the array of tag names in an ACL array.
To retrieve this data and make it available to the Java program, further calls to the
Acl.eval method would be necessary. Consider the sample code that follows:
// This method fills a Java String array with the data
// from an ACL array
private String[] convertAclArray(String aclArrayName, \

int aclArraySize) {

String[] result = new Stringl[aclArraySize];

for (int i = 0; 1 < aclArraySize; i++) {

// The first element of a Java array has index 0 but the first
// element of an ACL array has index 1

result[i] = Acl.eval (aclArrayName + "[" + String.valueOf (i+1)
+ "1

}

return result;

}

try {

total = Acl.eval("tag_names($arr)");

} catch (AclException e) {

// Maybe the $arr has been defined and it is not an array

g.drawString (e.getMessage () , 20, 60);

return;

}

String[] names = convertAclArray("$arr", Integer.parselnt (total));

Similarly, data in Java arrays need to be transferred to an ACL array before that
data can be used by an ACL function.

66 Programmer's Reference

The java array from acland java array to acl ACL functions
can also be used to convert certain types of arrays between ACL and Java. See the
online help for details.

Java Virtual Machine (JVM) Management

By default at startup, Arbortext Editor detects and loads an installed Java Virtual
Machine (JVM). You can also load the detected JVM using the java init
function. The JVM instance is dedicated to running Java code started from within
Arbortext Editor. Arbortext Editor creates only one instance of the JVM per
session. The JVM is unloaded when you end the current Arbortext Editor session.

You can use the set javavmmemory ACL command to set the maximum size
of the memory allocation pool before the JVM starts.

~ Note

If APTJAVAVMMEMORY has a value, all subsequent set javavmmemory
commands are ignored.

You can see the current JVM version by choosing Tools » Administrative Tools >
Java Console to open the Arbortext Java Console.

Making Classes Available to the Embedded JVM

The simplest way to make your classes available to Arbortext's embedded JVM is
to put them in the custom\classes directory. Any .class and . jar files in
Arbortext-path\custom\classes are automatically added to the
Arbortext Editor class path.

You can also use the ACL set javaclasspath command or the ACL
append javaclass path function to set the list of directories where the
embedded JVM can locate your Java classes. The default setting of set
javaclasspath includes Arbortext-path\custom\classes.

The javaclasspath option is used only for locating non-Arbortext supplied
classes. In addition to aom. jar, several other . jar files are distributed in
Arbortext-path\lib\classes and are automatically included as part of
the embedded JVM's class path.

Once the JVM has started, changes to the javaclasspath option or to the
directories it specifies will not take effect until you exit and start a new session of
Arbortext Editor or stop and restart the servlet container for the Arbortext
Publishing Engine.

Using Java to Access the AOM 67

help793.html

Making the AOM Available for Other Java Programs

If you are compiling a Java program that uses the AOM, put Arbortext-
path\lib\classes\aom. jar in the compiler's ~classpath argument.

Accessing the Java Console

The Java Console displays everything that a Java program writes to the Java
System.out PrintStream and output from the JavaScript Print () function.
The Java Console also displays the JVM version number and vendor.

~ Note

The Java Console is not a standard input (that is, stdin). You cannot type in
the Java Console window.

For example, if you use the java static function to run a Java method and
that Java method executes:

System.out.println ("Hello");
then He11o displays on the Java Console (if the Java Console is open).

If the Java Console is closed, output will be discarded.
There are two ways in which you can access the Java Console:

* Choose Tools » Administrative Tools » Java Console.

* Usethe java console function. You can also use this function to
specify the size of the window.

AOM Packages

Arbortext Editor and the Arbortext Publishing Engine ship with Java classes for
using the AOM from the Java programming language. The supplied Java classes
are stored in a Java archive file Arbortext-path\lib\classes\aom. jar
and are intended for developer use. The AOM and DOM Java classes and
interfaces are stored in the following packages:

Package Description

com.arbortext.epic The core interfaces of the AOM,

including the singleton Application and
Acl objects.

com.arbortext.epic.table The table-related interfaces for the
AOM, including the TableObject
superinterface.

68 Programmer's Reference

help1340.html
help1440.html

Package Description

com.arbortext.epic.ui User interface-related interfaces for the
AOM, including the Component
superinterface.

org.w3c.dom The core interfaces for the W3C
Document Object Model (DOM).

org.w3c.dom.events The interfaces for the W3C DOM
Events specification.

org.w3c.dom.ranges The interfaces for the W3C DOM
Ranges specification.

org.w3c.dom.views The interfaces for the W3C DOM

Views specification.

All the methods in the Application class and the Acl class are class methods.
Therefore you will never need an instance of the Application or an Acl object.

~! Note

If you inspect the aom. jar file, you will find additional packages (for
example, com.arbortext.epic.internal). These additional packages are for
Arbortext internal use and should not be used in your Java programs.

Your Java program should import the required AOM and DOM packages. For
example, if you are writing a DOM event handler you would need to import at
least the following packages:

import com.arbortext.epic.*;

import org.w3c.dom.*;

import org.w3c.dom.events.*;

See Overview on page 120 for details on using events with the AOM.

~! Note

The com.arbortext.epic.ui package defines several AOM-specific interfaces
that have the same names as some in the java.awt package. If you import
the AOM user interface package in a . java source file, do not also import
java.awt.

Using Java to Access the AOM

69

Javadoc

Complete Java API Javadoc is delivered in the Programming » Javadoc section of
Help Center. You can also refer to the detailed documentation for each of the
AOM interfaces in Interface Overview on page 185.

Compiling Your AOM Java Program

When compiling a Java program that uses the AOM, you must put Arbortext-
path\lib\classes\aom. jar in the compiler's ~classpath argument.

For example:
javac -classpath "C:\Program Files\Arbortext\editor\lib\classes
\aom.jar" MyClass.java

The compiled program can only be run within PTC Arbortext’s Java environment.
Java programs running in a JVM outside of Arbortext Editor cannot use the AOM
classes.

Using an IDE to create Your AOM Java
Program

There are a number of Java-based Integrated Development Environments (IDE)
that can be used to create AOM Java programs. The IDE must be able to find the
AOM JAR file. Using Oracle's J/Developer version 3.2.2 as an example, follows
these instructions:

1. Create a library

Click on menu item Project followed by Project Properties. On the resulting
dialog box, choose the Libraries tab and then click the Libraries button. On the
resulting dialog box, click the New button and name the new library
Arbortext AOM. In the Class path field on the same dialog box, specify
Arbortext-path\lib\classes\aom. jar. Click OK to finish creating
the library.

2. Reference the library

Return to the Project Properties window under the Libraries tab and click the
Add button. Select Arbortext AOM on the resulting dialog box and click OK
to add it to the current project.

Refer to the documentation for your IDE for instructions on a class path.

70 Programmer's Reference

Making Classes Available to the
Embedded JVM

You can use the set javaclasspath command or the append

javaclass path function to set the list of directories where the embedded
JVM can locate your Java classes. The default setting of set javaclasspath
is empty. Regardless of whether set javaclasspath is set, the embedded
JVM searches the distributed Java classes in Arbortext-path\1ib\
classes\aom. jar. The aom. jar file holds com.arbortext.epic,
which contains the Arbortext Editor distributed Java classes that implement the
AOM and DOM.

Any .class and . jar filesin Arbortext-path\custom\classes are
automatically added to the Arbortext Editor class path.

Subsequent changes to specify external Java class directories do not affect the
running JVM until you exit Arbortext Editor and start a new session. Be sure to
set the path to your directory before making your first Java function call.

Java Access to DOM Extensions

The AOM's extensions to DOM are represented by companion interfaces that start
with the letter A, for example, ANode is the extension to the W3C Node interface,
ADocument is the extension to the Document interface, and so on.

In Java, these interfaces can be obtained from their related objects by using the
casting methods. For instance:

Document doc = Application.getActiveDocument () ;

Range r = ((ADocument)doc) .getInsertionPoint();

Java Interface Exceptions

Several AOM and DOM methods will raise an exception if an error occurs. The
following tables summarize the DOM and AOM exception classes:

DOM Exception Classes

Exception Class Description
DOMException Raised by core DOM methods.
EventException Raised by DOM event methods.
RangeException Raised by DOM range methods.

Using Java to Access the AOM 71

help1341.html
help5092.html
help5092.html

AOM Exception Classes

Exception Class Description

AclException Raised by methods in the Acl interface.

AOMException Raised by general AOM methods.

TableException Raised by table-related methods.

WindowException Raised by Window and other user interface related
methods.

In the Arbortext Editor Java interface, all DOM and AOM exceptions are
subclasses of java.lang.RuntimeException and inherit the
getMessage method from the java.lang.Throwable interface. The
getMessage method can be used to retrieve an error message associated with
the exception.

Most DOM and AOM exception classes define a code field that can be accessed
to determine the numeric error code associated with the exception (the exception
is the AOMException class). Symbolic names for the error codes listed with
each exception interface description in Interface Overview on page 185 are
available as class constants. For example, the following checks for a specific
:DOhdeﬂoraxh(NO_MODIFICATION_ALLOWED_ERR)

try {

node.insertBefore (newNode, refNode) ;

}

catch (DOMException e) {

if (e.code == DOMEXCeption.NO_MODIFICATION_Z—\LLOWED_ERR) {
// document is read only

}

}

If your Java program does not catch an exception, its execution will be aborted
and an error message will be displayed.

Accessing the Java Console

The Java Console displays everything that a Java program writes to the Java
System.out PrintStream and output from the JavaScript print () function.
The Java Console also displays the JVM version number and vendor.

~ Note

The Java Console is not a standard input (that is, stdin). You cannot type in
the Java Console window.

72 Programmer's Reference

For example, if a Java method executes:
System.out.println ("Hello");

then He11o displays on the Java Console (if it is open).
If the Java Console is closed, output will be discarded.
There are two ways you can access the Java Console:

* Choose Tools » Java Console.

» Usethe java console ACL function, which can also specify the size of
the window.

Debugging Java Applications

Arbortext Publishing Engine requires you to obtain a JRE from Oracle (www.java.
com) and install it. Arbortext supports the Java Platform Debugger Architecture
(JPDA, see http://java.sun.com/products/jpda/),any JPDA compliant Java
debugger can hook into Arbortext.

JDB can also be used to debug a Java program using two methods: the socket
method and the shared memory method.

Before using JDB, ensure you have Oracle JDK version 11 or later installed on
your workstation. Java debugging related DLLs and shared libraries must be
accessible by the debugger. The PATH environment variable must include the bin
directory of the JDK.

Compile your Java programs with the —g flag (for debugging).

The Socket Method

The ACL set javadebugport option specifies the socket port you want to
use for debugging. If javadebugport is set to auto, the Arbortext Publishing
Engine and Arbortext Editor will randomly select an unused socket port.

As an example, if you want to debug the EventF1low class, and it is located in
the directory C: \ temp, use the following steps.

1. From the Arbortext Editor command line, enter the following commands:
set javaclasspath=C:\temp
set javadebugport=auto
java console() # this loads the JVM
eval option ('javadebugport')

Note the port number displayed in the eval window. For purposes of this
example, assume this number was 3539,

2. Open a shell window, navigate to the directory where your Java source resides,

and enter the following command:
jdb -connect com.sun.jdi.SocketAttach:port=3539

Using Java to Access the AOM 73

http://java.sun.com/products/jpda/

3.

After JDB is initialized, give it a break point. For example, to break at the
method f1ow of the class EventF1ow, enter the following:
> stop in EventFlow.flow

From the Arbortext Editor command line, run EventFlow. f1low as follows:
java_static('EventFlow', "flow')

JDB will stop at the break point and display the line of the source code where
it stopped.

The Shared Memory Method

To use the shared memory method, you must set JVM arguments properly and
create a name for the shared memory address.

As an example, if you want to name the shared memory address <myaddr>, use
the following steps to debug EventFlow.class in C: \temp:

1.

From the Arbortext Editor command line, enter the following commands:
set javaclasspath=C:\temp

set javavmargs="-Xdebug -Xrunjdwp:transport=dt shmem,
address=<myaddr>, server=y, suspend=n"

the above is one long line

java console ()

Open an MSDOS shell and enter the following command:

jdb -attach <myaddr>

After JDB is initialized, give it a break point. For example, to break at the
method £1ow of the class EventF1ow, enter the following:

> stop in EventFlow.flow

From the Arbortext Editor command line, run EventFlow. f1low as follows:
java_ static('EventFlow', 'flow')

JDB will stop at the break point and display the line of the source code where
it stopped.

Sample Java Code

Sample Java code for the Java interface is included in the Arbortext-path\
samples\java directory. The README file in this directory provides a
description of the sample code and how to invoke the sample methods. Note that
you must compile the sample Java code before you can use it.

74

Programmer's Reference

Using JavaScript to Access the
AOM

JavaScript Interface OVEIVIEWccouuiiiiiii e 76
JavaSCript @NA ACL ... oo 76
JavaScript LImitations..........coooiiii e 79
JavaScript Language EXIENSIONS...........iiiiiiiii e 80
JavaScript Global ObJECESciiiii e 82
Calling Java from JavaSCriptcciuiiiiie e 84
JavaScript Interface Error Handlingcooouiiiiiiiii e 85
Specifying the Interpreter for .js Filesooooiiiiii i 86
Sample JavaScript COAe. 86

75

JavaScript Interface Overview

Arbortext Editor and the Arbortext Publishing Engine include a JavaScript
binding to the AOM. Using this binding, software developers can use the
JavaScript programming language to write applications for Arbortext Editor and
the Arbortext Publishing Engine.

Arbortext uses the Rhino open-source Java implementation from The Mozilla
Organization as its JavaScript interpreter. This version of Rhino supports the
JavaScript language version 1.5 and is compliant with the European Computer
Manufacturers Association (ECMA) standard described in ECMA-262 Edition 3
(www.mozilla.org/js/language/E262-3.pdf).

Arbortext Editor uses the Rhino interpreter unmodified, distributed as
Arbortext-path\lib\classes\js.jar. For more information about
Rhino, see the Rhino: JavaScript for Java web page at http://
mozilla.github.io/rhino/. The source code for the interpreter is
available at the Mozilla site at http://mozilla.github.io/rhino/.

The Arbortext Object Model (AOM) interface for JavaScript is implemented on
top of the Java AOM interface classes using a feature called LiveConnect. Refer
to Calling Java from JavaScript on page 84 for details.

~ Note

The Arbortext Editor JavaScript implementation supports the DOM and
Arbortext Editor AOM interfaces only. It does not support client-side
JavaScript found in web browsers. In particular, there is no browser Window
object or window global execution context. The AOM provides its own
Window interface. By default, all JavaScript code is executed in a single global
context. Arbortext Editor does not currently support other browser-specific
JavaScript objects such as Form, HTMLE lement, or Location.

JavaScript platforms

The JavaScript interface is implemented in Java, so it has the same platform
requirements as the Java interface. Refer to Java Interface Platform Requirements
on page 64 for more information.

JavaScript and ACL

JavaScript expressions or scripts can be called from ACL with one of the
following ACL primitives:

76 Programmer's Reference

http://www.mozilla.org/js/language/E262-3.pdf
http://mozilla.github.io/rhino/
http://mozilla.github.io/rhino/
http://mozilla.github.io/rhino/

* Jjavascript — Function that evaluates a JavaScript expression and returns
the result as a string.

* Jjs_source — Function that reads and executes a file containing a
JavaScript program.

* Jjs — Command that evaluates a JavaScript expression and displays the
result.

* source — Command that interprets files ending in . js as JavaScript
programs to be executed when set javascriptinterpreter issetto
rhino.

The flow of control in the JavaScript interface usually starts with the execution of
one of these ACL functions or commands, with the exception of customization
files ending in . js. Arbortext Editor and the Arbortext PE sub-process
automatically load and execute JavaScript programs from the doctype. js,
instance.js, and document. js files following the same rules as
doctype.acl, instance.acl, and docname.ac] files.

The JavaScript interpreter starts the first time Arbortext Editor or the Arbortext PE
sub-process executes one of these ACL functions or commands or reads a . J s
customization file. Arbortext Editor and the Arbortext PE sub-process will also
start the Java Virtual Machine, if necessary. You may also specify the —jvm and
-7 s startup command options to start Java and JavaScript, respectively, when
Arbortext Editor is opened.

Unlike the Java interface, only string arguments are passed from ACL to
JavaScript. So any ACL argument value passed to js_source is converted to a
string. ACL arrays must be converted to some form of delimited string (for
example, as an array literal) or passed element by element to JavaScript
expressions. Refer to Passing Arrays Between JavaScript and ACL on page 77 for
more details.

JavaScript objects may not be returned directly to ACL. If the result of a
JavaScript expression passed to javascript is an object, the toString
method is invoked on the object and that value is returned by javascript.

Passing Arrays Between JavaScript and ACL

There are two ways to pass arrays between JavaScript and ACL, both involving
the conversion of arrays to strings. The first method uses the JavaScript Array.join
method to convert the JavaScript array to a string that is passed to the ACL
split function.

For example, the JavaScript code

var jsArr = [1, 2, 3];
Acl.eval ("split('" + jsArr.join() + "', aclArr, ',")");

converts the JavaScript array jsArr to the ACL array aclArr.

Using JavaScript to Access the AOM 77

~ Note

ACL arrays normally start at index 1, which is the same as JavaScript index 0.

The second method uses a loop to pass the array, element by element. The Acl.eval
call in the example above can be rewritten as:

for (var i = 0; i < jsArr.length; i++) {
var ai =1 + 1;
Acl.eval ("aclArr[" + ai + "] = '"" + JsArr[i] + "'");

}
This method is slower, but isn't subject to the ACL string token limit of 4096
characters.

Similarly, there are two ways to retrieve an ACL array from JavaScript. The first
method uses the ACL join function to concatenate the ACL array into a string
that initializes a JavaScript array. For example, you can use the following ACL
code to pass the ACL array created above to JavaScript:

javascript ("var jsArr = [" . join(aclArr) . "1");

This method is not limited by the ACL string token limit.

You can also use a loop to retrieve the array, element by element, as shown in the
following JavaScript example:

var count = parselnt (Acl.eval ("count (aclArr)"));

var lowBound = parselnt (Acl.eval ("low bound(aclArr)"));

var jsArr = new Array (count);

for (var i = 0; 1 < count; i++) {

var ali = lowBound + i;

jsArr[i] = Acl.eval ("aclArr[" + ai + "]1");

}

This method translates the arbitrary array index bounds in an ACL array to the
zero-based array index in JavaScript. It also uses the parselnt method to convert
the Java string returned by Acl.eval into a JavaScript number.

Associative Arrays

The previous examples concern normal numeric indexed arrays. You can use
equivalent techniques to pass associative arrays using for/in loops instead of
the for loops as above. The following JavaScript example passes an associative

array to ACL:

var jsAssoc = {one: 1, two: 2, three: 3};

for (var i1 in jsAssoc) {

Acl.eval ("aclAssoc['"™ + 1 + "']="'"" 4+ JsAssoc[i] + "'");

}

78 Programmer's Reference

You can pass an ACL associative array to JavaScript using the ACL join
function or an ACL for/in loop similar to the JavaScript example. The
following ACL example shows the join technique to declare a JavaScript array
using object literal syntax:

javascript ("var jsAssoc={" . join(aclAssoc,',',1) . "}")

~ Note

The ACL join function also works for associative arrays, and produces a
result that can be used to initialize a JavaScript associative array object as in
the previous example.

JavaScript Limitations

The following lists some limitations of the Arbortext Editor JavaScript
implementation.

» The Mozilla Rhino JavaScript interpreter does not support the

netscape.javascript.JSObject class as part of LiveConnect. It uses

a different mechanism for accessing JavaScript objects from Java. See
Requirements and Limitations at the Mozilla web page
developer.mozilla.org/en-US/docs/Web for additional
limitations of the interpreter, and the Mozilla web page
developer.mozilla.org/en-US/docs/Web/Tutorials fora
description of using JavaScript objects from Java.

» Strings returned by AOM/DOM methods are Java St ring objects and not
JavaScript St ring objects. While Java St ring objects share many of the
same methods as JavaScript String objects (for example, charAt,
substring, toLowerCase) and can be used in string contexts, they are

not equivalent. In particular, Java St ring has no 1ength property; use the

length () method instead. Also, Java St ring is not automatically

converted to a number when used in a numeric context. To explicitly convert a

Java String to a number when appropriate, use the parseInt or
parseFloat function.

To perform JavaScript-style string manipulations on a Java St ring returned

by the AOM, convert the string to a JavaScript St ring by concatenating it

with a null string. For example:
var jsStr = doc.documentElement.tagName + "";

Using JavaScript to Access the AOM

79

https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web/Tutorials

JavaScript Language Extensions

The Arbortext Editor JavaScript implementation includes a few non-standard
extensions, modeled on similar features provided by the Rhino Shell. The Rhino
Shell is a standalone utility from Mozilla that runs JavaScript programs.

Function
defineClass (javaclass)

implementationVersion ()

importClass (javaclass)

importPackage (javapackage)

80

Description

This global function defines a
JavaScript class from the Java class
specified by javaclass. The Java
class file must be in the class path set
for the Java Virtual Machine embedded
in Arbortext Editor, for example, by
including the . class file in the
Arbortext-path\custom\
classes directory.

javaclass must implement the org.
mozilla.javascript.Scriptable interface or
extend the org.mozilla.javascript.
ScriptableObject class. See the Rhino
documentation at the Mozilla web page
for details.

This global function returns the
JavaScript interpreter implementation
version as a string encoding the product
name, language version, release
number, and date.

This global function will “import” the
Java class javaclass by making its
unqualified name available as a
property of the top-level scope.

This global function will “import” all
the classes of the Java package
Jjavapackage by searching for
unqualified names as classes qualified
by the given package. This is similar to
the Java import statement.

Programmer's Reference

Function

load(filename, ...)

Using JavaScript to Access the AOM

Description

~ Note

If this function is evaluated in the
global scope, then the unqualified
names are available to all
JavaScript code subsequently
executed in the shared scope.

This global function will load and
execute the JavaScript source file given
by the filename argument. Multiple file
name arguments may be specified and
filename can be a URL.

If filename is not an absolute path or
URL, the list of directories is the list in
loadpath parameter of the setOption
method, described in AOM set Options
Overview on page 737.

If filename is not found relative to the
current directory and is not an absolute
path, the list of directories specified in
the Arbortext Editor (or the Arbortext
Publishing Engine) loadpath parameter
is searched to locate the JavaScript
source file.

81

Function
print (expr)

quit ()

Description

This global function evaluates the
expression expr and prints the string
value of the result to the Java Console.
If the Java Console is not open, the
output is discarded. The print
function supplies a trailing new line
character, so each call to print ()
ends a line.

This global function terminates the
current script execution. It is provided
so sample Rhino JavaScript scripts can
be run unmodified within Arbortext
Editor and the Arbortext Publishing
Engine. This function is implemented
by throwing a special
JavaScriptException object; if quit ()
is used inside a try block with a catch, it
will not function as expected.

JavaScript Global Objects

The Arbortext JavaScript implementation provides several global objects available
to all JavaScript scripts. The Application and Acl objects are instances of the AOM
Application and Acl interfaces. Only one object for each interface exists in a
Arbortext Editor or Arbortext PE sub-process session.

Object
Application

Acl

AclException

DOMException

82

Description

This global object implements the
Application interface that provides
access to all other DOM and AOM
objects except for the Acl interface.

This global object implements the Acl
interface that provides access to ACL
(Arbortext Command Language).

This is an instance of the class
AclException, raised by some Acl
interface methods.

This is an instance of the class
DOMException, raised by some
DOM interface methods.

Programmer's Reference

Object
EventException

RangeException

TableException

WindowEXxception

arguments

environment

Using JavaScript to Access the AOM

Description

This is an instance of the class
EventException, raised by some
DOM Event interface methods.

This is an instance of the class
RangeException, raised by some
DOM Range interface methods.

This is an instance of the class
TableException, raised by some
Table interface methods.

This is an instance of the class
WindowException, raised by some
Ul interface methods.

This global array contains the
arguments passed to the js source
ACL function as the args parameter.
The array will have zero length if no
arguments were passed, or if the
JavaScript code was executed by the
javascript ACL function.

This global object provides access to
Java System properties. Accessing an
environment property name results in a
call to
java.lang.System.getProper
ty ("name").

Setting a property name to value
results in a call to
java.lang.System.getProper
ties () .put ("name",
"value").

For example:
environment ["user.dir"] = "c:\\temp"

changes the java user directory system
property.

83

Calling Java from JavaScript

The Mozilla Rhino JavaScript interpreter bundled with Arbortext Editor provides
a mechanism called LiveConnect that lets you use Java classes and methods from
JavaScript. The Arbortext Object Model (AOM) classes are written in Java and
made available in JavaScript by LiveConnect.

LiveConnect manages the Java to JavaScript communication, including
conversion of data types. JavaScript: The Definitive Guide, written by David
Flanagan and published by O'Reilly, discusses this subject. There are some
limitations with LiveConnect and the AOM, as noted in JavaScript Limitations on
page 79.

Rhino also supports defining new JavaScript classes by writing Java code that
extends the org.mozilla.javascript.ScriptableObject class. The JavaScript function
defineClass makes such classes available to JavaScript. Refer to the Rhino
documentation at the Mozilla web page for details.

With LiveConnect, Java packages are represented in JavaScript by the
JavaPackage class. You can access the Java classes provided with the JVM
embedded in Arbortext Editor, plus those found in the Java class path (as specified
by the javaclasspath parameter of the setOption method, described in AOM
set Options Overview on page 737) from the top-level JavaPackage object
Packages. This includes the standard Java system classes (for example,
Packages.java.lang.System) and the packages provided by Arbortext
(for example, Packages.com.arbortext.epic,
Packages.org.w3c.dom), and the JavaScript interpreter
(Packages.org.mozilla.javascript). As a convenience, the classes in
the java package can be referred to directly without the Packages qualifier, for
example, java.lang.Systemand java.lang.awt.Frame.

~ Note

The Java Swing classes are in the javax package, so you must fully qualify
the package name (Packages. javax.swing) to use Swing classes.

The global object Application is a shortcut for the
Packages.com.arbortext.epic.Application JavaClass. Similarly,
the global object Ac1 is a shortcut for the
Packages.com.arbortext.epic.Acl JavaClass.

The following JavaScript example uses the standard Java AWT classes to create
and display a dialog box.

84 Programmer's Reference

~ Note

Since no event handling is specified in this example, the dialog box cannot be
dismissed.

function hello ()

{

var f = new java.awt.Frame ("Hello World");

var ta = new java.awt.TextArea("hello, world", 100, 200);
f.add ("Center", ta);

f.pack();

f.show () ;

}
hello();

A more complicated example with event handling is included with the Arbortext
distribution. Refer to Sample JavaScript Code on page 86 for details.

JavaScript Interface Error Handling

Errors When Executing JavaScript

When executing JavaScript programs, Arbortext Editor displays error messages if
there are problems when starting the JavaScript interpreter, in the embedded Java
Virtual Machine (JVM), or if the JavaScript interpreter reports an exception. If the
JavaScript interpreter reports an exception, Arbortext Editor displays a message
such as “The Java method name has thrown an exception.” If you use the ACL
function javascript to invoke the JavaScript interpreter, name is eval; if you
use the ACL function js_source, name is source.

The JavaScript exception message is sent to the Java Console if it is open;
otherwise, it is discarded. When developing JavaScript applications, choose Tools
» Java Console to open the Java Console and view exception messages.

For JavaScript code executed by reading a . j s file, the JavaScript exception
report includes a traceback showing the file name and line number of each
function active at the time of the error. The traceback also lists Java methods for
the JavaScript interpreter, which can be ignored.

Exception Handling

JavaScript provides exception handling with try/catch statements. Since
JavaScript is implemented using the Java interface, it supports all the DOM and
AOM exception classes summarized in Java Interface Exceptions on page 71 and
defined in Interface Overview on page 185. Most exception classes define a

Using JavaScript to Access the AOM 85

numeric error code attribute named code and message attribute named
message. The symbolic names for the error codes listed with each exception
interface description are available for the global exception objects listed in
JavaScript Global Objects on page 82. For example,
try {

node.insertBefore (newNode, refNode);

}

catch (e) {

if (e.code == DOMException.NO MODIFICATION ALLOWED ERR) {
Application.alert ("Document is read only");

}

else {
Application.alert ("Error: " + e.code +
" Message: " + e.message);

}
}

Specifying the Interpreter for .js Files

Arbortext Editor supports two JavaScript interpreters. You should specify which
interpreter to use to process your . s files. You can include a special comment as
the first line of the file. If the first line of the . j s file using either form specified

in the following examples, then the Rhino JavaScript interpreter will be used.
// type="text/javascript"

or
// <script type="text/Jjavascript">

You can also specify the interpreter with the ACL set
javascriptinterpreter command. However, we recommend using the
commenting technique as it ensures proper handling of your . j s files regardless
of the javascriptinterpreter setting.

Sample JavaScript Code

Sample JavaScript code that uses the JavaScript AOM interface is included in the
Arbortext-path\samples\javascript directory. The readme. txt
file in this directory provides a description of the sample code and how to invoke
the sample scripts. The samples include examples of using the DOM to
manipulate the active document, registering DOM Event handlers, using Java
AWT classes, and transferring arrays between JavaScript and ACL.

There is a sample from the Mozilla Rhino distribution that implements a
JavaScript Fi1le class in Java and an example script, Jsdoc. js, that uses the
defineClass JavaScript extension to define the File class.

Refer to Rhino Examples at the Mozilla web page for additional sample
JavaScript scripts.

86 Programmer's Reference

Using COM to Access the AOM

COM INtErface OVEIVIEWuieiiiii et e e e e e et eeeeaannes 88
Registering and Unregistering Arbortext Editor as a COM Server..........ccc.ccoiveiiiiieennnns 89
Accessing COM Using JScript or VBSCHPtuoiiiiiiiiicee e 90
COM ODBJECES @NA ACL ... e e et e e et e e e e eaaanes 90
COM EITOr HanAIING ... ooeiiii et e e e e 91
SAMPIE COM COUE ...uniiiiiii e et e et e e e e eeen 93

87

COM Interface Overview

Arbortext Editor includes a Component Object Model (COM) binding to the
AOM. Using this binding, developers on Windows platforms can write programs
that use COM to access the AOM or DOM functions supported in Arbortext
Editor.

COM should be installed on all Windows systems that are running Arbortext
Editor. It is unlikely that your Windows systems will not have COM already
installed on them.

When acting as a COM server, Arbortext Editor registers an
Epic.Application COM class which implements the _ApplicationN interface
(for example, _Application6 — consult the type library for the correct interface
version), an Epic.Acl COM class which implements the 1AcI3 interface, a
number of DOMxxx classes which implement their respective IDOMxxx interfaces,
and many other xxx classes that implement their respective Ixxx AOM interfaces.

If you are trying to use COM among different machines, you will need to install
DCOM (Distributed Component Object Model). Extensive information on both

COM and DCOM is available from the Microsoft Developers Network (MSDN)
web site at msdn.microsoft.com.

The Arbortext Editor COM interface to the DOM portion of AOM uses the COM
binding defined by Microsoft with changes for DOM Level 2 and Arbortext
extensions. However, Microsoft has made several significant extensions to the
DOM that are not supported by Arbortext. The definition of the COM classes and
methods that Arbortext Editor exports is contained in the type library that is part
ofthe Arbortext-path\bin\editor.exe binary. Developers can use a
variety of tools to inspect this type library.

The type library defines multiple versions of many interfaces. When an interface
is extended for a given Arbortext Editor or Arbortext Publishing Engine release, a
new version of the interface is defined with the version number incremented. For
example, the _Application3 interface was introduced with Epic Editor and E3 4.3.

Arbortext Editor or an Arbortext PE sub-process does not need to be running for it
to be available to COM. If Arbortext Editor or an Arbortext PE sub-process is not
running when a call is made to the Arbortext Editor COM server, it will
automatically load and run in the background while servicing the COM call. If a
user then uses the Windows user interface to start a Arbortext Editor session, the
invisible instance that was running exclusively as a COM server automatically
becomes visible and available to the user.

88 Programmer's Reference

http://msdn.microsoft.com

Registering and Unregistering Arbortext
Editor as a COM Server

When you install Arbortext Editor, the setup program automatically registers
PTC Arbortext Editor as a COM server. The uninstall program will unregister
Arbortext Editor as a COM server.

Starting with release 5.4, Arbortext Editor also automatically checks at startup to
see whether the application is registered as a COM server. If Arbortext Editor
finds that it is not registered as a COM server, it performs a COM registration for
Arbortext Editor itself and all of its installed components as part of the startup
process. This check can be disabled with the APTNOCOMCHECK environment
variable. If the automatic registration fails for some reason (usually because the
user does not have administrator privileges), Arbortext Editor still opens but
displays an error message first saying that this version is no longer configured
correctly. In this case, some Arbortext Editor components might not be available.
You can keep Arbortext Editor from opening in this case with the
APTFAILIFNOCOM environment variable.

If you run a version of Arbortext Editor earlier than 5.4 on the same system with
your current version, you might encounter problems with the earlier version’s
COM registration due to the new automatic COM registration. You can obtain a
utility called register.bat from PTC Technical Support that will correctly
register releases of Arbortext Editor prior to 5.4. For more information, search the
Technical Support knowledge base for TPI 144503.

You can manually register or unregister a PTC Arbortext Editor installation at any
time by running Arbortext Editor with the ~-RegServer, -UnregServer, or
-UnregAnyServer startup command options. In the examples that follow, the
first path to the editor . exe binary is for 64-bit installations, and the second
path is for 32-bit installations.

Arbortext-path\bin\x86\editor.exe —-RegServerArbortext-path\bin
\x86\editor.exe -RegServer

Arbortext-path\bin\x64\editor.exe -RegServerArbortext-path\bin
\x86\editor.exe -RegServer

Registers a specific Arbortext Editor installation as a COM server.
Arbortext-path\bin\x86\editor.exe -UnregServerArbortext-path\bin
\x86\editor.exe -UnregServer

Arbortext-path\bin\x64\editor.exe -UnregServerArbortext-path\bn
\x86\editor.exe -UnregServer

Unregisters a specific Arbortext Editor installation as a COM server. Note that the
-UnregServer option will not remove the editor.exe COM server entry in
the registry, unless the Arbortext Editor installation you are running matches the
Arbortext Editor installation listed as the current editor.exe COM server.
Arbortext-path\bin\x86\editor.exe -UnregAnyServerArbortext-path\bin
\x86\editor.exe -UnregAnyServer

Arbortext-path\bin\x64\editor.exe -UnregAnyServerArbortext-path\bin
\x86\editor.exe -UnregAnyServer

Using COM to Access the AOM 89

Unregisters any version of Arbortext Editor on the system as a COM server, not
just the installation for which you are using the option.

Accessing COM Using JScript or
VBScript

You can access the AOM in JScript and VBScript using the COM interface. The
Arbortext Editor Application and Acl objects are exposed to the script
automatically as global objects when using the built-in script interpreters.

You can access external third-party COM objects using the JScript
ActiveXObject object or the VBScript CreateObject and GetObject
functions. Microsoft Excel is an example of a COM server which can be accessed
from Arbortext Editor. For example, to launch Microsoft Excel using JScript, use
the following statement:

var x1 = new ActiveXObject ("Excel.Application");

To launch it using VBScript, use:
Dim x1
set x1 = CreateObject ("Excel.Application")

Both examples provide access to Excel's Application object, which is different
from the Arbortext Editor Application object. (If you were running a script outside
the built-in interpreter, for example, using Excel VBA, you would need to create
an instance of the Arbortext Editor Application object using
Epic.Application.)

Extensive documentation on JScript and VBScript is available from the Microsoft
Developers Network (MSDN) web site at msdn.microsoft.com. Search for the
topic “Windows Script”. Documentation on how to use a COM server, such as
Excel, is provided by the software vendor. In the case of Microsoft Office
products, the VBA (Visual Basic for Applications) documentation is the primary
source of information on the COM objects exposed in each Microsoft Office
application.

COM Objects and ACL

You can use ACL (Arbortext Command Language) to call most COM
(Component Object Model) objects which export the IDispatch interface and
which include a type library.

You can use this functionality, for example, to invoke an application or DLL
written in Visual Basic. Such an external application can, in turn, invoke
Arbortext Editor or an Arbortext PE sub-process using its COM interface to
access or change a document. Keep in mind that calling COM objects from
VBScript or JScript scripts is more straightforward than calling COM objects
from ACL (refer to Accessing COM Using JScript or VBScript on page 90).

90 Programmer's Reference

http://msdn.microsoft.com

ACL includes a set of functions to support COM calls: com attach, com
call, com prop get,com prop put,and com release.

Use the com_attach function to attach to a COM object and return a handle
that can be used to invoke the object. After a successful com attach, you can
use the object handle to make calls to com call, com prop get, or com
prop_set to invoke a method or get or set a property in a COM interface. Use
the com release function to release an object attached by com attach or
one returned by another interface. These functions are documented in the
Arbortext Command Language Reference.

Arbortext Editor and the Arbortext PE sub-process use the type library associated
with a COM interface to determine the type of each argument and the return value
of a method or property invoked using an ACL function. This makes it possible,
for example, to pass ACL variables to COM methods that expect parameters
passed by reference and have the COM object return results to ACL by changing
the value of the variable.

Arbortext Editor and Arbortext Publishing Engine have some restrictions and
limitations in their support for calling COM interfaces, many of which are
inherent to ACL:

* Named arguments are not supported.
* Arguments can be omitted only at the end of the argument list

* You cannot pass an ACL array to a COM interface as an array. You can pass a
member of an ACL array as an individual argument.

* A called COM interface function can't return an array and have it converted
into an ACL array.

* You cannot use the other information in a type library (such as enum
definitions) in ACL.

* There is no implicit support for the implied Value, NewEnum, or
Evalute methods and properties even though it may be possible to call them
explicitly.

COM Error Handling

All of the Arbortext Editor COM interfaces support the Errorinfo COM interface
and use it to pass error messages to the client if the called method fails. All
supplied methods return an HRESULT which indicates success or failure and the
general nature of the failure. Developers can use standard COM practices to
retrieve error codes and error messages.

The DOM specification indicates that several methods will raise an exception
upon certain types of failure. This is also the case for several AOM methods.
Since the COM interface doesn't support exceptions, these failures will be turned
into HRESULT return values. The specific value returned for a given exception

Using COM to Access the AOM 91

can be found in the type library for the Arbortext-path\bin\editor.exe
binary. They're also presented in the tables that follow. The general rule is that
these exceptions will be returned as DOM_E YYY ERR for the DOMException,
EventException and RangeException errors, TABLE E YYY ERR for
TableException errors, WINDOW E YYY ERR for WindowException errors, and
EXECUTE E YYY for AclException errors.

The following tables list the COM error codes and values for each range of errors.
See the exception interface definitions in Interface Overview on page 185 for the

exception codes and their meanings.

DOM Error Codes

Error Code Value
DOM_E_INDEX_SIZE ERR 0x80042101
DOM_E DOMSTRING SIZE ERR 0x80042102
DOM_E HIERARCHY REQUEST ERR 0x80042103
DOM_E_WRONG DOCUMENT ERR 0x80042104
DOM E INVALID CHARACTER ERR 0x80042105
DOM_E NO DATA ALLOWED_ERR 0x80042106
DOM_E NO MODIFICATION ALLOWED ERR 0x80042107
DOM_E NOT _FOUND_ERR 0x80042108
DOM_E NOT SUPPORTED ERR 0x80042109
DOM _E INUSE ATTRIBUTE ERR 0x8004210A
DOM_E _INVALID STATE ERR 0x8004210B
DOM_E SYNTAX ERR 0x8004210C
DOM_E _INVALID MODIFICATION ERR 0x8004210D
DOM_E NAMESPACE_ERR 0x8004210E
DOM_E INVALID ACCESS ERR 0x8004210F
DOM_E VALIDATION ERR 0x80042110
DOM_E UNSPECIFIED EVENT TYPE ERR 0x80042148
DOM_E BAD BOUNDARYPOINTS ERR 0x80042141
DOM_E _INVALID NODE TYPE ERR 0x80042142
DOM_E NO SCHEMA AVAILABLE ERR 0x80042647
Table Interface Error Codes

Error Code Value
TABLE E TABLE OPERATION FAILED ERR 0x80042301
TABLE E TABLE INVALID INDEX ERR 0x80042302
TABLE E TABLE INVALID DIRECTION ERR 0x80042303

92

Programmer's Reference

Table Interface Error Codes (continued)

Error Code Value
TABLE _E TABLE INVALID ORIENTATION ERR 0x80042304
TABLE _E TABLE INVALID SPAN ERR 0x80042305
TABLE_E TABLE INVALID PARAMETER ERR 0x80042306
TABLE_E TABLE INVALID ATTRIBUTE ERR 0x80042307
Window Interface Error Codes

Error Code Value
WINDOW_E WINDOW_NOT SUPPORTED ERR 0x80042401
WINDOW_E WINDOW_ HIERARCHY REQUEST ERR 0x80042402
WINDOW_E WINDOW_WRONG_ WINDOW_ERR 0x80042403
WINDOW _E_WINDOW NOT FOUND_ ERR 0x80042404
WINDOW_E_WINDOW _INVALID COLOR_ERR 0x80042405
WINDOW_E WINDOW _INVALID MODIFICATION ERR |0x80042406
WINDOW_E_WINDOW_NO MODIFICATION _ 0x80042407
ALLOWED ERR
Acl.Execute Error Codes

Error Code Value
EXECUTE _E PARSE FAILURE 0x80042200
EXECUTE_E ERROR 0x80042201
EXECUTE _E INTERNAL ERROR 0x80042202

JScript maps the COM errors to the Error object, and VBScript maps the COM
errors to the Err object. See JScript Exception Handling on page 99 and

VBScript Error Handling on page 103 for details.

Sample COM Code

Sample Visual Basic and Visual C++ code that uses the COM interface is included

inthe Arbortext-path\samples\com directory. The Readme file in this

directory provides details on the samples.

Using COM to Access the AOM

93

Using JScript to Access the AOM

JScript Interface OVEIVIEWcoiuniiii e 96
JSCHPEWItN AC L e e e 96
JSCript LIMItatioNScove 98
AOM Interfaces Specific t0 JSCHPt.........iiiii i 99
JScript Global ObJECESccviiii e 99
JScript Exception Handlingooiiiiiiiii e 99
Specifying the Interpreter for . s Files ... 100
SaMPIE JSCHPL COUE ... i e e 100

95

JScript Interface Overview

Arbortext Editor and the Arbortext Publishing Engine include a JScript binding to
the AOM. Using this binding, software developers can use the JScript
programming language to write applications for Arbortext Editor and the
Arbortext Publishing Engine.

Arbortext uses Microsoft Windows Script (or ActiveScript) as the JScript
interpreter. This script engine is represented primarily by the system files
jscript.dll and scrrun.dll.

The AOM interface and the DOM interface for JScript are implemented using the
PTC Arbortext COM interface. Access to external COM servers is implemented
through standard COM interfaces used by the Microsoft script engines.

~ Note

By default, all JScript code is executed in a single global context, in a
namespace called EpicJsS. A JScript instance can create nested JScript
instances which use unique namespaces. See the description of the
createScriptContext method for the AOM Application object in
createScriptContext method on page 281.

JScript Platforms

The JScript interface is a Windows-only technology.

JScript with ACL

JScript expressions or scripts can be called from ACL with one of the following
ACL primitives:

* jscript — Function that evaluates a JScript expression and returns the
result as a string.
* js— Command that evaluates a JScript expression and displays the result.

* source — Command that interprets files ending in . j s as JavaScript
programs to be executed when set javascriptinterpreter issetto
jscript.

The flow of control in the JScript interface usually starts with the execution of one

of these ACL functions or commands, with the exception of customization files
ending in . js. Arbortext Editor and the Arbortext PE sub-process automatically

96 Programmer's Reference

load and execute JScript programs from the doctype. js, instance. js, and
document. js files following the same rules as doctype.acl,
instance.acl, and docname.acl files.

The JScript interpreter starts the first time Arbortext Editor or the Arbortext PE
sub-process executes one of these ACL functions or commands or reads a . j s
customization file. Arbortext Editor and the Arbortext PE sub-process will also
start the Java Virtual Machine, if necessary. You may also specify the —jvm and
-7 s startup command options to start JScript when Arbortext Editor is opened.

Unlike the Java interface, only string arguments are passed from ACL to JScript.
ACL arrays must be converted to some form of delimited string (for example, as
an array literal) or passed element by element to JScript expressions. Refer to
Passing Arrays Between JavaScript and ACL on page 97 for more details.

JScript objects may not be returned directly to ACL. If the result of a JScript
expression passed to Jjavascript is an object, the toString method is
invoked on the object and that value is returned by javascript.

Passing Arrays Between JavaScript and ACL

There are two ways to pass arrays between JScript and ACL, both involving the
conversion of arrays to strings. The first method uses the JScript Array.join method
to convert the JScript array to a string that is passed to the ACL split function.

For example, the JScript code
var jsArr = [1, 2, 31;
Acl.eval ("split('" + jsArr.join() + "', aclArr, ',")");

converts the JScript array jsArr to the ACL array aclArr.

1 Note
ACL arrays normally start at index 1, which is the same as JavaScript index 0.

The second method uses a loop to pass the array, element by element. The Acl.eval
call in the previous example can be rewritten as:

for (var i = 0; 1 < JsArr.length; i++) {

var ai =1 + 1;

Acl.eval ("aclArr[" + ai + "] = "" 4+ JsArr[i] + "'");

}

This method is slower, but isn't subject to the ACL string token limit of 4096
characters.

Similarly, there are two ways to retrieve an ACL array from JScript. The first
method uses the ACL join function to concatenate the ACL array into a string
that initializes a JScript array. For example, you can use the following ACL code
to pass the ACL array created above to JScript:

Using JScript to Access the AOM 97

javascript ("var jsArr = [" . join(aclArr) . "1");
This method is not limited by the ACL string token limit.

You can also use a loop to retrieve the array, element by element, as shown in the
following JScript example:

var count = parselnt (Acl.eval ("count (aclArr)"));
var lowBound = parselnt (Acl.eval ("low bound(aclArr)"));
var JjsArr = new Array(count);

for (var 1 = 0; i < count; i++) {

var ai = lowBound + i;

jsArr[i] = Acl.eval ("aclArr[" + ai + "1");

}

This method translates the arbitrary array index bounds in an ACL array to the
zero-based array index in JScript. It also uses the parselnt method to convert the
Java string returned by Acl.eval into a JScript number.

Associative arrays

The previous examples concern normal numeric indexed arrays. You can use
equivalent techniques to pass associative arrays using for/in loops instead of
the for loops as above. The following JScript example passes an associative

array to ACL:

var jsAssoc = {one: 1, two: 2, three: 3};

for (var i in jsAssoc) {

Acl.eval ("aclAssoc['" + 1 + "']='" + JsAssoc[i] + "'");

}

You can pass an ACL associative array to JScript using the ACL join function
or an ACL for/in loop similar to the JScript example. The following ACL
example shows the join technique to declare a JScript array using object literal
syntax:

javascript ("var jsAssoc={" . join(aclAssoc,',',1) . "™

~ Note

The ACL join function also works for associative arrays, and produces a
result that can be used to initialize a JavaScript associative array object as in
the previous example.

JScript Limitations
Some limitations of the Arbortext JScript implementation are:

» JScript is not case-sensitive. Rhino JavaScript is case-sensitive. AOM and
DOM compatiblity between JScript and JavaScript files requires the script

98 Programmer's Reference

author to comply with the capitalization of methods and attributes described in
this guide.

* The AOM and DOM constants are not defined in the global context. They
must be defined inline in JScript files to be referenced by variable name.

AOM Interfaces Specific to JScript

By default, JScript instances run in a single global context, or namespace, called
EpicJs. The AOM includes JScript-specific features related to the ScriptContext
interface:

* createScriptContext—allows scripts to create and run nested scripts in
the global namespace (EpicJS) or in a user-defined context or namespace.

* getScriptContext—retrieves a reference to any running script context
by namespace.

See the descriptions in Application interface on page 269 and ScriptContext
interface on page 625 for more information.

JScript Global Objects

The Arbortext JScript implementation provides several global objects available to
all JScript scripts. The Application and Acl objects are instances of the AOM
Application and Acl interfaces. Only one object for each interface exists in a
Arbortext Editor session.

Object Description

Application This global object implements the

Application interface that provides
access to all other DOM and AOM
objects except for the Acl interface.

Acl This global object implements the Acl

interface that provides access to ACL
(Arbortext Command Language).

JScript Exception Handling

JScript provides exception handling with try/catch statements. JScript is
implemented using the COM interface, so it does not support the DOM and AOM
exception classes. All exceptions are mapped to the JScript Error global object.
The COM error code values listed in COM Error Handling on page 91 are

Using JScript to Access the AOM 99

available using the number property of the Error object. The message
associated with the exception is available using the description property. For

example:
try {

doc.insertBefore (doc, doc); // this is invalid

}
catch(e) {

Application.alert ("Error: " + (e.number&Oxffff) +
" Description: " + e.description);

}

Specifying the Interpreter for . js Files

Arbortext Editor supports two JavaScript interpreters on Windows. You should
specify which interpreter to use to process your . js files. You can include a
special comment as the first line of the file. If the first line of the . j s file contains
a comment using either form specified in the following examples, then the
Microsoft JScript interpreter will be used.

// application="text/jscript"

or
// <script application="text/jscript">

You can also specify the interpreter with the ACL set
javascriptinterpreter command. However, we recommend using the
commenting technique as it ensures proper handling of your . j s files regardless
of the javascriptinterpreter setting.

Sample JScript Code

Sample JScript code that uses the JScript AOM interface is included in the
Arbortext-path\samples\jscript directory. The readme. txt file in
this directory provides a description of the sample code and instructions for
invoking the sample scripts. Examples show how to use the DOM to manipulate
the active document, register DOM Event handlers, and transfer arrays between
JScript and ACL. The JScript examples are ported from the corresponding Rhino
JavaScript samples of the same name.

100 Programmer's Reference

Using VBScript to Access the AOM

VBScript Interface OVEIVIEW............coiuuiiiiiiiie e 102
VBSCHPE AN ACL ..o 102
VBSCript LIMItationscoovniii e 102
AOM Interfaces Specific to VBSCHPLcoovuiiiiiiiiee e 103
VBScript Global OBJECEScoouiiiiiiei e 103
V4= o] o Q1 =1y o Tl F= T o T o PRSPPI 103
Sample VBSCHPt COUEoiii i e e e e e e 104

101

VBScript Interface Overview

Arbortext Editor and the Arbortext Publishing Engine include a VBScript binding
to the AOM. Using this binding, software developers can use the VBScript
programming language to write applications for Arbortext Editor and the
Arbortext Publishing Engine.

Arbortext uses Microsoft Windows Script (or ActiveScript) as the VBScript
interpreter. This script engine is represented primarily by the system files
vbscript.dll and scrrun.dll.

The AOM interface and the DOM interface for VBScript is implemented via
Arbortext's COM interface. Access to external COM servers is implemented
through standard COM interfaces used by the Microsoft script engines.

~ Note

By default, all VBScript code is executed in a single global context, in a
namespace called EpicVBS. A VBScript instance can create nested VBScript
instances which use unique namespaces. See the createScriptContext
method for the AOM Application object in createScriptContext method on
page 281.

VBScript Platforms

The VBScript interface is a Windows-only technology.

VBScript and ACL

VBScript expressions or scripts can be called from ACL with one of the following
ACL primitives:

* vbscript — Function that evaluates a VBScript expression and returns the
result as a string.

* source — Command that interprets files ending in . vbs as JScript
programs to be executed.

VBScript Limitations

Some limitations of the Arbortext VBScript implementation are:

102 Programmer's Reference

* VBScript is not case-sensitive.

* The AOM and DOM constants are not defined in the global context. They
must be defined inline in VBScript files to be referenced by variable name.

AOM Interfaces Specific to VBScript

By default, VBScript instances run in a single global context, or namespace,
called EpicVBS. The AOM includes VBScript-specific features related to the
ScriptContext object:

* createScriptContext — allows scripts to create and run nested scripts
in the global namespace (EpicVBS), or in a user-defined context or
namespace.

* getScriptContext — retrieves a reference to any running script context
by namespace.

See the descriptions in Application interface on page 269 and ScriptContext
interface on page 625 for more information.

VBScript Global Objects

The Arbortext VBScript implementation provides several global objects available
to all VBScript scripts. The Application and Acl objects are instances of the AOM
Application and Acl interfaces. Only one object for each interface exists in a
Arbortext Editor session.

Object Description

Application This global object implements the

Application interface that provides
access to all other DOM and AOM
objects except for the Acl interface.

Acl This global object implements the Acl

interface that provides access to ACL
(Arbortext Command Language).

VBScript Error Handling

VBScript does not support exceptions, so the DOM and AOM exception classes
are not available. All exceptions are mapped to the VBScript Exrr global object.
The COM error code values listed in COM Error Handling on page 91 are
available using the Number property of the Err object. The message associated
with the exception is available using the Description property. For example:
On Error Resume Next

Using VBScript to Access the AOM 103

doc.insertBefore doc, doc ' this is invalid
If Err.Number <> 0 Then

Application.alert ("Error: " & Err.Number
& " Description: " & Err.Description)
Err.Clear
End if

Sample VBScript Code

Sample VBScript code that uses the VBScript AOM interface is included in the
Arbortext-path\samples\vbscript directory. The readme. txt file
in this directory provides a description of the sample code and instructions for
invoking the sample scripts. Examples show how to use the DOM to manipulate
the active document and register DOM event handlers. There are two samples,
commdlg.vbs and graphic-browser.vbs, which show how to use COM
to launch and communicate with Microsoft Word and Microsoft Excel. The
VBScript examples are ported from the corresponding JScript samples of the same

name.

104

Programmer's Reference

Programming and
Scripting Techniques

10

Overview of Programming and
Scripting Techniques

This part of the Programmer's Reference contains information on using Arbortext
Editor and the AOM to perform basic and advanced operations. Individual
chapters include:

Overview on page 110 — Contains a series of examples demonstrating basic
techniques for manipulating documents and content using the DOM and
AOM.

Overview on page 120 — Summarizes the DOM Event Model interfaces and
the AOM extended event interfaces supported by Arbortext Editor and the
Arbortext Publishing Engine.

Working with Tables Overview on page 156 — The AOM contains interfaces
that provide access to more than 100 Arbortext Editor table functions. This
chapter provides several examples that illustrate the basics of inserting and
manipulating tables using the interfaces.

Overview on page 164 — XSL composition refers to Arbortext Editor's ability
to transform a document using XSL or XSL-FO stylesheets. This chapter
describes XSL composition and its components, and provides an example of
calling the composition pipeline for an HTML file composition.

Line Numbering Overview on page 170 — You can add line numbers to your
document, specifying their format using a custom application. This chapter
describes the basic line numbering functionality that is available with a
Arbortext distributed document type, and detailed instructions for building
your own.

107

11

Basic Document Manipulation
Using the DOM and AOM

OVEBIVIBW ...ttt ettt e ettt e e et e e e e b e e e eeaa s 110
Opening, Closing, and Saving dOCUMENTScieuuiiiiiiiiii e 110
Traversing a Document Using the DOM and AOMoiiiiiiiiiiiiciiii e 111
INSEIIING TEXL ...t e e et ettt e e e et e e e eab e eees 113
Using Range to Select and Delete Content............ccoouiiiiiiiiiiiii e 114
Selecting, Copying, Moving Content ... 116

109

Overview

This chapter contains a series of brief examples demonstrating basic techniques
for manipulating documents and content using the DOM and AOM. The examples
cover opening, closing, and saving documents; traversing document trees;
inserting text; and locating, selecting, cutting, and pasting content in and between
documents.

Most of the sample code in this chapter can be run on the Arbortext XML
Docbook sample opened with Arbortext Editor. (Choose File » New, check
Sample, select Arbortext XML Docbook V4.0, and click OK.) Example code that
calls openDocument requires access to one or two saved copies of the
Arbortext XML Docbook sample.

All of the examples in this chapter are written in JavaScript.

Opening, Closing, and Saving documents

DOM Level 2 does not provide methods to open, save, and close documents.
However, the AOM includes methods on the Application and ADocument
interfaces that implement these capabilities.

The Application interface openDocument method returns a Document object
that has information about a document or document type and can be used to
dynamically update the content, structure, and style of the document

The openDocument method takes several optional parameters, including the
flags parameter, which controls the state in which the document is opened. This
parameter is constructed by adding the hex values of the LoadF1ag enumeration
constants. (The symbolic constant names can be used instead with some language
bindings.) Refer to Application interface on page 269 for a complete listing and
full descriptions of the LoadF1ag enumeration constants. The following table
highlights a selection of these constants.

Name Hexadecimal value Description

OPEN_RDONLY 0x0001 Open the document as
read only.

OPEN_DOCRDWR 0x0002 Open the document for
read and write.

OPEN_NOMSGS 0x0020 Suppress any parser error
messages.

OPEN EDITINIT 0x8000 Process initialization files

upon opening.

110 Programmer's Reference

In the following code, the flags parameter is used to open a document for read and
write while suppressing any parser errors:

var doc = Application.openDocument ("mydocument.xml", (0x0002 + 0x0020))

Once a document is opened, it can be manipulated and then saved and closed
using methods of the ADocument interface (which extends the W3C DOM
Document interface).

ADocument.save writes the document to disk. The save method's flags parameter
determines the state of the saved document.

ADocument.close frees all resources associated with the Document object.

Refer to the examples in the remainder of this chapter for several sample uses of
the Application.openDocument, ADocument.save, and ADocument.close methods.

Traversing a Document Using the DOM
and AOM

A Document object is the tree representation of the document's structure. Like any
tree, the document can be traversed several ways.

Traversing and Printing a Document Structure

In this example, as the document is traversed, the tag name and up to the first 60
characters of each node are printed to illustrate the hierarchical structure of the
current document.

In addition to demonstrating how to walk a DOM tree, this example also shows
how to access the names of nodes (Node.nodeName), how to determine a node's
type (Node.nodeType = text, element, comment, or processing instruction), and
how to extract text content from a document (Node . data).

function printTree(n, elem) {

if (elem == null) {

if (n == 0)

print ("document has no element nodes");

return;

}

var str = "";

for (var i = 0; 1 < n; 1i++)

str 4= " ";

// show this node

print (str + elem.tagName + getAttrs(elem));

str += " ";

// followed by its children

for (var child = elem.firstChild; child != null;

child = child.nextSibling) {

if (child.nodeType == child.ELEMENT NODE)

Basic Document Manipulation Using the DOM and AOM 111

printTree(n + 1, child);

else if (child.nodeType == child.TEXT NODE) {

// for text nodes, show the first 60 characters

// note, concatentation with a null string is used to convert
// the Java String returned into a JavaScript string.

var text = child.data + "";

if (text.length > 60)

print (str + '"' + text.substr (0, 60) + "...\"");
else

print(str + '"' + text + '""');

}

else if (child.nodeType == child.COMMENT NODE) {
var text = "#comment: " + child.data;

if (text.length > 60)
text = text.substr (0, 60) + "...";
print (str + text);

}
else if (child.nodeType == child.PROCESSING INSTRUCTION_ NODE)

print(str + "#pi: " + child.target + ' ' + child.data);
else // all others

print (str + child.nodeName) ;

}

}
// start at the root
printTree (0, Application.activeDocument.documentElement) ;

Using getElementsByTagName

In this example, the tree is traversed by calling getElementsByTagName. All
of the Document, ADocument, Element, and AElement interface
getElementsByXxx methods populate a NodeList with nodes in the order
encountered in a preorder traversal of the tree. All occurrences of the
<emphasis> tag have their role attribute value changed from bold to
italic, changing all bold text to italic. This is done by iterating over the
NodeList returned by getElementsByTagName, and using
Node.getAttribute to check the value of each node's role attribute, and
then using Node . setAttribute to change that value to italic.

var doc = Application.activeDocument;

//get all emphasis tags in the document

var tags = doc.getElementsByTagName ("emphasis");
for (i=0; 1 < tags.length; i++) {
if(tags.item(i) .getAttribute ("role") == "bold") {
tags.item(i) .setAttribute ("role", "italic")

}
}

112 Programmer's Reference

Using getElementsByAttribute

The previous example could be improved by using the AElement.
getElementsByAttribute method. (The AOM AElement interface extends the W3C
DOM Element interface.) Doing so will return only those tags from the document
that have the role attribute set to bold. The value on all of the tags can then be
changed from bold to italic without having to test every <emphasis> tag
in the document.

The getElementsByAttribute method takes three arguments: name, value,
and selector. If selector is set to 1 (one), the search will return all nodes that
match both name and value. If selector is set to 0 (zero), all nodes matching name,

regardless of their value, are returned.
var doc = Application.activeDocument;

var tags = doc.getElementsByAttribute ("role", "bold", 1);
for (i=0; 1 < tags.length; i++) {
tags.item(i) .setAttribute ("role", "italic");

}

Inserting Text

Text can be added at any appropriate place in a document by creating and
inserting a new Text node. Document.createTextNode takes a text string as an
argument, and returns a new node (Text object) that can be inserted by calling
methods such as Node.appendChild or Node.insertBefore on the desired node.

Inserting Text Using createTextNode

This example appends the line “Adding new text.” to the end of the first
paragraph in a document

var doc = Application.activeDocument;

var paras = doc.getElementsByTagName ("para") ;

//create the new Text Node

var newText = doc.createTextNode (" Adding new text.");
//append it to first paragraph

paras.item(0) .appendChild (newText) ;

Inserting Text Containing a Non-Latin Character

To insert a string containing characters such as letters from non-English alphabets,
include the Unicode character in the text string. Do not include it as an entity
reference.

For example, suppose you are authoring a travel guide and wish to append a

paragraph that includes the German word Gemiit 1ichkeit. If you include the ¢

as an entity reference, the entity will not be resolved. For example:

var newTextl = doc.createTextNode ("Austrians are known for their
Gemü tlichkeit");

Basic Document Manipulation Using the DOM and AOM 113

The text node will literally contain “Gemü t1ichkeit”. Instead, insert

the character as in the following example:

var doc = Application.activeDocument;

var paras = doc.getElementsByTagName ("para");

var newText = doc.createTextNode (" Austrians are known for their Gemutlichkeit");
paras.item(0) .appendChild (newText) ;

Inserting an Entity Reference Using
createEntityReference

To insert such characters as an entity references, use Document.
createEntityReference rather than createTextNode. This example produces
the same result as the previous example, but uses a character entity to insert the u-
umlaut:

var doc = Application.activeDocument;

var paras = doc.getElementsByTagName ("para");

var newTextl = doc.createTextNode ("Austrians are known for their Gem");
var charEnt = doc.createEntityReference ("uuml");

var newText2 = doc.createTextNode ("tlichkeit");

paras.item(0) .appendChild (newTextl) ;
paras.item(0) .appendChild (charEnt) ;
paras.item(0) .appendChild (newText?2) ;

Using Range to Select and Delete Content

The W3C DOM Range API consists of a single interface, Range. This interface
exposes the ability to select contiguous portions of a structured document,
delineated by specified beginning and end points. The Range interface contains
methods that allow copying, inserting, or deleting of content, as well as methods
for marking the start and end points of the content range.

Deleting Sections of a Document Using a Range
This example illustrates several basic techniques:

* Opening a document using the optional flags parameter (Application.
openDocument).

* QGathering elements by attribute name and value
(getElementsByAttribute).

* Prompting for user input (Application.confirm).

» Using a range to mark content for deletion and delete it (the deleteTag
function).

* Handling a NodeList.

114 Programmer's Reference

The result of the code in this example is that the user is prompted with the option
to delete all the tags in a document that have a certain profiling attribute.

The deleteTag function in the example demonstrates the creation, marking,
and use of a Range object. First the Range must be created (Document.
createRange). The beginning and end points must then be set (Range.
setStartBefore and Range.setEndAfter). The content in the Range is then deleted,
and the range is detached.

The call to Range.detach() is critical, as this method frees all resources associated
with this Range object. Any subsequent call on that object would result in an
exception being thrown. This method should be called whenever a use of a Range
object is complete.

//Delete the given node (tag and its children and/or contents)
function deleteTag(tag) {

var range = doc.createRange();

range.setStartBefore(tag);

range.setEndAfter (tag);

range.deleteContents() ;

range.detach();

}

//0Open the document for writing, while suppressing any parse errors

//OPEN_DOCRDWR (0x0002) - open the document for reading and writing
//OPEN_NMSGS (0x0020) - suppress any parser error messages

var doc = Application.openDocument ("sample.xml", (0x0002 | 0x0020));
//Select all tags with the profiling attribute "security" and the value
"Employee"

var profiles = doc.getElementsByAttribute ("security", "Employee", 1);
//Prompt the user to delete the selected tags
var response = Application.confirm("Found " + profiles.length +

" profiled items.\nOK to delete?", "Confirm Deletion");

//1f the user clicked "OK", go ahead and delete them

if (response) {

while (0 < profiles.length) {

deleteTag (profiles.item(0));

}

}

Notice in this example that in the loop that calls deleteTag, itis item (0) that
is deleted each time. This is because in the W3C DOM NodelList specification,
NodeLists are live. That is, changes in the underlying document object are
immediately reflected in the NodeList.

For example, if tags had been deleted using the following code, only every other
node would have been deleted.
for(i = 0; 1 < profiles.length; i++) {
deleteTag (profiles.item(i));
}

Basic Document Manipulation Using the DOM and AOM 115

Selecting, Copying, Moving Content

The following examples demonstrate how to copy, cut, and paste content within
and between documents.

Cutting and Pasting within a Document

This example swaps the position of the first two chapters in a document. When
chapter one is inserted before chapter three, it is the same as a cut and paste; it is
not a copy of the node, but the node itself that is being moved.

var doc = Application.openDocument ("samplel.xml");

//Get the nodes contining chapters one and three from the document
//Chapter three will be the node to insert before

var chapters=doc.getElementsByTagName ("chapter");

var chapterl = chapters.item(0);

var chapter3 chapters.item(2);

var book = doc.getElementsByTagName ("book").item(0) ;

//chapterl is the new node, and chapter3 is the reference
book.insertBefore (chapterl, chapter3);

Copying and Pasting within a Document

A copy and paste within a document can be done by cloning the contents of
chapter one before inserting them before chapter three. In this example, the result
will be two copies of chapter one in the document; one before and one after
chapter two.

var doc = Application.openDocument ("samplel.xml") ;

var chapters=doc.getElementsByTagName ("chapter");

var chapterl = chapters.item(0);

var chapter3 = chapters.item(2);

var book = doc.getElementsByTagName ("book").item(0) ;

var range = doc.createRange () ;

range.setStartBefore (chapterl);

range.setEndAfter (chapterl) ;

var clone = range.cloneContents();

book.insertBefore (clone,chapter3);

range.detach () ;

Copying and Pasting between Documents

Content can also be moved between documents using Document.importNode. The
code in this example results in a copy and paste without the need to clone the
region from the first document. This is because Document.importNode does not
alter or remove content from the original document; it creates a new copy of the
source node — in effect, cloning it. This example also demonstrates the use of
ADocument.openDocument, the use of optional flags and path parameters on
ADocument.save, and ADocument.close.

116 Programmer's Reference

var docl = Application.openDocument ("samplel.xml");

var doc2 = Application.openDocument ("sample2.xml") ;

//Get the first chapter from samplel.xml and sample2.xml

var samplelChapter = docl.getElementsByTagName ("chapter") .item(0) ;
var sample2Chapter = doc2.getElementsByTagName ("chapter") .item(0);
var book = doc2.getElementsByTagName ("book") .item(0) ;

//Import the chapter from samplel.xml into sample2.xml

var newChapter = doc2.importNode (samplelChapter, true);

//insert the chapter

book.insertBefore (newChapter, sample2Chapter) ;

//SAVE NAC ENTREF (0x0400) - write non-ascii characters as

// character entity references

doc2.save (0x0400, "newSample2.xml");

docl.close();

doc2.close();

To execute a cut and paste between documents, select and delete the contents in
the original document after inserting it in the target document.

Inserting Text at the Caret

This example shows how to insert text in the document where the caret is located
using the Range returned by the ADocument . insertionPoint attribute. If
the caret is within a text node, the text is inserted into that node. Otherwise, a new
text node is inserted before the insertionPoint node.

var doc = Application.activeDocument;

var caret = doc.insertionPoint;

var node = caret.endContainer;

if (node.nodeType == node.TEXT NODE)

node.insertData (caret.endOffset, " new text ");

else

caret.insertNode (doc.createTextNode (" new text "));

Inserting Markup at the Caret

The ARange extension includes the method insertParsedString. This
method makes it easy to insert strings containing markup (tags and entity
references) into a range, including the one that represents the document caret
position. The following two examples are equivalent and insert the string “an
emphasized word” with the second word “emphasized” enclosed in
<emphasis> tags. The first example is implemented using standard DOM
methods:

var doc = Application.activeDocument;

var caret = doc.insertionPoint;

var node = caret.endContainer;

var parent = node.parentNode;

// does not consider caret offset into text node
parent.insertBefore (doc.createTextNode ("an "), node);

var emph = doc.createElement ("emphasis");

Basic Document Manipulation Using the DOM and AOM 117

emph.appendChild (doc.createTextNode ("emphasized")) ;
parent.insertBefore (emph, node);
parent.insertBefore (doc.createTextNode (" word"), node);

The following example uses the ARange.insertParsedString method:
var doc = Application.activeDocument;
doc.insertionPoint.insertParsedString ("an <emphasis>emphasized</> word");

118 Programmer's Reference

OVBIVIBW ...ttt et e et et e e e e e e e et e et et eebe e et eeans 120
EVENT INEITACES ..o 120
Event Modules and DOMaINS...........oouiiiiiiii e 122
Application-Dependent Featurescoouiiiiiii i 125
Notes and Limitations ..o 126
EVENTHANAIES ... 126
Y=Y o 1Y/ 0TS 131

119

Overview

Arbortext Editor and the Arbortext Publishing Engine implement the W3C DOM
Event Model described in the Document Object Model (DOM) Level 2 Events
Specification (www.w3.org/TR/DOM-Level-2-Events). The DOM Event Model is
a generic event system that provides registration of event handlers, describes the
flow of events through a tree structure, and defines contextual information for

each event.

Event Interfaces

The following tables summarize the DOM Event Model interfaces and the AOM
extended event interfaces supported by Arbortext Editor and the Arbortext

Publishing Engine.

W3C Event Interfaces

Interface Description

DocumentEvent Implemented by objects that implement the Document
interface to create user dispatched events.

Event Provides contextual information for an event handler. The

superinterface of more specific event context interfaces.

EventException

Exception thrown by event related methods.

EventListener

Mechanism for handling events.

EventTarget

Implemented by objects that implement the Node and
Component interfaces to allow registration and removal of
EventListeners and dispatching of events.

MouseEvent

Provides contextual information associated with Mouse
events.

MutationEvent

Provides contextual information associated with Mutation
events.

UlIEvent

Provides contextual information associated with User
Interface events.

AOM Event Interfaces

Interface Description

ADocumentEntityEvent Provides specific contextual information
associated with the
ADocumentEntityEvent extension.

ADocumentEvent Provides specific contextual information
associated with document events.

ActivexEvent Provides specific contextual information

120

Programmer's Reference

http://www.w3.org/TR/DOM-Level-2-Events

AOM Event Interfaces (continued)

Interface Description
associated with Activex events.
AEditEvent Provides contextual information associated
with EditEvent events.
AEvent Extension to the W3C DOM Event interface.

ApplicationEvent

Provides specific contextual information
associated with application events.

CMSObjectEvent

Provides specific contextual information
associated with the CMSObjectEvent
extension.

CMSSessionConstructEvent

Provides specific contextual information
associated with the
CMSSessionConstructEvent extension.

CMSSessionCreateEvent

Provides specific contextual information
associated with the
CMSSessionCreateEvent extension.

CMSSessionFileEvent

Provides specific contextual information
associated with the
CMSSessionFileEvent extension.

CMSSessionBurstEvent

Provides specific contextual information
associated with the
CMSSessionBurstEvent extension.

CMSSessionDisconnectEvent

Provides specific contextual information
associated with the
CMSSessionDisconnectEvent
extension.

CMSAdapterConnectEvent

Provides specific contextual information
associated with the
CMSAdapterConnectEvent extension.

CMSAdapterDisconnectEvent

Provides specific contextual information
associated with the
CMSAdapterDisconnectEvent
extension.

ControlEvent

Provides specific contextual information
associated with Control events.

MenuEvent

Provides contextual information associated
with Menu events.

Events

121

AOM Event Interfaces (continued)

Interface Description

ToolBarEvent Provides specific contextual information
associated with ToolBar events.

WindowEvent Provides contextual information associated
with Window events.

Event Modules and Domains

The DOM Level 2 Events specification allows an application to support multiple
modules of events. Arbortext Editor and the Arbortext Publishing Engine support
all of the DOM Level 2 event modules except HTMLEvents. In addition,
Arbortext Editor and the Arbortext Publishing Engine add several application-
specific event modules and further divide the event modules into the following
event domains: CMSObject, CMSSession, CMSAdapter, Document, and
Window.

The Document domain includes those events created by the createEvent
method of the DocumentEvent interface and used by the EventTarget interface as
implemented by the Node interface and its subclasses. The Document domain
includes the DOM Level 2 Event modules UIEvents, MouseEvents, and
MutationEvents, as well as the Arbortext-specific AEditEvent module.
The AEdi tEvent module defines several event types used to notify
programmers of important document operations that are not covered by DOM
events.

The Window domain includes those events created by the createEvent
method of the Window interface and used by the EventTarget interface as
implemented by the Component interface and its subclasses. The Window domain
includes the WindowEvents, MenuEvents and ControlEvents modules.

The CMSSession domain includes those events associated with CMS sessions.
The target of all events in this domain is a CMSSession. The events in this
domain bubble in the following order:

1. CMSSession
2. Associated CMSAdapter
3. Application

An EventListener may be established on any of these targets.

122 Programmer's Reference

The CMSObject domain includes those events associated with CMS objects. The
target of all events in this domain is a CMSObject. The events in this domain
bubble in the following order:

1. CMSObject

2. Associated Document (if any). There may be no associated document, for
example, if the object has no associated nodes (such as an object representing
a folder in the repository).

3. Associated CMSSession

4. Associated CMSAdapter

5. Application

An EventListener may be established on any of these targets.

The CMSAdapter domain includes those events associated with CMS adapters.
The target of all events in this domain is a CMSAdapter. The events in this
domain bubble in the following order:

1. CMSAdapter
2. Application
An EventListener may be established on both of these targets.

The AEvent interface is the Arbortext extension to the W3C Event interface which
adds two attributes to determine the domain and module of the event:

* domain — returns a constant identifying the event domain
* moduleType — returns a constant identifying the event module

The following event modules are supported. The module name listed is the feature
string to pass as the eventType parameter to the appropriate createEvent
method.

UlIEvents

Events associated with user interaction with a mouse or keyboard.

Domain: Document
MouseEvents

Events associated with mouse input devices.

Domain: Document
MutationEvents

Events associated with actions that modify the structure of the document.

Domain: Document
AEditEvents

Events associated with high level editing operations.

Domain: Document

Events 123

WindowEvents
Events associated with changes in the state of Window objects.

Domain: Window
MenuEvents

Events associated with MenuItem objects.

Domain: Window
ControlEvents

Events associated with XUI control objects. These are not currently exposed
through the AOM.

Domain: Window
CMSObjectEvent

Events associated with CMS objects.

Domain: CMSObject
CMSSessionConstructEvent

Events associated with construct operations for existing CMS objects.

Domain: CMSSession
CMSSessionCreateEvent

Events associated with creating new CMS objects.

Domain: CMSSession
CMSSessionFileEvent

Events associated with file-related CMS session operations.

Domain: CMSSession
CMSSessionBurstEvent

Events associated with burst-related CMS session operations.

Domain;: CMSSession
CMSSessionDisconnectEvent

Events associated with CMS session disconnection operations.

Domain: CMSSession
CMSAdapterConnectEvent

Events associated with CMS adapter connection operations.

Domain: CMSAdapter
CMSAdapterDisconnectEvent

Events associated with CMS adapter disconnection operations.
Domain: CMSAdapter

124 Programmer's Reference

~ Note

The DLMEvent module supports events associated with the Dynamic Link
Manager. It is a Java-only implementation that is documented in the Javadoc
available in the Arbortext Editor Help Center.

Application-Dependent Features

The DOM Level 2 Events specification defines the DOMFocusIn,
DOMFocusOut, and DOMActivate user interface events, but does not define
when they will occur. The specification also allows implementation-dependent
treatment of the DOMSubt reeModi fied mutation event. The following table
describes when these events occur in Arbortext Editor and the Arbortext

Publishing Engine:

Event
DOMFocusIn

DOMFocusOut

Events

Occurrence

Two occurrences:

When the cursor of the view that
has keyboard input focus moves
into an event target.

When the keyboard input focus
switches from another view to the
current view while the cursor of the
current view is inside an event
target.

Two occurrences:

When the cursor of the view that
has keyboard input focus moves out
of an event target.

When the keyboard input focus
switches from the current view to
another view while the cursor of the
current view is inside an event
target.

125

Event
DOMActivate

DOMSubtreeModified

Occurrence

When an event target is activated
through a mouse double-click.

For a XUI document, this event will be
dispatched when its corresponding
dialog box state changes, such as when
a check box is selected, an item of a list
box is selected, a push button is
pressed, and so on.

Certain user interface actions like Insert
» Markup can result in multiple
changes to the document; only a single
DOMSubtreeModified event will
be fired in those cases.

Refer to Event Types on page 131 for a description of each event type.

Notes and Limitations

The following notes and limitations apply to the Arbortext Editor and the
Arbortext Publishing Engine implementations of events:

* Be aware that DOM mutation events trigger after the document is loaded and
something happens to change the document, not as the document is being read
in by Arbortext Editor or the Arbortext Publishing Engine.

* HTML-specific features in the W3C DOM Events specification are not

implemented.

* No mutation events are currently fired for undo or redo operations. Instead the

AOMUndo event type is dispatched.

* SGML-specific document structures such as ignored marked sections are not
supported by the Arbortext Editor and the Arbortext Publishing Engine DOM

implementation.

Event Handlers

Event handlers are registered in a binding-specific manner. The following sections
illustrate the techniques used to implement the EventListener interface for each
language binding supported by Arbortext Editor and the Arbortext Publishing

Engine.

126

Programmer's Reference

The example (repeated in each binding) shows how to register a mouse click
handler (of the MouseEvents event module) for the active document. The
handler prints a line to the message window showing the element hierarchy in the
following form each time the mouse is clicked within the document:

(book (chapter (para

Java

In Java, it is necessary to cast the Document object to call the
addEventListener method of the EventTarget interface. Also, note the event
listener parameter is specified using an anonymous inner class.

Document doc = Application.getActiveDocument () ;

((EventTarget)doc) .addEventListener ("click",

new EventListener () {

public void handleEvent (Event event) {

Node node = (Node)event.getTarget():;

String context = "";

while (node != null) {

if (node.getNodeType () == Node.ELEMENT NODE) ({
context = " (" + node.getNodeName () + context;
}

node = node.getParentNode () ;

}
Application.print (context + "\n");
event.stopPropagation () ;

}, true);

JavaScript

JavaScript uses the LiveConnect feature to connect to Java to create the DOM
EventListener object to pass to addEventListener. The handler object
associated with the EventListener is declared using object literal syntax.
function clickEvent (event)

{

var node = event.target;

var context = "";

while (node != null) {

if (node.nodeType == node.ELEMENT NODE) {

context = " (" + node.nodeName + context;

}

node = node.parentNode;

}

Application.print (context + "\n");

event.stopPropagation () ;

}
var doc = Application.activeDocument;

// define an object with the required handleEvent method
var o = { handleEvent: clickEvent};

Events 127

var listener = Packages.org.w3c.dom.events.EventListener (o) ;
doc.addEventListener ("click", listener, true);

JScript

In JScript, the EventListener interface is implemented by declaring a constructor
of the same name. Note, that because of the way JScript works, the interface
constants like Node.ELEMENT_NODE are not available. Otherwise, the
clickEvent function is the same as the in the JavaScript example. The main
difference is in how the listener object is created.

function EventListener()

{

this.handleEvent = clickEvent;
}
function clickEvent (event)
{

var node = event.target;

var context = "";

|

while (node != null) {

if (node.nodeType == 1 /*ELEMENT NODE*/) {
context = " (" + node.nodeName + context;

}

node = node.parentNode;

}

Application.print (context + "\n");
event.stopPropagation () ;

}

var doc = Application.activeDocument;

var listener = new EventListener();
doc.addEventListener ("click", listener, true);

VBScript

In VBScript, the event handler is declared as a class:
Class EventListener

Public Function handleEvent (ByVal evt)

Dim node

set node = evt.target

Dim context

context = ""

While Not node Is Nothing

If node.nodeType = 1 Then

context = " (" & node.nodeName & context
End If

Set node = node.parentNode

Wend

Application.print (context)
Application.print ()
evt.stopPropagation ()

128 Programmer's Reference

handleEvent = 0

End Function

End Class

Dim doc

set doc = Application.activeDocument

Dim listener

set listener = new EventListener
doc.addEventListener "click", listener, true

Visual Basic

In Visual Basic, the event handler is created as a listener class with the following
code. Note that Print is a reserved method name in Visual Basic, so the
Application.Print method is not available; the VB Debug.Print
method is used instead.
Option Explicit
Implements IDOMEventListener
Private Sub IDOMEventListener handleEvent

(ByVal evt As IDOMEvent)

Dim node As IDOMNode3

Set node = evt.target

Dim context As String

context = ""

While Not node Is Nothing

If node.nodeType = NODE ELEMENT Then

context = " (" & node.nodeName & context
End If

Set node = node.parentNode

Wend

Debug.Print context
evt.stopPropagation
End Sub

Then a Visual Basic form must be created with this code included to register the
event listener:
Option Explicit
Dim myListener As IDOMEventListener
Dim app As Epic.Application
Dim activeDoc As DOMDocument
Dim target As IDOMEventTarget
Private Sub Form Load()
Set myListener = New Listener
Set app = New Epic.Application
Set activeDoc = app.ActiveDocument
Set target = activeDoc
target.addEventListener "click", myListener, False
End Sub

Events 129

COM C++

Much of the COM C++ example was generated automatically using the Insert »
New ATL Object menu in the Microsoft Visual C++ IDE followed by Implement
Interface on the CListener class added by New ATL Object. This was edited so
both the raw methods and the method wrappers were created by the # import
statement.

The listener class declaration is:

#ifndef LISTENER H

#define LISTENER H

#include "resource.h" // main symbols

#import "epic.exe" raw native types, no namespace, named guids

class ATL NO VTABLE CListener
public CComObjectRootEx<CComSingleThreadModel>,
public IDispatchImpl<IDOMEventListener,

&IID IDOMEventListener, &LIBID Epic>
{
public:

CListener ()

{

}

DECLARE_NO_REGISTRY()

DECLARE PROTECT_ FINAL CONSTRUCT ()

BEGIN COM MAP (CListener)
COM_INTERFACE_ENTRY(IDiSpatch)
COM_INTERFACE_ENTRY(IDOMEventListener)

END COM MAP ()

public:

STDMETHOD (raw_handleEvent) (IDOMEvent * evt);

}i

#endif //_ LISTENER H

The listener implementation class is:
#include "stdafx.h"
#include "Listener.h"
#include <string>
typedef std::basic_string< unsigned short > DOMString;
STDMETHODIMP CListener::raw_handleEvent (IDOMEvent *rawEvent)
{

IDOMEventPtr pEvent = rawEvent;

IDOMNode3Ptr pNode = pEvent->target;

DOMString context;

while (pNode)

{

if (pNode->nodeType == NODE ELEMENT)

{

context.insert (0, pNode->nodeName) ;

context.insert (0, L"(");

}

pNode = pNode->parentNode;

130 Programmer's Reference

}

_Application3Ptr pEpic(uuidof (Application));
context += L"\n";
pEpic->Print (_variant t(context.c str()));
pEvent->stopPropagation () ;

return S _OK;

}

The method that creates and attaches the listener is:
void AttachListener ()
{

CListener *pListener = new CComObject<CListener>;
IDOMEventListenerPtr pIntfc;
if (pListener)

{
plListener->QueryInterface (IID IDOMEventListener,

(void **) &pIntfc);

Application3Ptr pEpic(uuidof (Application));
IDOMEventTargetPtr pDocTarget;

pDocTarget = pEpic->ActiveDocument;
pDocTarget->addEventListener (bstr t("click"), pIntfc, true);

Event Types

The following sections define the event types supported by each event module and
include information about event bubbling, event cancellation, and specific context
information for each event type.

The descriptions of the W3C modules (UIEvent, MouseEvent, and MutationEvent)
in the following sections are taken from the Document Object Model (DOM)
Level 2 Events Specification (www.w3.org/TR/DOM-Level-2-Events).

UIEvent Module

The W3C UlEvent module has the following event types:

DOMFocusIn
The DOMFocusIn event occurs when an EventTarget receives focus, for
instance by a pointing device being moved onto an element or by tabbing
navigation to the element. Unlike the HTML event focus, DOMFocusIn
can be applied to any focusable EventTarget, not just FORM controls.

* Bubbles: Yes
* Cancelable: No

¢ Context Info: None

Events 131

http://www.w3.org/TR/DOM-Level-2-Events

DOMFocusOut
The DOMFocusOut event occurs when an EventTarget loses focus, for
instance by a pointing device being moved out of an element or by tabbing
navigation out of the element. Unlike the HTML event blur,
DOMFocusOut can be applied to any focusable EventTarget , not just

FORM controls.
* Bubbles: Yes
* (Cancelable: No
* Context Info: None
DOMActivate
The activate event occurs when an element is activated, for instance, through a
mouse click or a key press. A numerical argument is provided to give an
indication of the type of activation that occurs: 1 for a simple activation (for

example, a simple click or Enter), 2 for hyperactivation (for example, a double
click or Shift Enter).

* Bubbles: Yes
* Cancelable: Yes

* Context Info: detail (the numerical value)

MouseEvent Module
The W3C MouseEvent module has the following event types:

click
The c1ick event occurs when the pointing device button is clicked over an
element. A click is defined as a mousedown and mouseup over the same
screen location. The sequence of these events is:

mousedown
mouseup
click

If multiple clicks occur at the same screen location, the sequence repeats with
the detail attribute incrementing with each repetition. This event is valid for
most elements.

* Bubbles: Yes
* Cancelable: Yes

* Context Info: screenX, screen?, clientX, clientY, altKey, ctrlKey, shiftKey,
metaKey, button, detail

mousedown
The mousedown event occurs when the pointing device button is pressed
over an element. This event is valid for most elements.

132 Programmer's Reference

Bubbles: Yes
Cancelable: Yes

Context Info: screenX, screen?Y, clientX, clientY, altKey, ctriKey, shiftKey,
metaKey, button, detail

mouseup

The mouseup event occurs when the pointing device button is released over
an element. This event is valid for most elements.

L]

Bubbles: Yes
Cancelable: Yes

Context Info: screenX, screenY, clientX, clientY, altKey, ctriKey, shiftKey,
metaKey, button, detail

mouseover

The mouseover event occurs when the pointing device is moved onto an
element. This event is valid for most elements.

L]

Bubbles: Yes
Cancelable: Yes

Context Info: screenX, screenY, clientX, clientY, altKey, ctriKey, shiftKey,
metaKey, relatedTarget indicates the EventTarget the pointing device
is exiting.

mousemove
The mousemove event occurs when the pointing device is moved while it is
over an element. This event is valid for most elements.

Bubbles: Yes
Cancelable: No

Context Info: screenX, screen?Y, clientX, clientY, altKey, ctriKey, shiftKey,
metaKey

mouseout

The mouseout event occurs when the pointing device is moved away from
an element. This event is valid for most elements.

L]

Events

Bubbles: Yes
Cancelable: Yes

Context Info: screenX, screenY, clientX, clientY, altKey, ctriKey, shifiKey,
metaKey, relatedTarget indicates the EventTarget the pointing device
is entering.

133

MutationEvent Module
The W3C MutationEvent module has the following event types:

DOMSubtreeModified

This is a general event for notification of all changes to the document. It can
be used instead of the more specific events listed below. It may be fired after a
single modification to the document or, at the implementation's discretion,
after multiple changes have occurred. The latter use should generally be used
to accommodate multiple changes which occur either simultaneously or in
rapid succession. The target of this event is the lowest common parent of the
changes which have taken place. This event is dispatched after any other
events caused by the mutation have fired.

* Bubbles: Yes
* Cancelable: No

¢ Context Info: None

DOMNodelnserted

Fired when a node has been added as a child of another node. This event is
dispatched after the insertion has taken place. The target of this event is the
node being inserted.

* Bubbles: Yes
* (Cancelable: No
* Context Info: relatedNode holds the parent node

DOMNodeRemoved

Fired when a node is being removed from its parent node. This event is
dispatched before the node is removed from the tree. The target of this event is
the node being removed.

* Bubbles: Yes
* Cancelable: No
* Context Info: relatedNode holds the parent node

DOMNodeRemovedFromDocument

134

Fired when a node is being removed from a document, either through direct
removal of the Node or removal of a subtree in which it is contained. This
event is dispatched before the removal takes place. The target of this event is
the Node being removed. If the Node is being directly removed the
DOMNodeRemoved event will fire before the
DOMNodeRemovedFromDocument event.

Programmer's Reference

* Bubbles: No
* Cancelable: No
* Context Info: None

DOMNodelnsertedIntoDocument
Fired when a node is being inserted into a document, either through direct
insertion of the Node or insertion of a subtree in which it is contained. This
event is dispatched after the insertion has taken place. The target of this event
is the node being inserted. If the Node is being directly inserted the
DOMNodeInserted event will fire before the
DOMNodeInsertedIntoDocument event.
* Bubbles: No
* (Cancelable: No
* Context Info: None

DOMACttrModified
Fired after an At t r has been modified on a node. The target of this event is
the Node whose At tr changed. The value of attrChange indicates whether
the At tr was modified, added, or removed. The value of relatedNode
indicates the At t r node whose value has been affected. It is expected that
string based replacement of an At t r value will be viewed as a modification
of the At tr since its identity does not change. Subsequently replacement of
the At tr node with a different At t r node is viewed as the removal of the
first At tr node and the addition of the second.
* Bubbles: Yes
* Cancelable: No
* Context Info: attrName, attrChange, prevValue, newValue, relatedNode

DOMCharacterDataModified
Fired after CharacterData within a node has been modified but the node itself
has not been inserted or deleted. This event is also triggered by modifications
to PI elements. The target of this event is the CharacterData node.

* Bubbles: Yes
* Cancelable: No

* Context Info: prevValue, newValue

AEditEvent Module

The AEditEvent extension to the Event interface includes the following event
types:

Events 135

AOMCut

The AOMCut event occurs before a cut operation is executed. If an event
listener doesn't cancel the cut, proper mutation events will be fired after the cut
has taken place.

Bubbles: Yes
Cancelable: Yes

Context Info: relatedRange holds the range that is going to be removed
from the document.

AOMCopy
The AOMCopy event occurs before the copy operation is executed.

Bubbles: Yes
Cancelable: Yes

Context Info: relatedRange holds the range that is going to be copied.

AOMDeleteRegion

The AOMDeleteRegion is called before an attempt to delete a contiguous
region of a document in an edit window. AOMDe 1 eteRegion parallels the
delete region ACL callback type, and is dispatched immediately before
that callback is invoked. Refer to the delete region documentation for
details on when and how this event is fired.

Bubbles: Yes

Cancelable: Based on the method by which the content was removed:
true in cases where detail does not contain 0x08, and false if detail
does contain 0x08. Refer to the description of delete region for
additional details. Calling preventDefault if the event is not
cancelable will have no effect.

Context Info: relatedRange holds the range containing the content about to
be deleted. The detail field holds a value identical to the flags parameter to
the delete region callback.

AOMPaste
The AOMPaste event occurs after the paste operation has been executed.
Proper mutation events are fired together with the paste event.

136

Bubbles: Yes
Cancelable: No

Context Info: relatedRange holds the range that is newly inserted into the
document by the paste operation. detail indicates the source of the paste
content: 1 for Arbortext Editor, 2 for clipboard.

Programmer's Reference

help148.html

AOMUndo
The AOMUndo event occurs after the undo operation executes. Currently, no
mutation events are fired for the undo.

* Bubbles: Yes
¢ (Cancelable: No

* Context Info: relatedRange holds the range that is affected by the undo
operation. detail indicates the source of the undo: 1 for the undo command,
2 for the undo triggered by Arbortext Editor as the result of context errors,
3 for the redo command.

ApplicationEvent Module

The ApplicationEvent extension to the ApplicationEvent interface includes the
following event types:

ApplicationLoad
The ApplicationLoad event occurs after Arbortext Editor is initialized
and all the startup files in the custom directories have been executed. There is
no ACL callback equivalent for this event.

ApplicationEvent event listeners need to be registered before Arbortext
software is fully loaded. Therefore, a good place to register an
ApplicationLoad event listener is in a startup file in the custom directory.

* Bubbles: No
* Cancelable: No

* Context Info: None

ApplicationClosing
The ApplicationClosing event occurs when the user closes down the

Arbortext software. This event type is similar to the ACL session quit
callback.

This event type is cancelable. If an event listener calls the
preventDefault method, the closing will be cancelled.

The detail indicates whether the Arbortext software will prompt for document
changes or not:

* 0: prompts for any changes.
* 1:saves all modified documents without prompting.

* 2:doesn't prompt for unsaved changes and quits without saving modified
documents.

Events 137

* Bubbles: No
* Cancelable: Yes
¢ Context Info: detail

ADocumentEvent Module

The ADocumentEvent extension to the Event interface includes the following
event types:

DocumentCreated

The DocumentCreated event occurs after a document is constructed and
before any document instance startup files are executed. This event type is
similar to the ACL document create callback. However, the ACL document
create callback is called after document instance startup files are executed;
the DocumentCreated event is called before the startup files are executed.

It is impossible to register a DocumentCreated event listener in a
Document object. If the Document object exists, the document has already
been created. DocumentCreated event listeners need to be registered in the
Application object.

The detail attribute indicates whether the document is empty or not:

¢ 0:if the document is constructed from a source file.

1: if the document is empty.
* Bubbles: Yes

* (Cancelable: No

* Context Info: detail

DocumentClosed

The DocumentClosed event occurs when a document is destroyed. This
event is similar to the ACL document destroy callback.

* Bubbles: Yes
* Cancelable: No

* Context Info: None

DocumentLoad

138

The DocumentLoad event occurs when a document is loaded into a window
frame and all document instance startup files have been executed. This event
is similar to ACL editfilehook hook.

When a new window frame is launched, a DocumentLoad event will be
dispatched for the document displayed in the new window frame.

Programmer's Reference

A window frame can have more than one view. A DocumentLoad event will
only be dispatched if a document is loaded into a window frame and the
document does not already have a view in that window frame.

A document can be loaded into two or more different window frames. A
DocumentLoad event will be dispatched when a document is loaded into a
window frame event if the same document is already displayed in another
window frame.

relatedWindow specifies the window frame into which the document is
loaded.

* Bubbles: Yes
¢ Cancelable: No

¢ Context Info: relatedWindow

DocumentUnload
The DocumentUnload event occurs when a document is unloaded from a
window frame. There is no ACL callback equivalent for this event.

A DocumentUnload event will only be dispatched if a document is
unloaded from a window frame and the document does not have another view
in that window frame.

relatedWindow specifies the window frame from which the document is
unloaded. relatedWindow is not set if the window frame is also being
destroyed.

* Bubbles: Yes
* Cancelable: No

¢ Context Info: relatedWindow if the window frame still exists.
Otherwise, null.

DocumentSaving
The DocumentSaving event occurs when the user saves a document. This
event type covers ACL document save and saveas callbacks. The write
command does not cause any ACL callbacks to be called, but it triggers the
DocumentSaving event.

This event type is cancelable. If an event listener calls the
preventDefault method, the save will be canceled. The user can cancel
the save and call the ADocument Save method in the event listener to save
the document. This is useful when some actions need to be done before or
after the save.

The targetURT specifies the path the document is saved in. The
targetEncoding specifies the encoding the document is saved in.

The detail indicates the command that caused the event:

Events 139

* 0:if the event is caused by a save command.

* 1:if the event is caused by a saveas command.

» 2:if'the event is caused by a write command.

* Bubbles: Yes

* (Cancelable: No

* Context Info: targetURI, targetEncoding, detail

ADocumentEntityEvent Module

The ADocumentEntityEvent extension to the Event interface includes the following
event type:

EntityDeclConflict

140

The EntityDeclConflict event occurs when an entity declaration in an
internal subset conflicts with one in an external subset (usually a DTD) or with
one in a referencing parent document. This event type is similar to the
entitydeclconflict ACL callback.

The following module properties provide the context information for this
event:

object

The CMSObject in which the declaration was found.
relatedDocument

The Document in which the declaration was found.
relatedNode

DOM Ent ity containing information about the entity declaration.

To avoid the default behavior (which is to ignore the conflicting entity
declaration), the event handler must set the result property to specify an
alternative entity name as well as call preventDefault. Evenif result
is set and preventDefaultis called, the conflicting declaration will still be
ignored if any of the following are true:

* result was set to a blank or null string.
* result was set to a name which conflicts with an already existing entity.

* result was set to an invalid entity name.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

Programmer's Reference

* Bubbles: Yes
* Cancelable: Yes

* Context Info: object, relatedDocument, relatedNode

WindowEvent Module

The WindowEvent module has the following event types:

WindowCreated
The WindowCreated event occurs when a window is created. This event is
similar to the ACL window create callback.

It is impossible to register a WindowCreated event listener in a Window
object; if the Window object exists, the window has already been created.
WindowCreated event listeners need to be registered in the
Application object.

The WindowCreated event type bubbles to the Application object.
* Bubbles: Yes
¢ Cancelable: No

¢ Context Info: None

WindowLoad
This event type is triggered when a window is opened at the first time.

The WindowLoad event type bubbles to the Application object.
* Bubbles: No
* Cancelable: No

¢ Context Info: None

WindowClosing
This event type is triggered when the user requests a window be closed
through the system menu, through a close button on a window's title bar, or
through a platform-defined keystroke, such as Alt-F4 on Windows.

The WindowClosing event type bubbles to the Application object.
* Bubbles: No
» Cancelable: Yes

¢ Context Info: None

WindowClosed
This event type is triggered after a window is disposed.

The WindowClosed event type bubbles to the Application object.

Events 141

* Bubbles: No
* Cancelable: No

¢ Context Info: None

WindowActivated
This event type is triggered when a window is activated, that is, when it is
given the keyboard focus and becomes the active window.

The WindowActivated event type bubbles to the Application object.
+ Bubbles: No

* Cancelable: No

* Context Info: None

WindowDeactivated
This event type is triggered when a window ceases to be the active window.

The WindowDeactivated event type bubbles to the Application
object.

* Bubbles: No
* Cancelable: No
¢ Context Info: None

WindowMinimized
This event type is triggered when the user minimizes a window.

The WindowMinimized event type bubbles to the Application object.
* Bubbles: No

* (Cancelable: No

* Context Info: None

WindowRestored
This event type is triggered when a window is restored from a minimized state
to its previous displayed window size and position.

The WindowRestored event type bubbles to the Application object.

* Bubbles: No
¢ Cancelable: No

* Context Info: None

MenuEvent Module

The MenuEvent module has the following event types:

142 Programmer's Reference

MenuPost
This event is dispatched before a menu item is displayed. The target of the
event is the MenuItem being displayed. This event provides an opportunity
for application programmers to disable or enable the menu item based on the
nature of the current document or current cursor location.

* Bubbles: No
* Cancelable: No

* Context Info: None

MenuSelected
This event is dispatched when a menu item is selected. The target of the event
is the MenuItem being selected. The default action of this event is to execute
the ACL commands attached to the menu item. If the preventDefault
method is called, the default action will not occur.

* Bubbles: No
* Cancelable: Yes

* Context Info: None

CMSObjectEvent Module

The CMSObjectEvent module has the following event types:

CMSObjectPreCheckin
This event occurs before an object is checked in and before any supporting
calls have been made. This event is similar to the precheckin ACL
callback associated with the sess add callback function.

This event type is cancelable. If an event listener calls the
preventDefault method, the checkin will be canceled. The event handler
can perform a customized checkin itself and then cancel the default checkin by
calling preventDefault and setting result to the result of the checkin.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

* Bubbles: Yes
* Cancelable: Yes

* Context Info: None

Events 143

CMSObjectCheckin
This event occurs before an object is checked in and after some transactional
and bursting calls have been made. Specifically, if the adapter supports
transactions, a transaction will have been already started, and if the adapter
specifies that objects should be burst on checkin then this bursting will already
have occurred. If bursting modified the object contents, the object will also
have been saved back to the repository.

This event is similar to the checkin ACL callback associated with the
sess _add callback function.

This event type is cancelable. If an event listener calls the
preventDefault method, the checkin will be canceled. In this case, the
pending transaction (if supported) will be rolled back.

The event handler can perform a customized checkin itself and then cancel the
default checkin by calling preventDefault and setting result to the
result of the checkin. In this case, the specified result will be used and the
transaction will be committed.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

* Bubbles: Yes
* (Cancelable: Yes

¢ Context Info: None

CMSODbjectPostCheckin
This event occurs after an object has been checked in. As such, it is not
cancelable. There is no equivalent ACL hook for this event.

The following module property provides the context information for this
event:

result
* Represents the object that has been checked in.
O Bubbles: Yes

O Cancelable: No

144 Programmer's Reference

O Context Info: result

CMSODbjectCheckout
This event occurs before an object has been checked out. This event is similar
to the 1lock ACL callback associated with the sess _add callback
function.

This event type is cancelable. If an event listener calls the
preventDefault method, the checkout will be canceled. The event
handler can perform a customized checkout itself and then cancel the default
checkout by calling preventDefault and setting result to the result of
the checkout.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

The following module property provides the context information for this
event:

flags

Defined according to the flags parameter of the CMSObject.checkout
method.

* Bubbles: Yes
* Cancelable: Yes

* Context Info: flags

CMSODbjectPostCheckout
This event occurs after an object has been checked out. As such, it is not
cancelable. There is no equivalent ACL hook for this event.

The following module property provides the context information for this
event:
result

Represents the object that has been checked out.
* Bubbles: Yes

* Cancelable: Yes

* Context Info: result
CMSObjectCancelCheckout
This event occurs before an object's checkout has been canceled. This event is

similar to the unlock ACL callback associated with the sess add
callback function.

Events 145

This event type is cancelable. If an event listener calls the
preventDefault method, the checkout will remain. The event handler can
perform a customized cancellation of the checkout itself and then cancel the
default behavior by calling preventDefault and setting result to the
result of the canceled checkout.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

* Bubbles: Yes
¢ (Cancelable: Yes

¢ Context Info: None

CMSODbjectPostCancelCheckout

This event occurs after an object's checkout has been canceled. As such, it is
not cancelable. There is no equivalent ACL hook for this event.

The following module property provides the context information for this
event:
result

Represents the object whose checkout has been canceled.
* Bubbles: Yes
» Cancelable: No

¢ Context Info: result

CMSObjectSave

146

This event occurs before an object has been saved. This event is similar to the
save ACL callback associated with the sess add callback function.
This event type is cancelable. If an event listener calls the
preventDefault method, the save will be canceled. The event handler can

perform a customized save itself and then cancel the default save by calling
preventDefault and setting result to the result of the save.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

The following module properties provide the context information for this
event:

Programmer's Reference

flags

Defined according to the flags parameter of the CMSObject . save method.
start

Along with end, represents the content being saved.
end

Along with start, represents the content being saved.

* Bubbles: Yes
* (Cancelable: Yes

* Context Info: flags, start, end

CMSODbjectPostSave
This event occurs after an object has been saved. As such, it is not cancelable.
There is no equivalent ACL hook for this event.

The following module property provides the context information for this
event:
result

Represents the object that has been saved.

* Bubbles: Yes
¢ Cancelable: No

¢ Context Info: result

CMSSessionConstructEvent Module

The CMSSessionConstructEvent module has the following event types:

CMSSessionConstructObject
This event occurs before an in-memory CMSObject has been constructed
corresponding to a repository object. This event is similar to the construct
ACL callback associated with the sess add callback function.
This event type is cancelable. If an event listener calls the
preventDefault method, the object will not be constructed. The event
handler can perform a customized construction itself and then cancel the
default construction by calling preventDefault and setting result to
the result of the construction.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

Events 147

The following module properties provide the context information for this
event:

logicallId

Represents the object in the repository.
relatedNode

Represents null or a Document used for contextual information during the
construction.

* Bubbles: Yes

* Cancelable: Yes

* Context Info: logicallId, relatedNode
CMSSessionPostConstructObject

This event occurs after an object has been constructed. As such, it is not
cancelable. There is no equivalent ACL hook for this event.

The following module property provides the context information for this
event:

result
Represents the CMSOb-ject which has been constructed.

* Bubbles: Yes
* Cancelable: No

* Context Info: result

CMSSessionCreateEvent Module

The CMSSessionCreateEvent module has the following event types:

CMSSessionCreateNewObject
This event occurs before a new repository object is created. This event is
similar to the create ACL callback associated with the sess add
callback function. Modifying the name or folderLogicalId
arguments is functionally equivalent to the ACL object naming and object
location hooks specified in burst configuration files.

This event type is cancelable. If an event listener calls the
preventDefault method, the object will not be created. The event handler
can perform a customized creation itself and then cancel the default creation
by calling preventDefault and setting result to the result of the
construction.

148 Programmer's Reference

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

The following module properties provide the context information for this
event:
name

Represents the name of the object being created.
type

Represents an adapter-specific object type string.
folderLogicalld

Represents the parent folder for the new object.
flags

Same as the flags parameter of the CMSSession.createNewObject
method.

start

Along with end, represents the content of the new object.
end

Along with start, represents the content of the new object.
version

Represents an adapter-specific version for the new object.
* Bubbles: Yes
+ Cancelable: Yes

* Context Info: name, type, folderLogicalld, flags, start, end,
version

CMSSessionPostCreateNewObject
This event occurs after an object has been created. As such, it is not
cancelable. There is no equivalent ACL hook for this event.

The following module property provides the context information for this
event:
result

Represents the CMSOb-ject which has been constructed.

* Bubbles: Yes
¢ (Cancelable: No

¢ Context Info: result

Events 149

CMSSessionFileEvent Module

The CMSSessionFileEvent module has the following event types:
CMSSessionGetFile

This event occurs before the content of a repository object is downloaded to a
local disk file. This event is similar to the get fi1le ACL callback associated
with the sess add callback function.

This event type is cancelable. If an event listener calls the
preventDefault method, the object will not be downloaded. The event
handler can perform a customized download itself and then cancel the default
download by calling preventDefault and setting result to specify a
local disk file containing the object content.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

The following module properties provide the context information for this
event:

logicallId

Represents the object whose content is desired.
notation

Represents an adapter-specific format specification.
* Bubbles: Yes
* Cancelable: Yes

* Context Info: 1logicalId, notation

CMSSessionPostGetFile

150

This event occurs after an object's content has been downloaded. As such, it is
not cancelable. There is no equivalent ACL hook for this event.

The following module properties provide the context information for this
event:
logicalld

Represents the object whose content is desired.
notation

Represents an adapter-specific format specification.
localPath

Represents the local disk file containing the object content.

Programmer's Reference

* Bubbles: Yes
* (Cancelable: No
* Context Info: logicalId, notation, localPath

CMSSessionPutFile
This event occurs before a new repository object is created from the contents
of a local file or other resource. This event is similar to the putfile ACL
callback associated with the sess add callback function.

This event type is cancelable. If an event listener calls the
preventDefault method, the object will not be created. The event handler
can perform a customized creation itself and then cancel the default creation
by calling preventDefault and setting result to specify the logical id
of the new object.

~ Note

Setting result without calling preventDefault will cause the result
to be ignored and the default processing to proceed.

The following module properties provide the context information for this
event:
localPath

Represents the local resource whose content will go into the new object.
notation

Represents an adapter-specific format specification.
objectName

Represents the name of the new object.
folderLogicalld

Represents the parent folder of the new object.
* Bubbles: Yes
* Cancelable: Yes

* Context Info: localPath, notation, objectName,
folderLogicallId

CMSSessionPostPutFile
This event occurs after the new object has been created with the contents of a
local resource. As such, it is not cancelable. There is no equivalent ACL hook
for this event.

The following module properties provide the context information for this
event:

Events 151

localPath

Represents the local resource whose content went into the new object.
notation

Represents an adapter-specific format specification.
logicalld

Represents the logical id of the new object.

* Bubbles: Yes

* Cancelable: No

* Context Info: localPath, notation, logicalId

CMSSessionBurstEvent Module

The CMSSessionBurstEvent module has the following event types:

CMSSessionBurstDocument

152

This event occurs before a document is burst into the repository.There is no
equivalent ACL hook for this event.

The event handler's ability to assign new values to the topLevelName and
folderLogicalId properties can replace object location and naming rule
hooks, which are implemented as inline ACL code in a burst configuration
file.

This event type is cancelable. If an event listener calls the
preventDefault method, the burst will be canceled. In this case, the
pending transaction (if supported) will be rolled back.

The following module properties provide the context information for this
event:
canOverride

Represents whether the event handler is allowed to override the
topLevelName and folderLogicalId properties. If canOverride is
false, then any changes to these properties will have no effect. If
canOverride is true, then the event handler can set new values for these
properties if desired.

topLevelName

Represents the name of the top-level object which will result from bursting the
document. This may be null or empty which means the name will be auto-
generated according to the bursting rules for this adapter. The event handler
can override this value if canOverride is true.

folderLogicalld

Programmer's Reference

Represents the repository folder which will hold the top-level object which
will result from bursting the document. This may be null or empty which
means the folder will be chosen according to the bursting rules for this adapter.
The event handler can override this value if canOverride is true.
document

Represents the document being burst.
flags

Same as the flags parameter to the CMSSession.burstDocument
method.

* Bubbles: Yes
¢ Cancelable: Yes

* Context Info: canOverride, topLevelName, folderLogicalld,
document, flags

CMSSessionPostBurstDocument
This event occurs after a document has been burst. As such, it is not
cancelable. There is no equivalent ACL hook for this event.

The following module property provides the context information for this
event:

document

Represents the document which has been burst.
* Bubbles: Yes

* Cancelable: No

* Context Info: document

CMSSessionDisconnectEvent Module
The CMSSessionDisconnectEvent module has the following event type:

CMSSessionPreDisconnect
This event occurs before a a user logs off the repository. There is no equivalent
ACL hook for this event. This event type is not cancelable.

The following module property provides the context information for this
event:

currentUser

Specifies the current CMS user name. This will normally match the 1oginId
parameter to the CMSAdapter.connect method which established this
session.

Events 153

* Bubbles: Yes
* Cancelable: No

¢ Context Info: currentUser

CMSAdapterConnectEvent Module

The CMSAdapterConnectEvent module has the following event type:

CMSAdapterPreConnect
This event occurs before the adapter's connect method is invoked. An
associated event handler can ensure any resource dependencies are satisfied.

This event type is cancelable. If an event listener calls the

preventDefault method, the adapter’s connect method will not be
called.

No context information is provided for this event.

* Bubbles: Yes

* (Cancelable: Yes

CMSAdapterDisconnectEvent Module

The CMSAdapterDisconnectEvent module has the following event type:

CMSAdapterPostDisconnect
This event occurs after a session has successfully logged off the CMS, and as
such is not cancelable. An associated event handler can be used to clean up
any resource dependencies. The event CMSSessionPreDisconnect
occurs before the user logs off the repository. When
CMSAdapterPostDisconnect occurs, the session is invalid, and thus
appears in a separate interface.

The following module property provides the context information for this
event:
currentUser

Specifies the current CMS user name. This will normally match the 1oginId
parameter to the CMSAdapter.connect method which established this
session.

* Bubbles: Yes
* Cancelable: No

* Context Info: currentUser

154 Programmer's Reference

13

Working with Tables

Working With Tables OVEIVIEWciiiiiiii e e e 156
Example: Inserting and Modifying a Table..............cooiiiiiiiiiiii e, 157
Example: Inserting a Column Based on the Current Selection...............ccccoooiiiiiinennnnn. 158

Example: Identifying a Document Type's Table Model Support

155

Working with Tables Overview

The AOM contains interfaces that provide access to more than 100 Arbortext
Editor table functions. With these interfaces, you can programmatically create and
modify tables in any Arbortext Editor document using Java, JavaScript, VB, or
VBScript. The entire Arbortext Editor table object model is exposed through the
following set of interfaces:

Interface Description

TableCell A cell in a table.

TableCol i
ableColumn A column in a table.

TableException .
Xcept The Exception type thrown when an

error is encountered.

TableGrid In the Oasis Exchange Table model, a

table consists of one or more grids,
each of which can have a unique
number of rows and columns. In the
HTML and Arbortext table models, the
grid is the sum of all the table rows and
columns. This interface allows
operation on those grids.

TableMulticell .
ableMultice A rectangular array of spanned cells in

a table.

TableObject .
. The superinterface for TableCell,

TableColumn, TableGrid,
TableObjectStore, TableRow, TableRule,
TableSet, and TableTilePlex.

TableObjectStore A collection of TableObjects.

TableRectangle .
9 A rectangle of contiguous cells.

TableR i
ableRow A row in a table.
TableRul i
ableRule A rule in a table.
Tabl i
ableSet A collection of one or more TableGrids.
TableTilePlex

A collection representing a table
selection.

The following three code samples illustrate the basics of inserting and
manipulating tables using these interfaces. The sample code is in JavaScript. The
code will also work using the Microsoft JScript Engine with the noted
modifications.

156 Programmer's Reference

Example: Inserting and Modifying a Table
This example uses the function addTable to perform the following actions:

» Insert a six-row five-column table into the first paragraph of a Arbortext XML
Docbook template.

* Span cells 1-2 and 3-5 of the first row and add text to the spanned cells.
* Convert the first row to a header row.

* Turn off rules for the entire table.

The function appendText is a utility function for adding text to a cell.

To run this sample code:

1. Copy addTable and appendText to a file named addtable. js in
Arbortext-path\custom\scripts.

2. Start Arbortext Editor, open a Arbortext XML Docbook template, and enter

the following commands at the Arbortext Editor command line:
source addtable.js
Jjs addtable

// Function: appendText

//

// Description: A utility function called by addTable.
// Adds text to a cell

//

// Parameters: cell: the target for the added text

// text: the text to be added

//

/= e e
function appendText (cell, text)

{

var cellRange = cell.contents;

cellRange.collapse(false);

var textNode = cell.document.createTextNode (text) ;

cellRange.insertNode (textNode) ;

// Function: addTable

//

// Description: Add a table to the first para in a document
//

// Parameters: NONE

//

/==
function addTable () {

var doc = Application.activeDocument;

var para = doc.getElementsByTagName ("para").item(0);

Working with Tables 157

try{

var set = para.insertTable ("OASIS Exchange", "table", 5, 6, null);
}

catch(e) {Application.alert ("Exception " + e.code() +
" caught in insertTable");

return 0;}

var grid = set.grids.item(0);

var firstRow = grid.row(l);

// Span cells 1-2 and 3-5

firstRow.cell(l) .span(firstRow.cell(2));
firstRow.cell (3) .span(firstRow.cell (5));

appendText (firstRow.cell (1), "Cells 1 and 2");
appendText (firstRow.cell (3), "Cells 3-5");

// Change first row to a header row
firstRow.setAttribute ("header level",1);

//turn off the table rules

var rules = grid.rules;

for (i = 0; i < rules.length; i++) {

rules.item(i) .setAttribute ("style", "blank");

}
}//end of addTable

Example: Inserting a Column Based on
the Current Selection

This example uses the function tbl insert column to inserta column to the
left of the current selection. If the selection is invalid, that is, it is discontiguous or
not a rectangle, a message is displayed in a dialog box and tbl insert
column returns zero.

To run this sample code:

1. Copythe tbl insert column code to a file named insertcol.jsin
Arbortext-path\custom\scripts.

2. Start Arbortext Editor, open a Arbortext XML Docbook template, insert a 5x5

table, and enter the following command at the Arbortext Editor command line:
source insertcol.js

3. Select a portion of the table.

Enter the following command at the Arbortext Editor command line:
js tbl insert column ()

// Function: tbl insert column

// Description:
// Inserts one or more columns into a document

158 Programmer's Reference

// Parameter:

// insertLeft: if true (nonzero), adds columns to the left of
// the target

//

// Returns:

// 0 if the insert failed, 1 if it succeeded

//

function tbl insert column(insertLeft)

{
if (insertlLeft == undefined) {insertleft = 0;}

var doc = Application.activeDocument;

//Check to see that there's either a table selection, or that the
//cursor is in a table cell.

//To see of a cursor is in a cell:

//get the range that is the cell containing the cursor

//get the cell node

//get the cell containing the caret

if ((doc.selectionType != doc.TABLE SELECTION) &&

((cell = doc.insertionPoint.endContainer.enclosingCell) == null)) {
Application.alert ("No table object is selected");

return 0;

//get the table selection from the active document
var tilePlex = doc.tableSelection;

//1if the selection is empty, i.e., just a cursor in a cell,
//add that cell to the tableTilePlex to create a 1x1 rectangle
if(tilePlex.empty) {

tilePlex.addObject (cell);

//ensure table selection will accept inserted columns
if(!'tilePlex.modifiable) {

Application.alert ("table cannot be modified");

return 0;

//ensure table selection is contiguous and does not cross

//grid boundaries

var validRectangle = tilePlex.pasteRectangle;

if (validRectangle == null) {

Application.alert ("The table selection is discontiguous or crosses
grid boundaries");

return O;

//At this point, the selection is valid and can be modified, add the
//columns to the grid.
//A new column is added for each one that the user has selected.

Working with Tables 159

var newGrid = validRectangle.lowerLeft.grid;

for(i = 0; 1 < validRectangle.width; i++) {

try{

if (insertLeft) {

newGrid.addColumn (validRectangle.lowerLeft.column) ;

}

else(

newGrid.addColumn (validRectangle.upperRight.column.columnRight) ;
}

}

catch (e) {Application.alert ("Column insertion failed because " + e.code);}

}

//success
return 1;
}//end of tbl insert column

To implement the previous example using JScript, change the line:

if ((doc.selectionType != doc.TABLE SELECTION) &&
to be:
if ((doc.selectionType != 2) &&

Example: Identifying a Document Type's
Table Model Support

This example uses the function tableModelInfo to print all the available
information on the current document type's supported table model(s) to the
Arbortext Editor message window.

To run this sample code:

1. Copy the tableModelInfo code to a file named tableinfo.js in
Arbortext-path\custom\scripts.

2. Start Arbortext Editor, open a Arbortext XML Docbook or an XHTML v1.0
template, and enter the following commands at the Arbortext Editor command
line:
source tableinfo.js
js tableModelInfo

// Function: tableModellInfo
// Description: Print all information about the current table models
// Parameters: NONE

function tableModelInfo ()
{

var docType = Application.activeDocument.doctype;
var tblModels = docType.tableModels;

160 Programmer's Reference

Application.alert ("Table model information for the " +
docType + "doctype");

Application.alert ("Number of table models = " + tblModels.length);
for (var 1 = 0; i < tblModels.length; i++) {

Application.print (" [" + 1 + "] = '" + tblModels.item(i) + "'");
Application.print (" Supports multiple grids = " +
docType.tableModelSupport (tblModels.item (i), "multiplegrids"));
Application.print (" Supports headers = " +
docType.tableModelSupport (tb1lModels.item (i), "HeaderRows"));
Application.print (" Supports footers = " +

docType.tableModelSupport (tblModels.item (i), "FooterRows"));
var wrappers = docType.tableModelWrappers (tblModels.item(i));

Application.print (" Number of wrapper tags = " + wrappers.length);
for (var j = 0; j < wrappers.length; j++) {
Application.print (" [" + j + "] = '" + wrappers.item(j) + "'");

}
var tags = docType.tableModelTags (tblModels.item(i));

Application.print (" Number of table model tags = " + tags.length);
for (j = 0; j < tags.length; j++) {
Application.print(" [" + J + "] = '"" + tags.item(j) + "'");

}

}
}//end of tableModelInfo

Working with Tables 161

14

Working with XSL Composition

OVEBIVIBW ... ettt e e e e et e e e e e e e e ens 164
Related AOM Interfaces and MethodsS....... ..o 164
Example: Composing an HTML File........ouuiiiiiiie e 165

163

Overview

XSL composition refers to Arbortext Editor's ability to transform a document
using XSL or XSL-FO stylesheets. XSL composition is defined by a composer. A
composer is a configurable processor that transforms a document by passing it
through one or more SAX filters in a filter pipeline.

Filters are classes written in Java that process an input data stream into an output
data stream. The data to be processed is represented as a series of SAX events.

A pipeline is a sequence of filters. Each filter takes inputs and produces outputs
that get passed to the next filter in the pipeline. A running pipeline is a closed
system with a well-defined input (the source) and a well-defined output (the sink).

You specify the parameters for a composer in a composer configuration file
(.ccf). The . ccft file defines composer parameters, including filter resources
and the processing sequence.

You can create and edit . ccf files using the DCF Editor in Arbortext Architect
(Edit » CCF). Several . ccf files are distributed with Arbortext Editor. They are
located at Arbortext-path\composer.

Related AOM Interfaces and Methods

You can use the following AOM interfaces and methods to obtain information
about a composer:

164 Programmer's Reference

Interface Description

Applicati
pplication The createComposer method

returns a composer object.

Composer
P The getDefaultParameters

method returns a property map of
composer parameters in the pipeline
definition.

The runComposer method runs a
pipeline associated with the composer
object.

The getParameterLabel method
returns the label for the given pipeline
parameter.

The getParamDocumentation
method returns the documentation for
the given pipeline parameter.

The get ParamType method returns
the type for the given pipeline
parameter.

The
getParamEnumerationValue
method returns all possible values for
the enumeration as a string list.

The i sParamRequired method
determines if the given parameter is
required.

Example: Composing an HTML File

The following example calls the composition pipeline for an HTML file
composition.

/*

* ComposerExample is an example of calling the Composition pipeline
* using the AOM Composer. In this example, an XML document is

* composed into an HTML file. The source document can exist in one

* of 2 places:

* - in Arbortext.

* — in a file.

* The Composition uses the htmlfile pipeline defined in htmlfile.ccf

* in the composer directory.

Working with XSL Composition 165

*/
import com.arbortext.epic.*;
import org.w3c.dom.*;
import java.io.File;
public class ComposerExample {
/**
* Used internally to access the composer configuration file.
*/
private static final String HTMLFILE CCF =
File.separator + "composer" + File.separator + "htmlfile.ccf";
Jx*
* Used internally to access the entity substitution file.
*/
private static final String HTMLENTSUBFILE =
File.separator + "composer" + File.separator + "htmlEntSub.xml";
/x*
* Produces HTML from an in-memory XML file and an XSL stylesheet.

*

* @param docId Id of document to process.

*

* @param stylesheet Fully-pathed XSL stylesheet.

*

* @param outputFile Fully-pathed HTML output filename.

*/

public static void composeToHtmlFromDoc (int docId, String stylesheet,
String outputFile) {

boolean calledStartJob = false;

try {

String installPath = Acl.eval ("main::aptpath");

//Create the Composer object for the HTML composition process.
Composer composer = Application.createComposer (installPath +
HTMLFILE_CCF) ;

PropertyMap params = Application.createPropertyMap();

//Set up the parameters

params.putString("stylesheet", stylesheet);

params.putString ("document", Integer.toString(docId));

//the entity substitution file for HTML

params.putString ("html.entSubFname", installPath + HTMLENTSUBFILE) ;
params.putString ("outputFile", outputFile);

//The following sets up the directory where any graphics would
//be placed and the associated href in the HTML document.
params.putString ("graphicsHref", (new File (outputFile)) .getName ()
+ ".graphics/");

params.putString ("graphicsPath", outputFile + ".graphics/");

// Let the composer know we are using an XSL stylesheet as opposed

166 Programmer's Reference

// to a FOSI ("fosi").
params.putString ("stylesheetType", "xsl");

//The Acl.* methods perform some initialization that needs to
//happen for the Composer Log.

Acl.execute ("require composerlog");

Acl.execute ("require eventlog");

//The start job method MUST be called before the composition process
//is run.

Acl.func (" composerlog::start job", "ComposerExample");
calledStartJob = true;

//Set the log level to info.

String SEVERITY INFO = Acl.func("eval", " eventlog::SEVERITY INFO");
Acl.func (" composerlog::set log severity", SEVERITY INFO);
//runPipeline returns a boolean indicating success or failure.

if (composer.runPipeline (params)) {

Acl.func(" composerlog::add record", SEVERITY INFO, "Success.");

}

else {

// Error information will have been placed into the Composer Log.
Acl.func (" composerlog::add record", SEVERITY INFO, "Failure.");

}

}

catch (AclException ex) {

// Unexpected.

System.err.println ("ACLException in composeToHtmlFromDoc: " + ex);
ex.printStackTrace (System.err) ;

}

catch (AOMException aomex) {

// Unexpected.

System.err.println ("AOMException in composeToHtmlFromDoc: " + aomex);
aomex.printStackTrace (System.err) ;

}

finally {

//Cleanup code to tell the ComposerLog that processing is over.

// This MUST be called if start job was called.

if (calledStartJdob) {

Acl.func("_composerlog::end_job");

/**
* Produces HTML from an on-disk XML file and an XSL stylesheet.

* @param inputFile Fully-pathed XML filename.

Working with XSL Composition

167

* @param stylesheet Fully-pathed XSL stylesheet.

*

* @param outputFile Fully-pathed HTML output filename.

*/

public static void composeToHtmlFromFile (String inputFile,
String stylesheet, String outputFile) {

ADocument doc = null;

try {

doc = (ADocument) Application.openDocument (inputFile);
composeToHtmlFromDoc (doc.getAclId (), stylesheet, outputFile);
}

catch (AOMException aomex) {

System.err.println ("AOMException in composeToHtmlFromFile: " + aomex);
aomex.printStackTrace (System.err) ;

}

finally {

if (doc !'= null) {

doc.close();

}
}
}
}

168 Programmer’s Reference

15

Line Numbering in Arbortext
Editor and Arbortext Publishing

Engine
Line NUMDENNG OVEIVIEWuuiieiiiiee et e e e e eeanas 170
Applying Line NUMDEIS ..ot 170
Building a Basic Line Numbering Applicationcoooiiiiiiiic e 172
Line numbering application building referenceccooeiiiiiiiiii i, 173

169

Line Numbering Overview

Arbortext Editor and the Arbortext Publishing Engine provide a framework for
building a custom application to add line numbers to XML documents. Line
numbers and page numbers can be displayed in the Editor view as well as
composed print output.

Applying Line Numbers

Arbortext Editor and Arbortext Publishing Engine provide a framework for
building a custom application to add line numbers to XML documents. Line
numbers and page numbers can be displayed in the Edit window as well as
composed print output.

>~ Note

Using line numbering with the Advanced Preference
deepcontentsplitting setto on may produce unexpected results. It is
recommended that you do not use line numbering with
deepcontentsplitting enabled.

Line Numbering Sample Application

A sample line numbering application can be found in the samples\
linenumbering folder in your installation directory. Use the following
procedure to view an example of line numbering using this sample application.
You'll need to have either Arbortext Styler or Print Composer installed and
licensed to perform the following procedure:

To Apply Line Numbers to a Sample Document:

1. Choose File » New, select the Sample check box, and choose Arbortext
Simplified XML DocBook Article.

2. Atthe Arbortext Editor command line, type: 1 inenumLine numbers will
appear directly to the left of each line in your document.

3. Choose File » Print Preview and use the asdocbook. style stylesheet to
view the line numbers in a composed document.

4. To remove line numbers from your document, on the Arbortext Editor
command line, type: layout: :clear ()

170 Programmer's Reference

help10103.html
help10103.html

Line Numbering Namespace

The line numbering namespace and associated markup (atipl tags) are
described on the PTC Arbortext web site.

Line Numbering Limitations

Line numbers cannot be added to lines that consist entirely of generated text
(for example, a table of contents or index).

FOSI stylesheets must be used. Line numbering is not supported with XSL-FO
stylesheets.

The same FOSI must be used to apply and view the line numbers.
Performance on large documents will be slow and memory intensive.

Changes made outside of Arbortext Editor or Arbortext Publishing Engine
may corrupt line and page markers.

Change tracking records must be either accepted or rejected before line
numbering is applied.

Line numbers can only be displayed on the left side of the Edit window.
However, line numbers can be set to appear on either side of a composed print
document.

There is no support for languages without spaces between words (for example,
Chinese, Japanese, and Korean).

Line numbering is only intended to work with XML documents.

Line numbering is not supported when using composition pipeline formatting
(for example, line numbers cannot be applied to profiled documents).

Line numbering cannot be applied to documents that contain file entities that
are referenced multiple times in a single document. Unexpected behavior may
result.

Rules and leaders are ignored. Adjacent line breaks may not be marked up
correctly.

The following limitations apply to the sample application, but are not necessarily
limitations of the Arbortext Editor line numbering capability

Only single column output is supported.
Tables are accommodated, but not algroups.
Vertical spanning of cells is not supported.

Only top justified text in tables is supported.

Contact PTC Inc. consulting services for help developing your customized line
numbering application.

Line Numbering in Arbortext Editor and Arbortext Publishing Engine 171

Building a Basic Line Numbering
Application

Use the following procedure to build a rudimentary application that will add line
numbers to an XML document. You can use the sample application code found in
the 1inenum.acl file in samples\linenumbering folder of your
installation directory as a starting point or build the application entirely from
scratch.

~ Note

If you are editing SGML documents, remember to recompile your document
type to add the line numbering FOSI fragments (atipl-eic. fos) that are
found in the \ 1ib directory of your installation. XML document types are
automatically recompiled.

To Build a Basic Line Numbering Application:

1. Build an ACL application that will be used to define the line numbering
behavior you want to apply to the atipl tags in a document. You can provide
specifications for each of the atipl tags. Detailed descriptions of the generic
attributes for each tag are provided in the reference section of this chapter. The
following list provides suggestions for your application:

172

If you want line numbers to restart at each new page, include a counter in
your code that initializes at each atipl:startpage tag.

If you want line numbers to appear on every fifth line, include a counter in
your code that sets the attrl on each atipl:startline tag that is divisible
by 5.

By default, line numbers are displayed in both the Edit view and composed
print output. If you would like to limit line numbering to one media or the
other, set the atipl variable to either print or screen. For example,
to limit line numbers to composed print output, add the following line to
your code:

Satipl="print"

Generated text must be refreshed in order for the newly applied line
numbers to be displayed in the Edit view. Add the following line to your
code to automatically refresh generated text:

Programmer's Reference

set gentext=off ; set gentext=on

2. Open an XML document and call the 1ayout: : apply function, passing
your ACL application through as the first argument. The layout: :apply

function causes a series of composition and layout events to occur:

a. A formatting pass is completed and a . Layout file is generated, which

specifies the structure of the document as it will appear in composed
output, and defines where the at ipl tags will appear. For more
information about the layout file, please refer to The Layout file and
document type on page 178.

b. The atipl markup is added to your document.

c. A second formatting pass is performed, your application is called and sets

a series of common attributes on the atipl tags, which define the line

numbers' appearance.

d. The line numbers are displayed in your Edit view.

Line numbering ACL

Detailed information on the following ACL functions and set options can be found

in the ACL documentation.

* set pagelayoutmarkers command
* set protectpagelayout command
* oid logical mate function

* oid find valid insert function
*+ layout: :add function

* layout::clear function

* layout: :apply function

e linenum function

Line numbering application building
reference

The following sections provide detailed information regarding the structure,
conventions, and possible customization of the Arbortext line numbering
framework.

Line Numbering in Arbortext Editor and Arbortext Publishing Engine

173

Tag traversal and current tag conventions

Use the pagelayoutmarkers set option to control the display of the atipl
markup, and the protectpagelayout set option to control whether or not it
can be modified. The caret command will ignore atipl markup whenever it is
not displayed, regardless of these command settings.

oid functions (for example, oid next and oid prev) do not recognize
atipl markup whether or not it is displayed in the Edit window. Line numbering
applications must be written to handle cases where at ipl markup may interfere
with tag or oid navigation.

The atipl singleton tags do not affect the balancing of selections, but they must
be treated as pairs in other respects by all edit operations. This markup is ignored
by the spell checking code, so that word fragments split by these tags are seen as a
single word.

Deletion, either forward or backward, will ignore any atipl markup to the left
of the cursor if it is not displayed. The deletion operation will fail if the markup is
displayed and protected.

In the context of line numbering applications, the current tag is defined as the tag
to the left of the cursor. The atipl tags can only be treated as the current tag
when they are displayed.

The line numbering namespace

The line numbering namespace and associated markup (atipl tags) are
described on the PTC Arbortextweb site.

The atipl layout markup

The atipl tag set does not require a separate document type definition; it can be
used with all document types. The definitions for these tags are in Arbortext—
path\lib\dtgen\atitag.cf, and the default formatting is defined in FOSI
fragment located at Arbortext-path\lib\atipl-eic. fos.

When the 1ayout: :apply function is called, a . layout file is created, using
the structures defined in the 1ayout . dtd to specify the composed layout of the
document. The atipl singleton tags are then inserted as pairs around the
document material that corresponds to the composed output structure they
describe. Although atipl tags are singletons, if a particular tag cannot be
inserted, its logical mate will not be inserted either. For example, if a
<atipl:startcolumn/> tag cannot be inserted, the
<atipl:endcolumn/> tag will also not be allowed.

Each start and end tag has a set of generic attributes. Every start tag also has a
predefined set of attributes that correspond to the declared attributes of the
matching element of the 1ayout .dtd. For more detailed information on the

174 Programmer's Reference

layout.dtd, refer to section The Layout file and document type on page 178.
The exceptions to this correlation are that the oid and of fset attributes are not
required, and the <atipl:startfloat/> tag has page, span, and column
number attributes.

The commonattr entity in the layout.dtd

Each singleton pair described below is defined in the commonattrs entity
which is declared in the 1ayout .dtd.

type, location, error and generic attributes

<!ENTITY % commonattrs

"type (forced|discretionary) "discretionary"

location (inlinel|display) "inline"

xmlns:atipl CDATA #IMPLIED

error CDATA #IMPLIED

attrl CDATA #IMPLIED

attr2 CDATA #IMPLIED

attr3 CDATA #IMPLIED

attr4 CDATA #IMPLIED

attr5 CDATA #IMPLIED

attr6 CDATA #IMPLIED

attr7 CDATA #IMPLIED

attr8 CDATA #IMPLIED

attr9 CDATA #IMPLIED" >
The type, location and error attributes are used to control the method for
generating formatting characteristics for an element and are set during the
generation of layout markup. These attributes should not be modified.

The attributes attr1 through attr9 are generic attributes that can be used by
the application writer to customize page layout applications. By convention,
attrl is used to display automatically generated text, such as line numbers.

startpage and endpage

<!ELEMENT atipl:startpage EMPTY>
<!ATTLIST atipl:startpage

number NMTOKEN #IMPLIED
commonattrs; >
<!ELEMENT atipl:endpage EMPTY>
<!ATTLIST atipl:endpage

$commonattrs; >

The startpage markup indicates the start of a page, as determined by
Arbortext Editor's formatting engine. The number attribute gives the sequential
page number.

Line Numbering in Arbortext Editor and Arbortext Publishing Engine 175

A folio may be set for the attr1 attribute. It will appear as part of the line
number in the format: folio, \-\, 1ineno.

The type of page break to force is controlled by the attr2 attribute. Valid values
are next, verso, and recto. The default is to not force a page break.

The endpage markup specifies the end of a page. If the att r2 attribute is set to
the £111, then underfull errors are not reported for this page and the page is not
stretched if it is short.

startspan and endspan

<!ELEMENT atipl:startspan EMPTY>
<!ATTLIST atipl:startspan
number NMTOKEN #IMPLIED
columns NMTOKEN #IMPLIED
commonattrs; >
<!ELEMENT atipl:endspan EMPTY>
<!ATTLIST atipl:endspan

$commonattrs; >

The start and end of a spanned column are specified by the startspan and
endspan markup. For example, a page that contains two columns of text
followed by a page wide table will consist of two spans. The span number, which
is reset on every page, is indicated by the attribute number. The number of
columns is indicated by columns.

startcolumn and endcolumn

<!ELEMENT atipl:startcolumn EMPTY>
<!ATTLIST atipl:startcolumn

number NMTOKEN #IMPLIED
$commonattrs; >
<!ELEMENT atipl:endcolumn EMPTY>
<!ATTLIST atipl:endcolumn

$Scommonattrs; >

Columns within a span are indicated by the startcolumn and endcolumn
markup. The number attribute indicates the column number. To force a column
break, set attr2 to force.

startfloat and endfloat

<!ELEMENT atipl:startfloat EMPTY>
<!ATTLIST atipl:startfloat

class CDATA #IMPLIED

flid CDATA #IMPLIED

pagetype CDATA #IMPLIED

$Scommonattrs; >

176 Programmer's Reference

<!ELEMENT atipl:endfloat EMPTY>
<!ATTLIST atipl:endfloat

$commonattrs; >

Floats are parts of a document that do not appear in a set order. Rather, floats
appear at the top or bottom of a page, span, or column. The class, f1id, and
pagetype attributes refer to FOSI concepts associated with every float.

startrow, endrow, startentry, and endentry

<!ELEMENT atipl:startrow EMPTY>
<!ATTLIST atipl:startrow

number NMTOKEN #IMPLIED
Scommonattrs; >
<!ELEMENT atipl:endrow EMPTY>
<!ATTLIST atipl:endrow
%commonattrs; >
<!ELEMENT atipl:startentry EMPTY>
<!ATTLIST atipl:startentry
number NMTOKEN #IMPLIED

vspan NMTOKEN #IMPLIED

hspan NMTOKEN #IMPLIED
$commonattrs; >
<!ELEMENT atipl:endentry EMPTY>
<!ATTLIST atipl:endentry

%$commonattrs; >

The startrow, endrow, startentry, and endentry markup specifies the
rows and columns of a table. The number attribute of a row is reset on every
page, likewise the number attribute of an entry is reset in every row. The vspan
and hspan attributes indicate that an entry is spanning. The former indicates the
number of cells spanned vertically, the latter indicates the number spanned
horizontally.

startline and endline

<!ELEMENT atipl:startline EMPTY>
<!ATTLIST atipl:startline
typemask CDATA "1"
%commonattrs; >
<!ELEMENT atipl:endline EMPTY>
<!ATTLIST atipl:endline
hyphen NMTOKEN #IMPLIED

%$commonattrs; >

The startline and endline markup indicates the line breaks as defined by
the formatting engine. The type of content in a line is indicated by the t ypemask
attribute. The bits that may appear in a typemask indicate whether that content is
plain or generated text, and are displayed in the following table:

Line Numbering in Arbortext Editor and Arbortext Publishing Engine 177

Plain Gentext Content

Ox1 0x2 characters

O0x4 0x8 ruling

0x10 0x20 kern, kernto, hyphpt,
hardsp, passthru

0x40 0x80 character fill (leader dots)

0x100 0x200 graphic

0x400 0x800 display equation

0x1000 0x2000 inline equation

0x4000 0x8000 forced line break

If a line ends with a hyphen, the character code of the hyphen is added to the
hyphen attribute on the end tag.

The margin where the line numbers appear in the printed output is defined by the
value of attr2. Legal values are 1eft or right. The defaultis right.

The quadding of the number, relative to the page center, is defined by the value of
attr3. This value may be in or out. The default value is out.

The end of a line, where a break is no longer discretionary, may require special
treatment. Set attr2 to £i111 on the end tag to end a line with a filler space that
prevents an underfull error.

The Layout file and document type

The Layout document type defines the . 1ayout file, which is produced by the
Arbortext formatting engine and written to the . aptcache folder when line
numbering is applied to a document. The . layout file specifies the structure of
the document as it will appear in composed output, and defines where the atipl
tags will appear.

The format of the . 1ayout file is defined by the following document type
definition. A typical declaration would be structured in this way:

<?xml version=1.07?>
<!DOCTYPE layout PUBLIC "-//Arbortext//DTD Layout 1.0//EN"
"layout/layout.dtd">

The common entities

The following entities are declared in the Layout DTD, and are used for declaring
attributes that point back into the document or store dimensions.

<!ENTITY % oid "CDATA" > <!--vdid,df,genno-->

<!ENTITY % offset "NMTOKEN" > <!--zero based offset-->

<!ENTITY dimen "CDATA" > <!--dimension in pt, e.g 1.25-->

oe

178 Programmer's Reference

Layout structure

A .layout file describes the page structures that result from the composition
process applied to a source document. A typical . layout file will describe one
or more Page structures.

The Layout element's date attribute holds the creation date in the form DD-
MM-YYYY. The file attribute holds the system path of the source document, if
available.

<!ELEMENT Layout (Page*)>

<!ATTLIST Layout

date CDATA #IMPLIED

file CDATA #IMPLIED >

Page level structures

A Page is a vertical layout container that holds an optional header, zero or more
spans, and an optional footer. Page-top floats may appear after the header and
Page-Dbottom floats may appear before the footer. Pages are numbered starting
with 1 for the first page. The optional oid attribute indicates the element that
forces the start of the page, if any.

Header and Footer are generated by the stylesheet. They may also contain
information that is derived from the document or from the part of the document
that is currently displayed. The header and footer are usually ignored by
applications that move layout information back to the document.

Span is a horizontal layout container that holds one or more columns. For
example, a page may have a title that spans the page, a three column span for text,
and another one column span for a table. The optional oid attribute specifies the
element in the document that forces the start of any such span.

Spans are numbered, starting with 1 for the first span on a page. The columns
attribute specifies the maximum number of columns that a span can contain. Some
of the columns in a span may be missing. The width attribute specifies the width
of each column in a span measured in points.

Column is a vertical layout container that holds lines of galley material or tables.
Columns are numbered, starting with 1 for the first column in a span. The oid
attribute indicates the element that forces the start of any such column.
<!ELEMENT Page ((Header? , Float*, (Span+, Float*)?, Footer?))>
<!ATTLIST Page

oid %oid; #IMPLIED

number NMTOKEN #IMPLIED >

<!ELEMENT Header ((Line | Row)*)>
<!ELEMENT Footer ((Line | Row)*)>

<!ELEMENT Span (Float*, (Column+ , Float*)?)>

<!ATTLIST Span

oid %oid; #IMPLIED

number NMTOKEN #IMPLIED

columns CDATA #IMPLIED

Line Numbering in Arbortext Editor and Arbortext Publishing Engine 179

width %dimen; #IMPLIED >

<!ELEMENT Column (Float*, ((Line | Row)+, Float*)?)>
<!ATTLIST Column

oid %oid; #IMPLIED

number CDATA #IMPLIED >

Floating structures

A float is a vertical container. It holds galley material that does not appear in
sequence with the galley but rather in one of the many float areas available in the
page layout. These areas are the top or bottom of the page, the top or bottom of
any span, and the top or bottom of any column.

Floating material belongs to one of many float classes, and within a class multiple
floats retain their galley order. For example, footnotes are floats that belong to the
footnote class, and they appear in the page layout in the same order as they
originally appeared in the instance.

The oid attribute indicates the element that starts the float.

The class attribute indicates the float class. The class also contains a float
occurrence modifier. Repeating floats may appear many times, while once floats
may only appear once. Applications may be written to ignore repeating floats and
process once floats according to the class name.

The £11id attribute (float identifier) provides a unique number for each float in a
class.

The pagetype attribute defines the relationship between a float and its point of
reference.

The width attribute specifies the width of the content.
<!ELEMENT Float ((Row | Line)*)>
<!ATTLIST Float

oid %oid; #REQUIRED

class CDATA #IMPLIED

f1id CDATA #IMPLIED

pagetype CDATA #IMPLIED

width %dimen; #IMPLIED >

Galley structures

Galley refers to the running text and tables that are laid out into columns during
page composition.

Row is a horizontal container associated with tables that hold one or more entries.
A table is made up of rows, some of which are header rows and some of which are
footer rows. The oid attribute indicates the element that starts the row.

180 Programmer's Reference

Entry is a vertical container that holds the material that appears in a table cell.
This material is typeset using the width of the entry (given by the width
attribute). An entry may span columns (hSpan) and rows (vSpan). The oid
attribute indicates the element that starts the entry.

Line is a horizontal container that holds text, graphics, or equations. Line
numbering applications focus on the start and end of each line. If an element
forced the start of a line, this is indicated by the oid attribute.

<!ELEMENT Row (Entry+)>

<!ATTLIST Row

oid %oid; #IMPLIED

number NMTOKEN #IMPLIED >

<!ELEMENT Entry ((Line | Row)*)>

<!ATTLIST Entry

oid %oid; #IMPLIED

number NMTOKEN #IMPLIED

hSpan NMTOKEN #IMPLIED

vSpan NMTOKEN #IMPLIED

width CDATA #IMPLIED >

<!ELEMENT Line ((Text | Graphic | Equation) *)>

<!ATTLIST Line

oid %oid; #IMPLIED

y %dimen; #IMPLIED >

Text level structures

Text level structures are the visible objects that appear on the page. They include
text, graphics, and equations. Rules and leaders are ignored by line numbering
applications.

Text refers to a sequence of characters that are displayed one font. The concept
of'a word does not exist, because a string of characters includes space characters.
If implemented, the text element may contain a string of characters as PCDATA,
otherwise it is empty.

The 0oid, sOffset, and eOf fset parameters can be used to locate the exact
substring in the source document that corresponds to a text element. If the text
fragment ended in a discretionary hyphen (inserted by the formatting engine), the
hyphen character is indicated by the hyphen attribute.

Graphic is an object that will be rendered as an image based on data outside of
the document instance (for example, a .gif file). The £1ile attribute gives the
location of the file.

Equation is an object that will be rendered as a mathematical equation by the
Arbortext formatting engine. Equations may be of two types, either display or
inline.
<!ELEMENT Text (#PCDATA) >
<!ATTLIST Text

oid %o0id; #REQUIRED

sOffset %offset; #IMPLIED

Line Numbering in Arbortext Editor and Arbortext Publishing Engine 181

eOffset %offset; #IMPLIED
hyphen NMTOKEN #IMPLIED

x %$dimen; #IMPLIED >
<!ELEMENT Graphic EMPTY>
<!ATTLIST Graphic

oid %oid; #REQUIRED

x %dimen; #IMPLIED

file CDATA #IMPLIED >
<!ELEMENT Equation EMPTY>
<!ATTLIST Equation

oid %oid; #REQUIRED

x %dimen; #IMPLIED

type (displayl|inline) #IMPLIED >

182 Programmer’s Reference

IV —

Interfaces

16

Interface Overview

The AOM supports most of the DOM interfaces developed by the W3C, several
Arbortext extensions to the DOM interfaces, and many additional Arbortext
interfaces for features that are not part of the DOM. Refer to Introduction to the
Document Object Model (DOM) on page 36 for a list of supported DOM
specifications.

The interface descriptions use the DOM conventions in presenting a language-
neutral definition of the list of constants (enumerations), attributes (properties),
and methods implemented for each interface. For some language bindings, the
enumeration (constant) names are available as global t ypede fs (for example,
COM C++),as static final constants (Java, JavaScript), or only available as
numeric values (JScript and VBScript, currently). Attributes (or properties) in
some language bindings are translated to set Xxx and set Xxx methods. For
example, the Application.activeDocument attribute is obtained by
calling the Application.getActiveDocument () method in Java. Read-
only attributes, as noted in the Access table entry of each attribute description,
only have a get Xxx method in these language bindings. (Refer to the Index

terms “attributes”, “enumerations”, and “methods” for alphabetical listings of
each, respectively.)

The descriptions of the W3C interfaces in the following chapters are taken from
their respective W3C specifications. Each description provides a reference to its
W3C specification.

In the W3C interface descriptions, the DOMString type is a string of 16-bit
Unicode characters, the same as the St ring type in the other interface
descriptions. Throughout the documentation consider references to HTML or
XML to also include SGML.

Square braces ([]) denote optional trailing parameters which may be omitted in
most script bindings. Also, the AOM provides method overloads in the Java
binding so that optional parameters may be omitted.

The AOM supports the following interfaces:

185

Interface

Description

AbstractView (W3C) A base interface that all views
shall derive from.
Acl Represents the ACL (Arbortext

Command Language) interpreter,
allowing the AOM programmer to
request that a string be executed as an
ACL command or evaluated as an ACL
function.

ActivexEvent

Provides specific contextual
information associated with Activex
events.

ADocument

The Arbortext extension to the W3C
DOM Document interface.

ADocumentType

Arbortext extensions to the W3C DOM
DocumentType interface

AEditEvent

Provides specific contextual

information associated with the
EditEvent extension.

AElement

The Arbortext extension to the W3C
DOM Element interface.

AEvent

The Arbortext extension to the W3C
DOM Event interface.

ANode

The Arbortext extension to the W3C
DOM Node interface.

Application

Provides access to Arbortext Editor and
Arbortext Publishing Engine global
functionality. (That is, features that are
not associated with any document,
document type, or document
component.) There is only one
Application object instantiation in
existence.

ARange

The Arbortext extension to the W3C
DOM Range interface.

Attr

(W3C) An attribute in an Element
object.

CDATASection

(W3C) Used to escape blocks of text
containing characters that would
otherwise be regarded as markup.

186

Programmer's Reference

Interface

Description

CharacterData

(W3C) Extends Node with a set of
attributes and methods for accessing
character data in the DOM.

Comment

(W3C) Inherits from CharacterData and
represents the content of a comment,
for example, all the characters between
the starting <! -- and ending —->.

Component

The base interface for all window
components.

Composer

Represents a composition pipeline
defined by a Composer Configuration
File (CCF).

ControlEvent

Provides specific contextual
information associated with Control
events.

Dialog Extends the Window interface.

Document (W3C) Represents the entire HTML or
XML document.

DocumentEvent (W3C) Provides a mechanism by which
the user can create an Event of a type
supported by the implementation.

DocumentFragment (W3CO)A "lightweight" or "minimal"
Document object.

DocumentRange (W3C) Provides a mechanism to create
Range objects for a document.

DocumentType (W3C) Each Document has a doctype

attribute whose value is either null or a
DocumentType object.

DocumentView

(W3C) Implemented by Document
objects in DOM implementations
supporting DOM Views.

DOMImplementation

(W3C) Provides a number of methods
for performing operations that are
independent of any particular instance
of the document object model.

Element

(W3C) The Element interface
represents an element in an HTML or
XML document.

Interface Overview

187

Interface

Description

Entity

(W3C) This interface represents an
entity, either parsed or unparsed, in an
XML document.

EntityReference

(W3C) EntityReference objects may be
inserted into the structure model when
an entity reference is in the source
document, or when the user wishes to
insert an entity reference.

Event

(W3C) Used to provide contextual
information about an event to the
handler processing the event.

EventListener

(W3C) The primary method for
handling events.

EventTarget (W3C) Implemented by all Nodes in an
implementation which supports the
DOM Event Model. Also implemented
by all Components in the AOM
implementation.

MenuBar Represents a menu bar.

MenuEvent Provides specific contextual
information associated with Menu
events.

Menultem Represents a menu item.

MouseEvent (W3C) Provides specific contextual

information associated with Mouse
events.

MutationEvent

(W3C) Provides specific contextual
information associated with Mutation
events.

NamedNodeMap

(W3C) Objects implementing the
NamedNodeMap interface are used to

represent collections of nodes that can
be accessed by name.

Node

(W3C) The primary datatype for the
entire Document Object Model.

NodeList

(W3C) Provides the abstraction of an
ordered collection of nodes, without
defining or constraining how this
collection is implemented.

188

Programmer's Reference

Interface

Description

Notation

(W3C) Represents a notation declared
in the DTD.

Processinglnstruction

(W3C) Represents a processing
instruction. Used in XML as a way to
keep processor-specific information in
the text of the document.

PropertyMap

Provides the abstraction of a collection
of typed objects associated with string
keys.

Range

(W3C) Represents a range of content in

a Document, DocumentFragment, or
Attr.

ScriptContext

Provides methods to load and run
scripts using the Microsoft Windows
Scripting engine in separate contexts.
This interface is only available in the
COM binding of the AOM.

StringList

Provides the abstraction of an ordered
collection of Strings, without defining
or constraining how this collection is
implemented.

TableCell

Represents a single cell in a table.

TableColumn

Represents a column of cells.

TableGrid

Represents a table grid which is a
rectangular array of cells.

TableMulticell

Represents a rectangular array of
spanned cells in a table.

TableObject

Base class for all table objects.

TableObjectStore

A TableObjectStore contains a
collection of TableObjects all from the
same document.

TableRectangle

Represents a rectangle of cells.

TableRow Represents a row of cells.

TableRule Represents a rule.

TableSet A collection of one or more TableGrids,
each of which is a rectangular array of
TableCells.

TableTilePlex Used to represent a table selection.

Interface Overview

189

Interface

Description

Text

(W3C) Inherits from CharacterData and
represents the textual content (termed
character data in XML) of an Element
or Attr.

ToolBarEvent

Provides specific contextual
information associated with ToolBar
events.

UlIEvent

(W3C) Provides specific contextual
information associated with User
Interface events.

View

A subclass of AbstractView,

representing a view of an associated
Document.

Window

Represents a top level window frame
which is created by Arbortext Editor.

WindowEvent

Provides specific contextual
information associated with Window
events.

The AOM supports the following Arbortext PE Application interfaces:

Interface

Description

CCComposer

Describes a single composer (. ccf
file) installed on the Arbortext
Publishing Engine server.

CCCompositionParameter

Describes a single parameter to a
Arbortext Content Pipeline composer
(. ccft file).

CCDoctype Describes a single document type
installed on a Arbortext Publishing
Engine server.

CCDocumentComposer Describes a composer associated with a
document type installed on a Arbortext
Publishing Engine server.

CCFrameset Describes a frameset that is installed on
a Arbortext Publishing Engine server.

CCPathEntry Describes a single directory on a server
path list.

CCsStylesheet Describes a stylesheet installed on the
Arbortext Publishing Engine server.

190 Programmer's Reference

Interface

Description

CompositionConfiguration

Provides information about a Arbortext
Publishing Engine server's composition
capabilities.

E3Application

Creates an object that runs in each
Arbortext PE sub-process and is called
by the Arbortext Publishing Engine to
process HTTP requests.

E3ApplicationRequest

Provides request information for a
Arbortext Publishing Engine
Application.

E3ApplicationResponse

Provides an object to assist a Arbortext
Publishing Engine Application in
sending a response to the HTTP or
SOAP client.

E3ClientCompositionExtension

Describes an object that provides
composition type-specific pre- and
post-processing routines for the
Arbortext Publishing Engine
Composition Client.

E3Config Passes information to a Arbortext
Publishing Engine Application during
initialization.

E3ServerComposer Describes an object that handles

composition operations on a Arbortext
Publishing Engine server.
“Composition" includes transforming
an input JAR file into an output JAR
file.

E3ServerCompositionExtension

Extends the Arbortext Publishing
Engine Server Composition
Application.

E3ServerCompositionParameter

Describes a parameter passed to or

returned by an
E3ServerCompositionRequest.

E3ServerCompositionRequest

Describes the request for a composition
operation to be performed by the
Arbortext Publishing Engine server
composition application.

Interface Overview

191

Interface Description

E3ServerCompositionResult Describes the result of a composition
operation under the Arbortext
Publishing Engine server composition
application.

E3Tracer Creates entries in the Arbortext
Publishing Engine Server Composition
trace files.

192 Programmer's Reference

17

W3C AbstractView interface

document attribute

The AbstractView interface is defined in the W3C Document Object Model

(DOM) Level 2 Views Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Views-20001113.)

A base interface that all views shall derive from.

193

http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113

document attribute

The source DocumentView of which this is an AbstractView.

document
Access read-only
Returns DocumentView

194 Programmer's Reference

18

Acl interface

DOMDOCUMENT MELNOA e e 196
(1@ 1Y/ (@ 11350 1=Y 1 o e N 196
EVal MEINOQ. e 196
EXECULE MELhOQo e 197
GetCMSODJECt METO.euei e 197
GetCMSSESSION MELhOA 197
(T V2= T 10111 Lo Yo [198
GetWindow Methodo e 198
TSI AY£= T 11=]1 o L [P 198

The Ac1 interface represents the ACL (Arbortext Command Language)
interpreter. It allows the AOM programmer to request that a string be executed as
an ACL command or evaluated as an ACL function. The Ac1 interface also
provides methods for converting from ACL OIDs to DOM nodes and from ACL
document identifiers to DOM Document nodes.

195

DOMDocument method

Returns the DOM Document object corresponding to an Arbortext document ID.
The desired document must be open in Arbortext Editor or Arbortext Publishing
Engine before calling this method, but the document does not need to be visible in
a window. Developers can obtain the document identifier they need by using the
Eval method to call an ACL function such as current doc.

DOMDocument(docld)

Parameters long docld
The ACL document identifier of a document. If zero (0),
the method uses the returned value of the ACL function

current doc.
Returns Document. The DOM document object.

DOMOID method

Returns the DOM Node associated with the supplied ACL object identifier oid.

This method is useful for creating a DOM node object from a portion of a
document instead of the entire document. The desired document must be open in
Arbortext Editor or Arbortext Publishing Engine before calling this method. The
object identifier oid can be obtained by using the Eval method to call an ACL
function such as oid caret.

DOMOID(oid)
Parameters String oid
The ACL object identifier.
Returns Node. The DOM Node object. If oid is invalid, returns 0.

Eval method

Evaluates a string as an ACL expression and returns the result of the evaluation as
a string. The string to evaluate must contain an expression. For example:

242
or
tbl oid cell(oid caret(),oid caret pos())

Variable substitution in the expression string occurs on the ACL side of the AOM
interface, not on the client side. You can include ACL variables in the expression
string. However, do not include variables native to the client program.

196 Programmer's Reference

Eval(expression)
Parameters String expression
The ACL expression to evaluate.
Returns String. The result of the evaluated expression as a string.

Execute method

Executes a string as an ACL command. The return value varies depending on the
interface.

Variable substitution in the expression string occurs on the ACL side of the AOM
interface and not on the client side. You can include ACL variables in the
expression string. However, do not include variables native to the client program.

Execute(command)
Parameters String command
The ACL command to execute.
Returns String. The result depends on the interface

GetCMSObject method

Returns a CMSObject object equivalent to the given ACL dobj id.

GetCMSObject(objectld)

Parameters long objectld
Represents a valid ACL object id.

Returns CMSObjectCMSObject. object equivalent to the given
ACL dobj id.
null will be returned if the given ACL dobj id is invalid.

GetCMSSession method

Returns the CMSSession object associated with the given ACL session id.

This does not support the default (file-system) session id value of 0.

GetCMSSession(sessionld)

Parameters long sessionld
Represents an active ACL session id.
Returns CMSSession. CMSSession object associated with the

given ACL session id.
null will be returned if the given ACL session id is

invalid.

Acl interface 197

GetVar method

Returns the value of an ACL scalar variable as a string.

GetVar(name)

Parameters String name

The name of the ACL variable to retrieve. If the variable is
not qualified with a package name, thema in package is
used.

Returns String. The value of the specified ACL variable as a
string.

GetWindow method

Returns the AOM Window object corresponding to an Arbortext window ID.
Developers can obtain the window identifier they need by using the Eval method
to call an ACL function such as current window.

GetWindow(winld)

Parameters long winld

The ACL window identifier of a window. If zero (0), the
method uses the returned value of the ACL function
current window.

Returns Window. The AOM window object.

SetVar method

Sets the value of an ACL scalar variable to the specified string.

SetVar(name, value)

Parameters String name

The name of the ACL variable to set. If the variable is not
qualified with a package name, thema in package is used.
String value

The new value for the ACL variable. There are no size
limits (beyond available memory) on the length of the

string.
Returns void
Throws AOMException

Raised if the ACL variable is read-only.

198 Programmer's Reference

19

ActivexEvent interface

INILACHVEXEVENE MELNOA.o e 200

The ActivexEvent interface provides specific contextual information
associated with Activex events.

199

initActivexEvent method

Initializes the value of an ActivexEvent created through the Window
createEvent method. This method should only be called before the
ActivexEvent has been dispatched with the dispatchEvent method,
though it may be called multiple times during that phase if necessary. If called
multiple times, the final invocation takes precedence.

initActivexEvent(typeArg, canBubbleArg, cancelableArg)

Parameters

String typedrg
Specifies the event type.

boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Returns

void

200

Programmer's Reference

20

ADocument interface

ATISelectionType eNUMETAtIoNc.uuiiiiiii et 203
MarkupType enNUMErationc..iiiiui i e 203
SaveFlags enUMErationoou i e 203
CloneFlags enuUmMErationoiiii e 205
ModifyRefFlags enumeration.......... ... 206
CMSODbjects attribute ... e 207
aclld attribute ... e 207
directory attribUute ... 207
iNSertioNPoint attribUte 208
MarkupType attribUte ... e 208
Modified attribDULE..........e e 208
NAaMeE attrDULE ... e 208
optionNames attribute... ... 209
properties attribue ..o 209
selectionType attribULE 209
tables attribDULE ... e 209
tableSelection attribute ... 209
textSelection attribULE e 210
canRenameNode Method ... 210
cloneDocument MethOdo 210
o3 01T T 4= 1 o T P 211
editBegin Method ... 212
L= 1141 o [4T 1. o T 213
generateEntityName method...........oooi 213
getElementsByAttribute method ... 214
getElementsByAttributeNS method...........coooii i 214
GetOPtON MELNOA. e 215
modifyReferences Method ... 215
[£=To [0 4 o= 1. o o N 217
SAVE MEthOd e 217
SEtOPtON MELNOM e 219

201

[0 o 30 3 011 { o Yo 1 220
uUNdoBouNdary MEthOdcuuiiiiiiiii e e 220
UL a Lo [o1@31=F= Tl ¢ 1 T=11 o o [220

The Arbortext extension to the W3C DOM Document interface.

202 Programmer's Reference

ATISelectionType enumeration

The selectionType attribute describes the type of selection in the Document
and has one of the following values.

The ATISelectionType enumeration has the following constants of type
short.

NO_SELECTION =0
There is no selection.

TEXT SELECTION =1
There is a text selection.

TABLE_SELECTION =2
There is a table selection.

MarkupType enumeration

The MarkupType enumerated type defines the values for the markupType
attribute and has the following constants:

The MarkupType enumeration has the following constants of type int.
NO _MARKUP =0

The document does not use XML, SGML, or HTML markup. That is, it is
untagged.

XML_MARKUP =1
The document uses XML markup.

SGML_MARKUP =2
The document uses SGML markup.

HTML_MARKUP =3
The document is an HTML document. This value is not used for XHTML
documents, which have markupType of XML MARKUP.

SaveFlags enumeration

The SaveFlags enumerated type is used to construct the £1ags parameter to
the save method, by ORing options from the following list:

The SaveFlags enumeration has the following constants of type int.

SAVE_CT_ORIG = 0x0001
For documents with change tracking markup, save as if all changes are
rejected (original view).

ADocument interface 203

SAVE_CT_LATEST = 0x0002
For documents with change tracking markup, save as if all changes are
accepted (latest view).

SAVE_CT_ALL = 0x0004
For documents with change tracking markup, save as if all changes are
pending (highlighted view).
If none of the SAVE CT xxx flags are set, the document is written as
specified by the
Application.getOption ("writechangetracking") setting. If
SAVE CT_ORIG is specified with either of the other options, SAVE CT _
ORIG is obeyed. If SAVE CT LATEST and SAVE CT_ALL are both
specified, SAVE _CT_ LATEST is obeyed.

SAVE_SGML = 0x0008
Write the document as an SGML document.

SAVE_UNTAGGED = 0x0010
Write a text-only version of the document.

SAVE XML = 0x0020
Write the document as XML.

If one of the SAVE SGML, SAVE UNTAGGED, or SAVE XML options is
not specified, an SGML document is written as SGML and an XML document
is written as XML. If more than one option is specified and SAVE XML is
specified, it is obeyed; otherwise, SAVE _SGML is used.

SAVE_NOHEADER = 0x0040
Removes the DOCTYPE header and internal subset including any private
ENTITY declarations.

SAVE_NOPI = 0x0080
Removes Arbortext-specific processing instructions.

If not specified, behavior is controlled by the
Application.getOption ("writepi") setting.

SAVE_EOC = 0x0100
Enables entity output conversion.

SAVE_NOEOC = 0x0200
Suppresses entity output conversion.

If neither SAVE_EOC nor SAVE NOEC is specified, entity output conversion
is controlled by the

Application.getOption ("entityoutputconvert") setting. If
both are specified, entity output conversion is enabled.

204 Programmer's Reference

SAVE NAC_ENTREF = 0x0400
Writes non-ASCII characters as character entity references.

SAVE_NAC_CHAR = 0x0800
Writes non-ASCII characters as characters in the target encoding.

SAVE_NAC _NUMREF = 0x1000
Writes non-ASCII characters as numeric character references.

If none of the SAVE NAC xxx options are specified, behavior is controlled
by the Application.getOption ("writenonasciichar") setting.
If more than one is specified, SAVE NAC ENTREF takes precedence if
specified; otherwise SAVE NAC CHAR takes precedence if specified.

SAVE_NOBREAK = 0x2000
Used internally for HTML output.

SAVE _FLATTEN_FILE = 0x4000
Expands all file entities recursively.

SAVE_FLATTEN_TEXT = 0x8000
Expands all text entities recursively.

SAVE_NON_FRAGMENT = 0x10000
Writes a non-fragment header if possible.

SAVE_FLATTEN_INCLUDE = 0x20000
Expands all XInclude references recursively.

CloneFlags enumeration

The following bit constants are used with the f1ags argument of the
cloneDocument () method.

The CloneFlags enumeration has the following constants of type int.

CLONE_NO_CONTENT = 0x01
No content will be cloned. This will result in an empty document.

CLONE_RESOLVE_CT = 0x02
Resolve any change tracking markup according to the value of the
viewchangetracking option for the current view of the source
document. If there is no view setting associated with the source document, the
global value of the viewchangetracking option will be used.

The viewchangetracking option interacts with this function in the
following way:

original — The cloned document will have the original markup (changes
not applied) but no change tracking markup.

ADocument interface 205

changesapplied — The cloned document will have the latest markup
(changes applied) but no change tracking markup.

changeshighlighted — The cloned document will be as if CLONE
RESOLVE CT were not set. It will have the change tracking markup (no data
is lost; changes are still tracked).

CLONE_NO_ENT_DECLS = 0x04
Makes the empty document not inherit entity declarations from the source
document. Only obeyed if CLONE NO_CONTENT is also specified.

CLONE_XML = 0x08
Force clone to be XML even if the source is SGML. Only obeyed if source
document is made up of markup (not pure text).

CLONE_CARET =0x10
Include the source document's caret position in the cloned content. Only
obeyed if CLONE NO CONTENT is not specified.

CLONE_LOCATION = 0x20
Include every block oid in the source document as a pi in the cloned content.
Only obeyed if CLONE_NO CONTENT is not specified. The PI has the format
of <?APTCOMP EPIC OID ?>where OLD = (dfid, generate
no, docid)

CLONE_NAME = 0x40
Sets the name of the cloned documnt to the name of the source document.

ModifyRefFlags enumeration

The ModifyRefFlags enumerated type is used to construct the f1lags
parameter to the modifyReferences method by ORing any of the following
options.

The Modi fyRefFlags enumeration has the following constants of type int.

MODIFYREF_NO_CUSTOMREF = 0x0001
Indicates that the burst configuration file associated with the doctype of the
document given to the modifyReferences method should not be
consulted in order to determine which DOM nodes are considered customref
references. The result of this flag is that no customref references will be
modified.

MODIFYREF_NO_GRAPHICS = 0x0002
Indicates that neither the Arbortext Styler stylesheet nor DCF file associated
with the document or the doctype of the document given to the
modifyReferences method should be consulted in order to determine

206 Programmer's Reference

which DOM nodes are considered “graphics”. The result of this flag is that no
graphics references will be modified.

MODIFYREF_NO_FILEENTS = 0x0004
Indicates that file entity references will not be modified.

MODIFYREF_NO_XINCLUDES = 0x0008
Indicates that XInclude references will not be modified.

CMSObjects attribute

Returns an collection of all the objects in this document. The objects in this
collection may be in any order but each will be present exactly once. Note that if a
document contains a given child object in two locations then the returned
collection will contain two objects; one for each reference. Each object will
reference the same repository object but, for example, will have different start
and end values associated with them.

CMSObjects

Access read-only

Returns CMSObjectList

Get throws CMSException
Raised for any error.

aclld attribute

An integer constant uniquely identifying the document. This is the value that
would be returned by the ACL function current doc if the document were

current.

aclId
Access read-only
Returns long

directory attribute

The directory associated with the document. For documents read from the file
system, this is the directory part of the documentURT attribute, excluding the
name, and expressed as a file system path not as a URI. If the document has no
directory, for example, a new document created from a template and not yet saved,
this is the null string. A document created by calling c1oneNode on another
Document node inherits this attribute.

This attribute is read-only. However, changing the documentURT attribute will
also change the value of the directory attribute.

ADocument interface 207

directory
Access read-only
Returns String

insertionPoint attribute

A collapsed DOM Range indicating the current location of the cursor.

insertionPoint

Access read-write
Returns Range

Set throws DOMException

INVALID STATE ERR: Raised if the Range has already
been detached.

markupType attribute

An integer constant indicating the type of markup used by the document. One of
the following values: XML _MARKUP, SGML_MARKUP, HTML_MARKUP, or NO__

MARKUP.

markupType

Access read-only
Returns MarkupType

modified attribute

A boolean indicating whether the document has been modified. This attribute is
reset when the document in saved.

modified
Access read-write
Returns boolean

name attribute

The name of the document or a null string if the document was created without a
name. For documents read from the file system, the name is the base name of the
documentURI, including the extension, if any.

name
Access read-write
Returns String

208

Programmer's Reference

optionNames attribute

A StringList containing the names of all document-scope Arbortext set
options.

optionNames
Access read-only
Returns StringList

properties attribute

A PropertyMap object containing user-defined properties for the document.
The properties are stored at the beginning of the XML file as processing
instructions.

properties
Access read-only
Returns PropertyMap

selectionType attribute

An integer constant indicating whether there is no selection (NO SELECTION), a
text selection (TEXT SELECTION), or a table selection (TABLE
SELECTION).

selectionType
Access read-only
Returns ATISelectionType

tables attribute

A TableObjectStore containing all of the TableSets in the document. If
there are no tables in the document, an empty store is returned.

tables
Access read-only
Returns TableObjectStore

tableSelection attribute

A TableTilePlex representing the current table selection. If there is no table
selection, the value of tableSelection is an empty TableTilePlex.

ADocument interface 209

tableSelection
Access read-write
Returns TableTilePlex

textSelection attribute

A DOM Range indicating the current text selection. If there is no text selection,
the value will be the same as insertionPoint.

If the text selection is set to a collapsed range, the selection is cleared. The
insertion point is not changed.

textSelection

Access read-write

Returns Range

Set throws DOMException
INVALID STATE ERR: Raised if the Range has already
been detached.

canRenameNode method

Tests whether an existing node of type ELEMENT NODE or ATTRIBUTE NODE
can be renamed such that the resulting node is compliant with VAL SCHEMA

validity type.

canRenameNode(node, namespaceURI, qualifiedName)

Parameters Node node
The Node to be renamed.
String namespaceURI

The new namespace URI.
String qualifiedName

The new qualified name.
Returns unsigned short. A validation state constant.

cloneDocument method

Creates a completely independent copy of this document. The cloned document
will have no Document . documentURI or ADocument . name attributes set
for it. However, the ADocument . directory attribute will be identical to the
source document so that relatively-referenced resources (such as graphic files)
will be correctly resolved in the context of the cloned document.

210 Programmer's Reference

~ Note

You should avoid using the Document . documentURT attribute to give the
cloned document a URI identical to the source document because any
subsequent changes made to either document will be reflected in the other

document.

cloneDocument([flags])

Parameters int flags
[optional] A bitmask constructed by ORing some
combination of the following constants: CLONE EMPTY,
CLONE RESOLVE CHANGE TRACKING, CLONE NO
ENT DECLS, CLONE XML, CLONE CARET.
See the descriptions of these constants for more
information.

Returns Document. Cloned document.

Throws CMSException

Raised for any error.

close method

Closes the document, freeing all associated memory and system resources (for
example, file handles). This method actually decrements the reference count for
the document and does not free resources until the reference count becomes zero.
The reference count is incremented when the document is associated with a View

object.

close()

Parameters None

Returns boolean. Returns true if the document was actually
closed. false otherwise. Since an exception is thrown on
an error, this will always be t rue when no exception is
thrown.

Throws AOMException
Raised if the method detects any error.

ADocument interface

211

editBegin method

The editBegin and editEnd methods provide a mechanism to bracket a
series of document changes which may optionally be rolled back. Before
beginning a series of changes, call editBegin for this document. At the end of
the changes, call editEnd to either commit the changes or to roll them back by
specifying false as the commit parameter.

Multiple calls may be made to editBegin before an editEnd call, for
example if one top-level script calls another as part of its implementation. In this
case, the changes are not committed or rolled back until the outermost editEnd
call 1s made. All changes since the first editBegin call will be rolled back if
any nested call to editEnd or the outermost editEnd call specifies false as
the commit parameter.

For example, in JavaScript:

doc.undoBoundary ("Big Changes") ;
doc.editBegin () ;
var commit = true;
try |
doBigChanges () ;
} catch (e) {
commit = false;
}
doc.editEnd (commit) ;
This example assumes doBigChanges or a method it calls throws an exception
if it detects an error condition after making some document changes which should
then be discarded.

~ Note

Each call to editBegin must be matched with a call to edi tEnd. Failure
to do so may cause unexpected behavior until Arbortext Editor or Arbortext
Publishing Engine is restarted. For language bindings that support exceptions,
DOM or AOM calls between editBegin and editEnd calls must be
wrapped in a try/catch block so that editEnd is called if an exception is
raised.

editBegin()
Parameters None
Returns void

212 Programmer's Reference

editEnd method

This method commits or rolls back the changes made to the document since the
matching editBegin call. The commit or roll back does not actually happen
until the outermost editEnd call is made. Refer to the description of
editBegin for details.

~ Note

Each call to editBegin must be matched with a call to editEnd. Failure
to do so may cause unexpected behavior until Arbortext Editor or Arbortext
Publishing Engine is restarted. For language bindings that support exceptions,
DOM or AOM calls between editBegin and editEnd calls must be
wrapped in a try/catch block so that editEnd is called if an exception is

raised.
editEnd(commit)
Parameters boolean commit
If true, specifies that the change should be committed. If
false, changes will be rolled back (undone).
Returns void

generateEntityName method

Generates an entity name suitable for use with this document. If no logicalld is
given (or if it doesn't map to an active session), a random number is used to create
an entity name which is currently not in use by this document. Otherwise the
associated CMS adapter session will be called to produce the entity name. The
adapter guarantees that the returned entity name will be unique as per the given
logicalld. Thus, if given the same logicalld twice, this may return the same entity
name twice. However, if given different logicalld's, this will return different entity
names.

generateEntityName([logicalld])

Parameters String logicalld
[optional] Logical ID used to ask an associated CMS
adapter session to generate the unique name.

Returns String. Unique entity name suitable for use with this
document.
Throws CMSException

Raised for any error.

ADocument interface 213

getElementsByAttribute method

Returns a NodeList of all descendant Elements that match the given attribute
name and attribute value, in the order in which they are encountered in a pre-order
traversal of this Document tree.

getElementsByAttribute(name, value, selector)

Parameters

String name

Specifies the name of the attribute to match. The value
"+ matches all attribute names.

String value

Specifies the value of the attribute to match.
ATIElementAttributeSelector selector

Specifies how the attribute value should be matched. When
selector is 0, the value parameter is ignored. When selector
is 1, only the elements that match both the name and the
value are included.

Returns

NodeList. A list of matching element nodes.

Throws

DOMException SYNTAX ERR: If selector is invalid.
INVALID CHARACTER ERR: If name is namespace
qualified.

getElementsByAttributeNS method

Returns a NodeList of all descendant E1ements that match the given attribute
namespace URI, local name, and attribute value, in the order in which they are
encountered in a pre-order traversal of this Document tree.

getElementsByAttributeNS(namespaceURI, localName, value selector)
Parameters String namespaceURI
The namespace URI of the attribute to retrieve. The value
"+ " matches all namespaces.
String localName
Specifies the local name of the attribute to match. The
value " *" matches all local attribute names.
String value
Specifies the value of the attribute to match.
ATIElementAttributeSelector selector
Specifies how the attribute value should be matched. When
selector is 0, the value parameter is ignored. When selector
is 1, only the elements that match both the name and the
value are included.
214 Programmer's Reference

Returns NodeList. A list of matching element nodes.
Throws DOMEzxception
SYNTAX ERR: If selector is invalid.

INVALID CHARACTER ERR: If localname is
namespace qualified.

getOption method

This method returns the value of the Arbortext set option, scoped to this
document.

getOption(name)

Parameters String name

Specifies the option name, which must be a document-
scope option.

Returns String. The string value of the option, or null if name is
not a valid option name. Boolean values return on or of f.

modifyReferences method

This method will replace references within the given ADocument. The
references to be replaced are those listed as keys in the given PropertyMap,
and will be replaced by the value of each associated PropertyMap key. If the
given ADocument contains any inclusions (such as file entities or XIncludes),
unlike TOHost : :modifyReferences, this method will descend into those
inclusions in order to update any references that might be found in their content if
the reference is found as a key in the given PropertyMap.

What is considered an “inclusion”, as far as this method is concerned, is limited to
file entities and XIncludes. Any elements or attributes of elements which are
encountered that match a customref burst configuration file rule (as found in the
burst configuration file associated with the doctype of the Document or
CMSObject to which the scrutinized node belongs) is not considered an
“inclusion” by this method since customref is a referencing mechanism and not
intended for inline inclusions. Any matching customref references will be
replaced by this method, but since customref is not considered an “inclusion ”
mechanism, this method will not open the file or logical id the customref
references in order to descend into its contents.

All keys in the PropertyMap that reference the file system will be made a
canonicalized universal name before any lookups occur. Also, each reference that
is to be looked up in the PropertyMap that is a filesystem reference will also be
temporarily made into a canonicalized universal name before the lookup occurs.
By making all filesystem references canonicalized universal names, the caller will

ADocument interface 215

be assured that multiple references that use different conventions but still
reference the same filesystem location are actually recognized as the same
reference. No such manipulation will be made to CMS logical ID references.

If the MODIFYREF NO_CUSTOMREF flag is not included in the flags parameter,
any elements or attributes of elements that are encountered that match a customref
burst configuration file rule (as found in the burst configuration file associated
with the doctype of the Document or CMSObject to which the scrutinized node
belongs) will be recognized as a reference and as such will be modified as long as
that reference is listed as a key in the given PropertyMap. If the mode of the
customref rule is “dita-full”, then the reference will be replaced with the value of
the relevant PropertyMap key, appended with any DITA fragment identifier
(including the leading “#”) copied from the original reference. All customref rules
whose mode is “dita-partial” are always ignored and never replaced by this
method, even if the reference of the “dita-partial” customref is found as a key in
the given PropertyMap.

Documents and CMSObjects have a notion of whether or not they contain
unsaved modifications. The modified state of the Document or CMSObject to
which the given DocumentFragment belongs will be preserved by this
method.

modifyReferences(map, flags)
Parameters PropertyMap map
The given PropertyMap that associates the list of

references to be replaced with the references to replace
them with.

Any values in the PropertyMap that are numbers
(TYPE NUMBER) or StringLists (TYPE
STRINGLIST) will be ignored.

int flags

Specifies which constraints are placed upon the
modifyReferences processing. The value is
determined through a bit-wise OR of the
ModifyRefFlags constants.

Returns int

Throws AOMException

Raised if an error occurs. If during processing, a reference
named in the PropertyMap cannot be updated for
whatever reason, the processing will stop immediately and
an exception will be thrown.

216 Programmer's Reference

redo method

The redo method reverses the change made by the last undo. A series of
consecutive undos may be reversed by the corresponding number of redos. Redo
operations do not get added to the undo history.

redo()

Parameters None

Returns void

Throws AOMException

Raised if the method detects an error, for example, when
the last change was not an undo or redo.

save method

Saves this document.

save([flags [, path [, encoding [, publicld [, systemId]]]]])

Parameters

int flags

[optional] A bitmask that specifies save options.
Constructed by ORing the bits from the SaveFlags
enumeration.

String path

[optional] Specifies the path name of the output file. It may
be any of the following values:
* The name of a file. If it exists, it is silently rewritten.

* A WebDAV URL (Windows only).

* (UNIX only) A dash ("-") indicating standard input.
* An asterisk (" *") indicating the message window.

* (UNIX only) a UNIX pipeline (" | ").

If the path is omitted or a null string, the document is
saved to the original path name or Logical ID. If the
document does not have a path, or if the path is not
writable (for example, the document was read from an http:
URL not on a WebDAV server, or the backing object was
not checked out from the DMS), the method raises an
exception.

String encoding

[optional] Determines the encoding of the file being
written. This parameter overrides the encoding declaration
in the document. The following table lists the valid strings

for the encoding parameter.

ADocument interface

217

Adobe-Standard-Encoding

ISO-8859-9
ISO-8859-1

EUC-JP
ISO-8859-1-Windows-3.1-Latin-1*

Shift JIS
ISO-8859-2
Big5
ISO-8859-3

GB_2312-80
ISO-8859-4

KSC 5601
1SO-8859-5

UTF-8
ISO-8859-7

US-ASCII
ISO-8859-8

ISO-10646-UCS-2
*Windows only

If encoding is null or the empty string, the encoding is
determined using the following rules:

» If'the original document is an SGML document and the
xml option is specified, the resulting XML file will use
the original encoding if the SGML document has a
byte-order mark (an ISO-10646-UCS-2 file) or a
special encoding was set using edit encoding. If
there was no special encoding or it is not an ISO-
10646-UCS-2 file, the resulting XML file will use
UTF-8 encoding. UTF-8 is the default encoding for
XML documents.

» If'the original document is an SGML document and
either no option is specified or the sgm1 option is
specified, the resulting SGML file will use the same
encoding as the original document.

» If the original document is an XML document and the
sgml option is specified, the resulting SGML file will
use the encoding used by the operating system.

218

Programmer's Reference

» If'the original document is an XML document and
either no option is specified or the xm1 option is
specified, the resulting XML file will use the same
encoding as the original document.

XML documents that do not contain an encoding
declaration in their header are assumed to have the default
XML encoding of UTF-8.

String publicld

[optional] If this parameter is not null and not an empty
string, it is written as the public identifier of the
DOCTYPE declaration instead of the original value (if
any). If it is "<none>" then the PUBLIC identifier will
be omitted.

String systemld

[optional] If this parameter is not null and not an empty
string, it is written as the SYSTEM identifier on the
DOCTYPE declaration. If it is "<none>", the SYSTEM
identifier will be omitted.

If this option is null or an empty string, the
Application.getOption ("writeabsolutesy
sid") setting determines how the SYSTEM identifier is
written.

Returns

void

Throws

AOMException
Raised if the method detects any error.

setOption method

This method sets the value of the Arbortext set option, scoped to this document.

setOption(name, value)

Parameters

String name

Specifies the option name, which must be a document-
scope option.

String value

Specifies the new value of the option. Boolean values are
specified using the string on or of f.

Returns

void

Throws

AOMException
Raised if the method detects an error, for example, if name
is not a valid document-scope option.

ADocument interface

219

undo method

This method reverses the previous change to the document. If called repeatedly,
reverses earlier changes.

undo()

Parameters None

Returns void

Throws AOMException

Raised if the method detects an error, for example, when
no undo information is available. The associated message
gives the reason for the failure.

undoBoundary method

This method inserts a boundary in the undo history so that a subsequent undo will
restore changes up to the current state. Normally, the editor inserts a boundary
automatically before changes are made by a menu item, toolbar selection, or
keyboard shortcut. When implementing a custom application dialog, it may be
necessary to call the undoBoundary method before making document changes
using the AOM, especially if the dialog is modeless and allows multiple changes
to be made which should be undone individually.

The undoBoundary method enables undo history on this document. Normally,
a document not associated with a window will not have undo history enabled.

The optional description parameter may be specified to set the label for the Undo
menu. Application code can access this label by calling the eval method on the
Acl interface. For example, in JavaScript:

var 1lbl = Acl.eval ("main: :undo_label");

undoBoundary([description])

Parameters String description

[optional] Specifies the description to use as the Undo
menu label for the next undoable change to the document.

Returns void

undoClear method

Clears the document's undo history. No changes made before this call can be
undone.
undoClear()

Parameters None
Returns void

220 Programmer's Reference

21

ADocumentEntityEvent interface

object attribute 222
relatedDocument attribUteo 222
relatedNOde attribULe ... 222
FESUIL AttriDULE .. e 222
initADocumentEntityEvent method..............coooi i 222

The ADocumentEntityEvent interface provides specific contextual
information associated with the ADocumentEntityEvent extension. Use
these event types to notify programmers about important document operations
related to entities that are not covered by DOM events.

221

object attribute

Identifies the CMSObject in which the declaration was found.

object
Access read-only
Returns CMSObject

relatedDocument attribute

The Document in which the declaration was found.

relatedDocument
Access read-only
Returns Document

relatedNode attribute

DOM Entity containing information about the entity declaration.

relatedNode
Access read-only
Returns Node

result attribute

A valid entity name to be used a new entity declaration.

result
Access read-write
Returns String

initADocumentEntityEvent method

Initializes the value of an ADocumentEntityEvent created through the
DocumentEntityEvent interface. You should only call this method before
the ADocumentEntityEvent has been dispatched using the
dispatchEvent method, though it can be called multiple times during that
phase if necessary. If the initADocumentEntityEvent is called multiple

times, the final call takes precedence.

Programmer's Reference

222

initADocumentEntityEvent(typeArg, canBubbleArg, cancelableArg,
object, relatedDocument, relatedNode, result)

Parameters

String typedrg
Specifies the event type.
boolean canBubbleArg

Indicates whether or not the event can bubble.
boolean cancelableArg

Indicates whether or not the event's default action can be
prevented.
CMSObject object

Identifies the CMSObject in which the declaration was
found.
Document relatedDocument

The Document in which the declaration was found.
Node relatedNode

DOM Entity containing information about the entity
declaration.

String result

Returns

void. A valid entity name to be used a new entity
declaration.

ADocumentEntityEvent interface

223

22

ADocumentEvent interface

detail @ttriDULEo e 226
relatedDocument attribUtecooiiiii e 226
relatedWindow attribute 226
targetEncoding attribute...... ... 226
targetURI attribute e 226

initADocumentEvent method

The ADocumentEvent interface provides specific contextual information
associated with the ADocumentEvent extension. Use these event types to
notify programmers about important document operations that are not covered by
DOM events.

225

detail attribute

Specifies detail information about the ADocumentEvent, depending on the type
of event.

detail
Access read-only
Returns long

relatedDocument attribute

The relatedDocument attribute identifies a document related to the event. For
DocumentCreate event, if the new document is cloned from another
document, the relatedDocument is the source document that the new
document is cloned from.

relatedDocument
Access read-only
Returns Document

relatedWindow attribute

The relatedWindow attribute identifies a window related to the event. For the
DocumentLoad event, relatedWindow is the window that the document
loads to. For the DocumentUnload event, relatedWindow is the window
that the document unloads from, as long as the window still exists. If the window
is destroyed along with the document, then relatedWindow is null.

relatedWindow
Access read-only
Returns Window

targetEncoding attribute

Specifies the encoding in which the document is saved in a DocumentSaving
event.

targetEncoding
Access read-only
Returns String

targetURI attribute

Specifies the URI in which the document is saved in a DocumentSaving event.

226 Programmer's Reference

targetURI
Access read-only

Returns String

initADocumentEvent method

Initializes the value of an ADocumentEvent created through the
DocumentEvent interface. You should only call this method before the
ADocumentEvent has been dispatched using the dispatchEvent method,
though it can be called multiple times during that phase if necessary. If the
initADocumentEvent is called multiple times, the final call takes
precedence.

initADocumentEvent(typeArg, canBubbleArg, cancelableArg,
relatedWindowArg, targetURIArg, targetEncodingArg, detailArg [,
relatedDocumentArg])

Parameters String typedArg

Specifies the event type.

boolean canBubbleArg

Indicates whether or not the event can bubble.
boolean cancelableArg

Indicates whether or not the event's default action can be
prevented.

Window relatedWindowArg

Specifies the Window related to the Event.
String targetURIArg

Specifies the target URI. This value may be null.
String targetEncodingArg

Specifies the target encoding. This value may be null.

long detailArg
Specifies the Event detail.

Document relatedDocumentArg

[optional] Specifies the Document related to the Event.

Returns void

ADocumentEvent interface 227

23

ADocumentType interface

doctypeName attribute...... ... e 230
doctypeURI attribute... ... oo e 230
tableModels attribute oo 230
tableModelCells MELhOdccoouiiiiii e 230
tableModelROW MEthOd ... e 231
tableModelSupport Method ..o 231
tableModelTables Method ... e 232
tableModelTableTitle Method............. i e 232
tableModelTags MeEthOd....... ... e e aas 233
tableModelWrappers Methodooiiiiiii e 233

Arbortext extensions to the W3C DOM DocumentType interface

229

doctypeName attribute

If there is an associated DTD or Schema file then this is the basename of that file.
For example, if the associated DTD is axdocbook . dtd, then this attribute
would be "axdocbook".

For a freeform document, this is the local name of the root element.

If the document was structured but the DTD or Schema was not available then this
will be the same as the Document Type . name attribute.

If the document was opened as non-structured then this will be "ascii".

doctypeName
Access read-only
Returns String

doctypeURI attribute

The absolute URI of the document type directory associated with this
DocumentType or null if undefined, for example, for free-form XML or
untagged documents.

doctypeURI
Access read-only
Returns String

tableModels attribute

Returns a list of all the table models valid in a document using this
DocumentType.

tableModels
Access read-only
Returns StringList

tableModelCells method

Returns a list containing the name of each tag that is allowed as a cell tag for a
table of the specified table model in a document using this DocumentType.

230 Programmer's Reference

tableModelCells(tableModel, header)

Parameters

String tableModel

The name of the table model. All of the valid table models
in this DocumentType are available using the
tableModels attribute.

boolean header

If true, specifies that the list should consist of header
cells.

Returns

StringList. A list of all the cell tags for this table
model.

tableModelRow method

Returns the name of the tag that is allowed as the row tag for a table of the
specified table model in a document using this DocumentType.

tableModelRow(tableModel, header)

Parameters

String tableModel

The name of the table model. All of the valid table models
in this DocumentType are available using the
tableModels attribute.

boolean header

If true, specifies that the name should be for the header
TOW.

Returns

String. The name of the row tag for this table model.

tableModelSupport method

Tests whether a given table model supports a specified feature in documents
created using this DocumentType. The same table model may support different
features in different documents.

ADocumentType interface

231

tableModelSupport(tableModel, feature)

Parameters String tableModel
The name of the table model. All of the valid table models
in this DocumentType are available using the
tableModels attribute.
String feature
The name of the feature to be tested. Valid feature names
include "MultipleGrids", "HeaderRows", and
"FooterRows".

Returns True boolean. If the table model supports the feature in
this document type.

tableModelTables method

Returns a list containing the name of each tag that is allowed as a table (root) tag
for a table of the specified table model in a document using this

DocumentType.

tableModelTables(tableModel)

Parameters String tableModel
The name of the table model. All of the valid table models
in this DocumentType are available using the
tableModels attribute.

Returns StringList. A list of all the table tags for this table
model.

tableModelTableTitle method

Returns the name of the tag that is allowed as the title (or caption) tag for a table
of the specified table model in a document using this DocumentType.

tableModelTableTit1le(tableModel
Parameters String tableModel
The name of the table model. All of the valid table models
in this DocumentType are available using the
tableModels attribute.
Returns String. The name of the title tag for this table model.
232

Programmer's Reference

tableModelTags method

Returns a list containing the name of all the tags used in the specified table model
in a document using this DocumentType.

tableModelTags(tableModel)

Parameters String tableModel
The name of the table model. All of the valid table models
in this Document Type are available using the
tableModels attribute.

Returns StringList. A list of all the tags for this table model.

tableModelWrappers method

Returns a list containing the name of each tag that is allowed as a wrapper tag for
a table of the specified table model in a document using this DocumentType.

tableModelWrappers(tableModel)

Parameters

String tableModel

The name of the table model. All of the valid table models
in this DocumentType are available using the
tableModels attribute.

Returns

StringList. A list of all the wrapper tags for this table
model.

ADocumentType interface

233

24

AEditEvent interface

bufferName attribDULE ... e 236
detail atrIDULE ... e 236
relatedRange attributeo 236

initAEditEvent method

The AEditEvent interface provides specific contextual information associated
with the EditEvent extension. These event types are used to notify
programmers of important document operations that are not covered by DOM
events.

235

bufferName attribute

Identifies the name of the paste buffer that is used by the AOMCut, AOMCopy, or

AOMPaste event. The standard paste buffer is named default.

bufferName
Access read-only
Returns String

detail attribute

Identifies detail information about the Event, depending on the type of event.

detail
Access read-only
Returns long

relatedRange attribute

Identifies the Range that the event affects.

relatedRange
Access read-only
Returns Range

initAEditEvent method

Initializes the value of an AEditEvent created through the DocumentEvent
interface. This method should only be called before the AEditEvent has been
dispatched using the dispatchEvent method, though it may be called multiple
times during that phase if necessary. If called multiple times, the final invocation

takes precedence.

236

Programmer's Reference

initAEditEvent(typeArg, canBubbleArg, cancelableArg, relatedRangeArg,
detailArg [, bufferNameArg])

Parameters

String typedrg

Specifies the event type.

boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Range relatedRangeArg

Specifies the Range that is affected by the event.
long detailArg

Specifies the Event detail.

String bufferNameArg

[optional] Specifies the name of the paste buffer that is
used by the AOMCut, AOMCopy, or AOMPaste event.
The standard paste buffer is named default.

Returns

void

AEditEvent interface

237

25

AElement interface

ATICoNntentType eNUMEratioNcoouuui i e 240
tableCell attribute e 240
tableColumn attribute ... 240
tableGrid attribULe. ... s 241
tableROW attribULecoe s 241
tableRule attribute ... 241
tableSet attribUte ..o 241
tagContentType attribute. ... e 241
getElementsByAttribute method ... 242
getElementsByAttributeNS method.............o o 242
getinternalAttribute method ... 243
getinternal Attributes Method ... 243
isTableMarkup method. ... e 243
removelnternalAttribute method ... 244
setinternal Attribute Method 244

The Arbortext extension to the W3C DOM Element interface.

239

ATIContentType enumeration

The tagContentType attribute has one of the following values.

~ Note
Some of the content types apply to SGML documents only.

The ATIContentType enumeration has the following constants of type
short.

UNDEFINED CONTENT =0
The element is not declared in the DTD.

CDATA_CONTENT =1
The element is declared as CDATA in the DTD.

RCDATA_CONTENT =2
The element is declared as RCDATA in the DTD.

EMPTY_CONTENT =3
The element is declared as EMPTY content in the DTD.

ELEMENT _CONTENT =4
The element is declared as ELEMENT content in the DTD.

ANY_CONTENT =5
The element is declared as ANY content in the DTD.

MIXED CONTENT =6
The element is declared as MIXED content in the DTD.

tableCell attribute

The TableCell associated with this AE1ement. Null if none.

tableCell
Access read-only
Returns TableCell

tableColumn attribute

The TableColumn associated with this AElement. Null if none.

tableColumn
Access read-only
Returns TableColumn

240 Programmer's Reference

tableGrid attribute

The TableGrid associated with this AElement. Null if none.

tableGrid

Access read-only

Returns TableGrid

tableRow attribute

The TableRow associated with this AElement. Null if none.

tableRow

Access read-only

Returns TableRow

tableRule attribute

The TableRule associated with this AElement. Null if none.

tableRule

Access read-only

Returns TableRule

tableSet attribute

The TableSet associated with this AElement. Null if none.

tableSet

Access read-only

Returns TableSet

tagContentType attribute

An integer constant giving the declared content type for the element in the
document type. This attribute is deprecated in favor of the contentType attribute in
the ElementEditVAL interface which is a W3C standard attribute that returns
similar information.

tagContentType
Access read-only
Returns ATIContentType

AElement interface 241

getElementsByAttribute method

Returns a NodeList of all descendant Elements that match the given attribute
name and attribute value, in the order in which they are encountered in a pre-order
traversal of this Element tree.

getElementsByAttribute(name, value, selector)

Parameters

String name

Specifies the name of the attribute to match. The value
"+ matches all attribute names.

String value
Specifies the value of the attribute to match.
ATIElementAttributeSelector selector

Specifies how the attribute value should be matched.
When selector is 0, the value parameter is ignored. When
selector is 1, only the elements that match both the name
and the value are included.

Returns

NodeList. A list of matching element nodes.

Throws

DOMEZxception
SYNTAX ERR: If selector is invalid.

INVALID CHARACTER ERR: If name is namespace
qualified.

getElementsByAttributeNS method

Returns a NodeList of all descendant E1ements that match the given attribute
namespace URI, local name, and attribute value, in the order in which they are
encountered in a pre-order traversal of this Element tree.

getElementsByAttributeNS(namespaceURI, localName, value, selector)

Parameters

String namespaceURI

The namespace URI of the attribute to retrieve. The value
" %" matches all namespaces.

String localName

Specifies the local name of the attribute to match. The
value " *" matches all local attribute names.

String value

Specifies the value of the attribute to match.

ATIElementAttributeSelector selector

242

Programmer's Reference

Specifies how the attribute value should be matched.
When selector is 0, the value parameter is ignored. When
selector is 1, only the elements that match both the name
and the value are included.

Returns NodeList. A list of matching element nodes.

Throws DOMException

SYNTAX ERR: If selector is invalid.

INVALID CHARACTER ERR: If localname is
namespace qualified.

getinternalAttribute method

Returns the value of an attribute as a string. Allows examination of Arbortext-
specific internal attributes, which are not supported using the standard DOM

interfaces.
getInternalAttribute(name)

Parameters String name
Attribute name.

Returns String. Attribute value or null if no such attribute is
defined.

getinternalAttributes method

Returns a PropertyMap containing all attribute names and values.

The list includes Arbortext internal attributes that are excluded from standard
DOM processing.

getInternalAttributes(includeDefaults)
Parameters boolean includeDefaults

If True, default attribute values are included.
Returns PropertyMap. Map of attribute name/value pairs.

isTableMarkup method

Returns whether this Element is a part of table markup.

AElement interface 243

isTableMarkup()

Parameters None
Returns boolean. Returns true if this Element node is part of

table markup. Returns false otherwise.

removelnternal Attribute method

Deletes an attribute value. Allows deletion of Arbortext internal attributes which
are excluded from standard DOM processing.

removeInternalAttribute(name)

Parameters String name
Name of attribute to delete.

Returns boolean. Returns true if the attribute was deleted.
Returns false otherwise.

setinternal Attribute method

Sets an attribute value. Allows setting of Arbortext internal attributes which are
excluded from standard DOM processing.

setInternalAttribute(name, value)
Parameters String name

Name of attribute to set.

String value

New value for attribute.
Returns boolean. Returns true if a new attribute value was
stored. Returns false otherwise.

Programmer's Reference

244

26

AEvent interface

EventDomain enumeration

... 246
EventModule enumerationoouiiiii 246
domain attribUute ... s 247
moduleType attribute ... e 248

The Arbortext extension to the W3C DOM Event interface. This interface adds
the moduleType attribute to Event, giving the source of the event.

245

EventDomain enumeration

An integer showing which event domain the event belongs to.

The EventDomain enumeration has the following constants of type unsigned
short.

DOCUMENT_DOMAIN =1
Shows the event was created by and used in a document.

WINDOW_DOMAIN =2
Shows the event was created by and used in a window.

APPLICATION _DOMAIN =3
Shows the event was created by and used in the application.

CMSOBJECT_DOMAIN =4
Shows the event was created by and used in a CMS object.

CMSSESSION_DOMAIN =5
Shows the event was created by and used in a CMS session.

CMSADAPTER DOMAIN =6
Shows the event was created by and used in a CMS adapter.

EventModule enumeration

An integer showing which event module generated the event.

The EventModule enumeration has the following constants of type unsigned
short.

MUTATION_EVENTS =1
Shows the event originated from the MutationEvents module.

UL EVENTS =2
Shows the event originated from the UTEvents module.

MOUSE_EVENTS =3
Shows the event originated from the MouseEvents module.

AEDIT_EVENTS =4
Shows the event originated from the AEditEvents module.

WINDOW_EVENTS =5
Shows the event originated from the WindowEvents module.

CONTROL_EVENTS =6
Shows the event originated from the ControlEvents module.

246 Programmer's Reference

MENU_EVENTS =7
Shows the event originated from the MenuEvents module.

TOOLBAR _EVENTS =8
Shows the event originated from the ToolBarEvents module.

ACTIVEX EVENTS =9
Shows the event originated from the ActivexEvents module.

ADOCUMENT_EVENTS =10
Shows the event originated from the ADocumentEvents module.

APPLICATION_EVENTS =11
Shows the event originated from the ApplicationEvents module.

CMSOBJECT_EVENTS =12
Shows the event originated from the CMSObjectEvents module.

CMSSESSIONCONSTRUCT_EVENTS =13
Shows the event originated from the CMSSessionConstruct module.

CMSSESSIONCREATE_EVENTS =14
Shows the event originated from the CMSSessionCreate module.

CMSSESSIONFILE _EVENTS =15
Shows the event originated from the CMSSessionFile module.

CMSSESSIONBURSTDOCUMENT_EVENTS =16
Shows the event originated from the CMSSessionBurstDocument
module.

CMSSESSIONDISCONNECT _EVENTS =17
Shows the event originated from the CMSSessionPreConnect module.

CMSADAPTERCONNECT EVENTS =18
Shows the event originated from the CMSAdapterConnectEvents
module.

CMSADAPTERDISCONNECT_EVENTS =19
Shows the event originated from the CMSAdapterDisconnectEvents
module.

ADOCUMENTENTITY_EVENTS =20
Shows the event originated from the ADocumentEntityEvents module.

domain attribute

The domain identifier of the event.

AEvent interface 247

domain

Access

read-only

Returns

unsigned short

moduleType attribute

The module identifier of the event.

moduleType
Access read-only
Returns unsigned short

248

Programmer's Reference

27

ANode interface

ATIElementAttributeSelector enumeration..............ccoooiiiiiiiii i 250
CMSODbject attribULe ... oo 250
contentModel attribute ... 250
dialog attribute e 251
enclosingCell attribute ... e 251
enclosingCMSObject attribute ... 251
fIrStOID @ttriDULE .. .ee e 251
ICON ATIDULE ... e e 252
ICON2 AtHDULE ..o 255
[AStOID AtrIDULEeeeceeeee e 258
tableNoDelete attribute ... s 258
tableObject attribULEccoee i 258
userDataKeys attribute ... 258
COlAPSE METNOAo e e 259
contextPath MEthOd. e 259
AiStanCeTO MELNOAoeei e 259
L= (oX= T T I 0 1= 1. T To [260
getGraphicPath method ... 260
insertTable Method e 261
SEtCMSODJECt MELNOM.ui e 262

The Arbortext extension to the W3C DOM Node interface.

249

ATIElementAttributeSelector enumeration

Passed as the selector parameter to the getElementsByAttribute
method.

The ATIElementAttributeSelector enumeration has the following
constants of type unsigned short.

ATI_ATTR_ALL_VALUES =0
Select elements with attributes that match the name parameter only, ignoring
the value parameter.

ATI_ATTR_SPECIFIC_VALUE =1
Select elements with attributes that match both the name and value parameters.

CMSObiject attribute

Represents the CMSObject associated with this Node (may be null).

This can be accessed for a Document Node or for any other Node type which has
an associated OID.

Use the enclosingObject attribute on the returned object to obtain any
enclosing objects.

CMSObject

Access read-only

Returns CMSObject

Get throws CMSException
Raised for any errors.

contentModel attribute

Returns the content model as specified in the DTD or schema associated with the
owner document of this Node as a DOMString. The content model has syntax
similar to the element definition in a DTD. For example, in a DTD definition,
<!Element book (title | chapter*)>. The content model for the
element book is (title|chapter®*) .

contentModel
Access read-only
Returns String

250 Programmer's Reference

dialog attribute

Returns the Window for the XUI dialog associated with this Node, if any. This
will exist only if there is a DCF file entry associating a XUI dialog with this
element in the document.

dialog
Access read-only
Returns Window

enclosingCell attribute

The table cell this node is in, if any.

enclosingCell
Access read-only
Returns TableCell

enclosingCMSObject attribute
Represents the innermost CMSObject which contains this Node (may be null).

Use the enclosingObject attribute on the returned object to obtain any
enclosing objects.

enclosingCMSObject

Access read-only

Returns CMSObject

Get throws CMSException
Raised for any errors.

firstOID attribute

A string value that can be spliced into an ACL command or function to indicate
the first ACL OID represented by Node.

This attribute will normally have the same OID as 1astOID and will always be
the same for Element type nodes. They will be different, however, for Text
nodes that represent more than one text fragment in the document.

firstOID
Access read-only
Returns String

ANode interface 251

icon attribute

Used to get or set the name of the display icon that appears to the left of this Node
(if any). The icons appear in the Document Map and also appear in the Edit
window whenever element tags are set to full or partial display. If this Node has
no icon, this returns the string"None™".

If an invalid display icon is set, it will act as if it were set to "None".

~ Note

When using an adapter written using the RAOM (Repository Adapter Object
Model), the icons for Nodes representing object boundaries will automatically
be managed by the application. This icon attribute controls an independent
Node icon which can be used by non-RAOM adapters or for other purposes.
However, for Nodes representing object boundaries a RAOM adapter may
override even this icon attribute. See the ITOObject.displayIcon
attribute for more information.

The value may be the case-sensitive name of a built-in icon or a full or relative
path to a . bmp file. When setting this attribute, if a relative path is given, it will
be looked for in the search path given by

Application.getOption ("graphicspath"). If the . bmp file is not
found, it will act as if it were set to the built-in icon “None”.

~ Note

There is an upper limit (around 200) on the number of unique icons that can
be set using a. bmp file. Once this limit is reached, it will act as if it were set
to the built-in icon “None ”.

Built-in icon names are case sensitive and are listed in the following table.

Name Icon Default use

Attribute & Indicates that an element
has attributes assigned to
it.

BadAttribute & Indicates that an element

has attributes assigned to
it and at least one of those
attributes is not legal for
the current document type
definition.

252 Programmer's Reference

BadElement

CheckedOut

CollectionClosed

CollectionOpen

Comment

Contracted

DataMarkedSection

DocObject

Document

Element
Empty

End
Equation

ANode interface

=

Indicates an element
whose position or element
name are not legal for the
current document type
definition.

Indicates a repository
object accessed by a
Repository Adapter is
locked or checked out by
the current user.

Indicates that a collection
of help topics is hidden
from view (in the UNIX
help table of contents).

Indicates that a collection
of help topics is expanded
for viewing (in the UNIX
help table of contents).

Indicates that an SGML
element is part of a
comment Marked
Section.

Indicates that the
element's contents are
collapsed and hidden
from view.

Indicates that an SGML
element is part of a data
Marked Section.
Indicates a repository
object accessed by a
Repository Adapter that is
neither locked nor
checked out.

Indicates a document.

Indicates an SGML or
XML element.

Indicates an element with
no content.

Indicates an end tag.
Indicates an equation
element.

253

Expanded =

FileEntity = |
Graphic o)
GrayCheckedOut &,
GrayDocObject

GrayLocked &
IgnoreMarkedSection

Locked &
Missing =
None

ReadOnly &

Table J

254

Indicates that the
element's contents are
expanded for viewing.

Indicates a referenced file
entity.

Indicates a graphic
element.

Indicates a repository
object accessed from a
Repository Adapter that is
locked or checked out by
the current user but is
unavailable.

Indicates a repository
object accessed from a
Repository Adapter that is
neither locked nor
checked out by the
current user and is
unavailable.

Indicates a repository
object accessed from a
Repository Adapter that is
locked or checked out by
another user and is
unavailable.

Indicates that an SGML
element is part of an
ignored Marked Section.

Indicates a repository
object accessed by a
Repository Adapter is
locked or checked out by
another user.

Indicates where a
required element is
missing.

No icon displayed.

Indicates an element that
is not editable.
Indicates a table element.

Programmer's Reference

icon
Access read-write
Returns String

icon2 attribute

Used to get or set the name of a second display icon that appears to the left of this
Node (if any). The icons appear in the Document Map and also appear in the Edit
window whenever element tags are set to full or partial display. If this Node has
no icon, this returns the string "None".

If an invalid display icon is set, it will act as if it were set to "None".

The value may be the case-sensitive name of a built-in icon or a full or relative
path to a . bmp file. When setting this attribute, if a relative path is given, it will
be looked for in the search path given by

Application.getOption ("graphicspath"). If the . bmp file is not
found, it will act as if it were set to the built-in icon “None”.

~ Note

There is an upper limit (around 200) on the number of unique icons that can
be set using a. bmp file. Once this limit is reached, it will act as if it were set
to the built-in icon “None”.

Built-in icon names are case sensitive and are listed in the following table.

Name Icon Default use

Attribute & Indicates that an element
has attributes assigned to
it.

BadAttribute =" Indicates that an element

has attributes assigned to
it and at least one of those
attributes is not legal for
the current document type
definition.

BadElement = Indicates an element
whose position or element
name are not legal for the
current document type
definition.

ANode interface 255

CheckedOut

CollectionClosed

CollectionOpen

Comment

Contracted

DataMarkedSection

DocObject

Document

Element
Empty

End
Equation

Expanded

256

Indicates a repository
object accessed by a
Repository Adapter is
locked or checked out by
the current user.

Indicates that a collection
of help topics is hidden
from view (in the UNIX
help table of contents).

Indicates that a collection
of help topics is expanded
for viewing (in the UNIX
help table of contents).

Indicates that an SGML
element is part of a
comment Marked
Section.

Indicates that the
element's contents are
collapsed and hidden
from view.

Indicates that an SGML
element is part of a data
Marked Section.
Indicates a repository
object accessed by a
Repository Adapter that is
neither locked nor
checked out.

Indicates a document.

Indicates an SGML or
XML element.

Indicates an element with
no content.

Indicates an end tag.
Indicates an equation
element.

Indicates that the
element's contents are
expanded for viewing.

Programmer's Reference

FileEntity
Graphic

GrayCheckedOut

GrayDocObject

GrayLocked

IgnoreMarkedSection

Locked

Missing

None
ReadOnly

Table

®

B

Indicates a referenced file
entity.

Indicates a graphic
element.

Indicates a repository
object accessed from a
Repository Adapter that is
locked or checked out by
the current user but is
unavailable.

Indicates a repository
object accessed from a
Repository Adapter that is
neither locked nor
checked out by the
current user and is
unavailable.

Indicates a repository
object accessed from a
Repository Adapter that is
locked or checked out by
another user and is
unavailable.

Indicates that an SGML
element is part of an
ignored Marked Section.

Indicates a repository
object accessed by a
Repository Adapter is
locked or checked out by
another user.

Indicates where a
required element is
missing.

No icon displayed.

Indicates an element that
is not editable.
Indicates a table element.

icon?2

Access

read-write

Returns

String

ANode interface

257

lastOID attribute

A string value that can be spliced into an ACL command or function to indicate
the last ACL OID represented by Node.

This attribute will normally have the same OID as £1rstOID and will always be
the same for Element type nodes. They will be different, however, for Text
nodes that represent more than one text fragment in the document.

lastOID
Access read-only
Returns String

tableNoDelete attribute

Returns t rue if the node is managed by a table model and the table model
indicates the node should be protected from deletion.

tableNoDelete
Access read-only
Returns boolean

tableObject attribute

Returns the deepest table object (a cell, row, grid, or set) that fully contains the
specified node. If the specified node is not inside table markup, it returns a
null pointer.

tableObject
Access read-only
Returns TableObject

userDataKeys attribute

A DOMStringList ofall keys that have data associated to this node by
previous calls to setUserData. This is null if no user data exists for the node.

userDataKeys
Access read-only
Returns DOMStringList

258 Programmer's Reference

collapse method

Collapses the parent CMS object that contains this node. Can optionally operate
on all references to the parent CMS object.

collapse(allRefs)

Parameters boolean allRefs

Controls whether this operates on all references to the
parent CMS object.

Returns void

Throws CMSException

Raised for any errors.

contextPath method

contextPath returns a DOMStringList that contains possible context paths
to make the target Node valid at the point indicated by this Node. If one of the
paths returned is an empty string, the target Node can be inserted without any
Node being added.

contextPath(target, depth, maxpaths)

Parameters Node target
The Node to which the context paths are to be calculated.

unsigned int depth

Specifies the maximum tag nesting depth of the paths
returned.
unsigned int maxpaths

Specifies the maximum number of paths at each depth to
return. If depth is 5, and maxpaths is 50, as many as 250
total paths could be returned. If more paths than maxpaths
exist at a given depth, only the first maxpaths paths are
returned, with no indication that more paths exist.

Returns DOMStringList. Returns the context paths from the
point specified by this Node to the target.

distanceTo method

Finds the distance from this Node to another specified Node.

distanceTo is intended to measure progress through a document in a
reasonably linear manner. "Distance" is defined as the number of nodes between
the nodes. Such measurements can be used for time estimates, progress dialog
boxes, and so on.

ANode interface 259

If the target node is null, distanceTo calculates the distance to the end of the
document. If the target node is not null, distanceTo calculates the distance to
just before the target. Therefore, the sum of the distance between an arbitrary set
of targets equals the total document distance, as long as each target is after the
previous one.

distanceTo(toNode, expandTextEntities, expandFileEntities)

Parameters Node toNode
The Node to which the distance is to be measured.
boolean expandlextEntities

Specifies whether or not text entities should be expanded
when measuring the distance.
boolean expandFileEntities

Specifies whether or not file entities should be expanded
when measuring the distance.

Returns long. Returns the distance between this Node and
toNode. If the distance cannot be calculated, returns —1.

expand method

Expands the parent CMS object that contains this node. Can optionally operate on
all references to the parent CMS object.

~ Note
Expanding explicitly forces a collapsed CMS object to be reloaded.

expand(allRefs)

Parameters boolean allRefs
Controls whether this operates on all references to the
parent CMS object.

Returns void

Throws CMSException
Raised for any errors.

getGraphicPath method

If this Node represents a graphic tag, returns the full path (if found) to the
referenced graphic.

260 Programmer's Reference

getGraphicPath([makeLocalCopy])

Parameters

boolean makeLocalCopy

[optional] If t rue, and the referenced graphic resided in a
CMS for which there is an active session, the graphic data
will be exported to a local temporary file and the full path
of the local file will be returned instead of the CMS-
specific path (Logical ID).

Returns

String. Full file path (if possible) or CMS path (Logical
ID) to the referenced graphic. Returns null if a graphic path
was not found for this node.

Throws

AOMException
Raised for any other errors.

insertTable method

Insert a table as a child of this Node.

insertTable(tableModel, wrapperTag, colCount, rowCount [, refChild])

Parameters

String tableModel

The name of the table model for the table to be inserted.
Valid table model names are available from the
tableModels attribute of the ADocumentType
interface.

String wrapperlag

The name of the wrapper tag to insert around the table.
Valid wrapper tag names for a given table model in a given
document are available from the
tableModelWrappers method in the
ADocumentType interface. I[f a null string is passed,
the wrapper tag will be chosen randomly.

unsigned long colCount

The number of columns in the table.
unsigned long rowCount

The number of rows in the table.
Node refChild

[optional] The Node before which the table is inserted.
This must be a child of this node. If this parameter is null,
the table will be inserted after the last child of this node.

ANode interface

261

Returns TableSet. The TableSet inserted in the document.

Throws TableException
INVALID PARAMETER ERR: Raised if the wrapper tag

or table model name is not valid.

INVALID INDEX ERR: Raised if column or row count is
invalid.

DOMException

NO_MODIFICATION ALLOWED_ERR: Raised if the
node cannot be changed.

HIERARCHY REQUEST ERR: Raised if a table is not
allowed in this context.

NOT _FOUND_ERR: Raised if refChi1ld is not a child
of this node.

setCMSObject method

Associates this Node with the given CMSODbject. If this Node is already
associated with an object then the new object will be associated with all Nodes in
that object's Range. Thus, this might affect other Nodes.

This can be called for a Document or for any other Node type which has an
associated OID.

setCMSObject(object)
Parameters CMSObject object
The new object to associate with this Node.
Returns void
Throws CMSException

Raised for any errors.

262 Programmer's Reference

28

AOMEXxception exception

Some AOM operations may throw an AOMException as specified in their
method descriptions. Unlike DOMException and other exception interfaces,
AOMException provides an error message string in the message field instead
of a numeric code.

Objects that implement the AOMException interface include the following
property:

Stringmessage

263

29

AOMObiject interface

ODbjJeCtType ENUMETAtIONuiiiiiiii e e e e et e e e e s 266
objectType attribUute e 267

The Arbortext AOMObject interface is implemented by all AOM and DOM
classes.

265

ObjectType enumeration

The ObjectType enumeration is an integer showing which type of object this
is.

The ObjectType enumeration has the following constants of type unsigned
short.

NODE_OBJECT =1
The object is a Node object.

RANGE_OBJECT =2
The object is a Range object.

VIEW_OBJECT =3
The object is a View object.

EVENT_OBJECT =4
The object is a Event object.

DOMIMPLEMENTATION_OBJECT =5
The object is a DOMImplementation object.

NODELIST _OBJECT =6
The object is a NodeList object.

NAMEDNODEMAP_OBJECT =7
The object is a NamedNodeMap object.

DOMSTRINGLIST _OBJECT =8
The object is a DOMStringList object.

NAMELIST OBJECT =9
The object is a NameLi st object.

XPATHEXPRESSION OBJECT =10
The object is a XPathExpression object.

XPATHNSRESOLVER_OBJECT =11
The object is a XPathNSResolver object.

XPATHRESULT OBJECT =12
The object is a XPathResult object.

PROPERTYMAP_OBJECT =13
The object is a PropertyMap object.

STRINGLIST_OBJECT = 14
The objectisa StringList object.

COMPONENT_OBJECT =15
The object is a Component object.

266 Programmer's Reference

COMPOSER_OBJECT =16
The object is a Composer object.

TABLEOBJECT _OBJECT =17
The object is a TableObject object.

TABLERECTANGLE_OBJECT =18
The object is a TableRectangle object.

CMSADAPTER OBJECT =19
The object is a CMSAdapter object.

CMSBROWSEITEM_OBJECT =20
The object is a CMSBrowseItem object.

CMSBROWSEITERATOR _OBJECT =21
The object is a CMSBrowseIterator object.

CMSOBJECT _OBJECT =22
The object is a CMSObject object.

CMSOBJECTLIST _OBJECT =23
The object is a CMSObjectList object.

CMSSESSION_OBJECT =24
The object is a CMSSession object.

IOHOST_OBJECT =25
The object is a TOHost object.

objectType attribute

A code representing the type of the underlying object, as defined by
ObjectType.

objectType
Access read-only
Returns unsigned short

AOMObject interface 267

30

Application interface

LoadFlags €nUMEratioNoiieiii i e e e e e een 271
MessageBoxFlags enumeration ... 273
OptioNSCOPE ENUMETATIONiiiiiii e e e e e eaaes 274
ACl AUIIDULE ... e 274
activeDocument attribUte ... 274
activeSession attribute..........coooii i 275
activeWindow attribute...........oooii e 275
adapterQNames attribute........ ..o 275
customProperties attribute ... 275
doCUMENES AHIDULEcee e 276
domimplementation attribute ... 276
EVENT AtIIDULE ..o e 276
haveWindows attributeo e 276
INItDONE attriDULE ... e 276
ISES attribute ... e 277
lastErrorDetail attribute e 277
name attribULe ... e 277
optionNames attribute............ooii i 277
path attribute.........coo 278
userProperties attribute.............ooiiii 278
Alert MELNOA. e 278
CONFIrM METNOMA ... e e e e e e e e s 278
CONStruCtODbJECt MELNOAeei e 279
createComposer Method ... e 279
createDialogFromDocument method ... 280
createDialogFromFile methodooiiiii i 280
createEvent method ... 280
createPropertyMap Mmethod...... ... 281
createScriptContext Method...........oii i 281
createStringList Method 282
createTableObjectStore method ... 282

269

createTableTilePlex Method ... 282
createWindow mMethod 283
errOr METNOA ... e e 288
getAdapter MEthOd 288
getCustomDirectory MethOd..........oouuiiiiiii e 288
getlLocale METhOd.oou e 289
getLocalizedMessage methodcoouuiiiiiiii e 290
GetOPHON MELNOA. e 291
getOptionScope METhOd e 291
getScriptContext Method ... 291
logicalldEXists MethOdcoouuiiii e 292
logicalldTOSeSSION METhOdoiiiiiii e 292
MESSAgEBOX METNOM e 292
openDOocUMENt METNOM.cee e 294
o 11880 1 T=1 T o [295
1T 9] 0] 2 41=]1 o o [P PPRN 296
Lo 011 1211 1 T o PRt 296
registerlOAdapter method..... ... e 297
0] N 1011 1 o o 297
SetOPtioN MEthOd..... ..o e 297

The Application interface provides access to Arbortext Editor and Arbortext
Publishing Engine global functionality. (That is, features that are not associated
with any document, document type, or document component.) It is implemented
as a singleton: there is only one Application object instantiation in existence.

270 Programmer's Reference

LoadFlags enumeration

The LoadFlags enumerated type is used to construct the £ 1ags parameter to
the openDocument method by ORing any of the following options:

The LoadF1lags enumeration has the following constants of type int.

OPEN_RDONLY = 0x0001
Open for read only and do not lock the underlying file. If this is not set, the
underlying file will be locked if possible and the document will be read-only if
no lock was acquired.

The “checked out” status of CMS Objects will not be affected.

OPEN_DOCRDWR = 0x0002
Open for writing and do not lock the underlying file. The document will be
modifiable even though the underlying file is not locked.

If the document was already open in memory, this will additionally attempt to
lock the underlying file.

The “checked out” status of CMS Objects will not be affected.

OPEN_NLOCK = 0x0004
Do not lock the underlying file. Overrides all other flags which might acquire
a file lock. The resulting document will not be modifiable unless OPEN
DOCRDWR is also given.

The “checked out” status of CMS Objects will not be affected.

OPEN_CC = 0x0008
Perform a completeness check when reading the SGML file. This option is
ignored for XML documents.

OPEN_NOCC = 0x0010
Suppress the completeness check when reading the SGML file. This option is
ignored for XML documents. OPEN NOCC is the default option for SGML
documents saved by Arbortext Editor and Arbortext Publishing Engine.

OPEN_NOMSGS = 0x0020
Do not display any parser error messages in a message window. Instead,
suppress all warnings and errors.

OPEN_FORCEDT = 0x0040
Use the document type specified by pubId and sysId to parse the SGML or
XML file instead of the document type specified in the file itself.

OPEN_HELPWIN = 0x0080
Open a help document. (Used internally by Arbortext Editor and Arbortext
Publishing Engine)

Application interface 271

OPEN_XML = 0x0100
Open the document as an XML document even if it does not start with the
XML version processing instruction. If not specified, the document is loaded
as an SGML document unless the document starts with the XML version
header.

OPEN_NOSTYLE = 0x0200
Open the document without loading a style sheet.

OPEN_NODTPROMPT = 0x0400
Do not prompt the user if the document type associated with the document
instance does not exist or is not compiled. Instead, return nul1l.

OPEN_COMPARE = 0x2000
Open as a specially-treated compare document. (Used internally by Arbortext
Editor and Arbortext Publishing Engine.)

OPEN_RECTABLES = 0x4000
Cause the table editor to recognize tables immediately after opening the
document. By default, table objects are not created until the document is
displayed in a window.

OPEN_EDITINIT = 0x8000
Process initialization files immediately after opening the document. This
includes sourcing the associated document type instance files (
instance.acl, instance.js,and instance.vbs) and the document
command files (docname .acl, docname. js, and docname . vbs). By
default, these files are not processed until the document is displayed in a
window.

OPEN_NEW_DOC = 0x10000
Treat the document as if it were created using the New dialog. In this case, the
path name is set to null and the document name is of the form DocumentN.

OPEN_RECOVERY_PROMPT = 0x20000
Specifies that if an autosave or recovery file exists for the document, the user
should be prompted to select the document to open.

OPEN_NAMESPACE_URI = 0x40000
Specifies that the pubId parameter is actually a namespace URI instead of a
public identifier. If OPEN FORCEDT is also specified, then the namespace
URI is used to locate the XML schema to parse the document.

OPEN_FREEFORM = 0x80000
Open the document in free form mode, ignoring the document type specified
in the file or by the public identifier pubId and system identifier sysId
parameters.

272 Programmer's Reference

OPEN_PARSE_STRING = 0x200000
Specifies that the path name parameter path is actually a string to parse
instead of a file to open. If the string does not contain a DOCTYPE
declaration then the pubId and or sysId parameters must be given so the
desired document type is used to parse the string or else OPEN FREEFORM
should be specified. If the string contains XML markup but does not start with
an XML declaration then OPEN XML must also be specified.

MessageBoxFlags enumeration

The MessageBoxF1lags enumerated type is used to construct the flags
parameter to the me ssageBox method by ORing any of the following options:

The MessageBoxFlags enumeration has the following constants of type int.

MBF_OK = 0x00
Display OK button only. This is the default.

MBF_OKCANCEL = 0x01
Display OK and Cancel buttons.

MBF_ABORTRETRYIGNORE = 0x02
Display Abort, Retry, and Ignore buttons.

MBF_YESNOCANCEL = 0x03
Display Yes, No, and Cancel buttons.

MBF_YESNO = 0x04
Display Yes and No buttons.

MBF_RETRYCANCEL = 0x05
Display Retry and Cancel buttons.

MBF_ICONERROR = 0x10
Display the Error (Stop) icon. This icon is typically used with the Abort,
Retry, and Ignore buttons.

MBF_ICONQUESTION = 0x20
Display the Question icon. This icon is typically used with the Yes and No
buttons.

MBF_ICONWARNING = 0x30
Display the Warning icon.

MBF_ICONINFORMATION = 0x40
Display the Information icon.

Application interface 273

MBF_DEFBUTTONTI1 = 0x000
The first button is the default. This is the default if no other default button flag
is specified.

MBF _DEFBUTTON2 = 0x100
The second button is the default.

MBF_DEFBUTTON3 = 0x200
The third button is the default.

OptionScope enumeration

The OptionScope enumerated type is the return type of the
getOptionScope method, and has the following values:

The OptionScope enumeration has the following constants of type unsigned
short.

INVALID SCOPE =0
The option name is invalid.

GLOBAL_SCOPE =1
The option has global scope.

DOCUMENT_SCOPE =2
The option has document scope.

WINDOW_SCOPE =3
The option has window scope.

VIEW_SCOPE =4
The option has view scope.

acl attribute
The Ac1 global object.

acl
Access read-only
Returns Acl

activeDocument attribute

A DOM Document that represents the Arbortext Editor or Arbortext Publishing
Engine active or current document . If the user interface is active, this is the
document that has the focus.

274 Programmer's Reference

activeDocument
Access read-only
Returns Document

activeSession attribute

Represents the active CMSSession (if any).

activeSession
Access read-write
Returns CMSSession

activeWindow attribute

A Window object that represents the Arbortext Editor active window. If the user
interface is not active, returns null.

activeWindow
Access read-only
Returns Window

adapterQNames attribute

A list of adapter qualified names for all registered adapters that are available to the
application. These values are suitable for use with the
Application.getAdapter () method.

adapterQNames
Access read-only
Returns StringList

customProperties attribute

Returns a PropertyMap object containing custom properties for an application.
This object is initialized from the application-specific global parameters specified
in an application's application.xml file.

customProperties
Access read-only
Returns PropertyMap

Application interface 275

documents attribute

A DOM NodeLi st which contains all documents currently opened by Arbortext
Editor or Arbortext Publishing Engine. The NodeList will be updated as
documents are opened and closed.

documents
Access read-only
Returns NodeList

domimplementation attribute

The DOMImplementation object. This is the same value that is returned by a
DOM Document object's implementation attribute.

domImplementation

Access read-only
Returns DOMImplementation

event attribute

An Event object which stores the context of the current event. This attribute can
only be obtained from within an event listener.

event
Access read-only
Returns Event

haveWindows attribute

Returns t rue if the application is running in windows-mode. Returns false if
running as an Arbortext Publishing Engine server or in one-shot command mode (
—c specified as a startup option).

haveWindows
Access read-only
Returns boolean

initDone attribute

Returns t rue if the product has completed initialization.

276 Programmer's Reference

initDone
Access read-only
Returns boolean

iISE3 attribute

Returns t rue if the product is running Arbortext Publishing Engine, either server
or interactive mode. Server mode can be determined by also testing the
haveWindows attribute.

isE3
Access read-only
Returns boolean

lastErrorDetail attribute

Represents the detail field of the last exception thrown by the AOM. If the
exception had no detail field then this will be an empty string. The current
value is available only until the next AOM exception is thrown.

This is only available in the COM binding of the Application interface
because other bindings have direct access to the exception's detail field.

lastErrorDetail
Access read-only
Returns String

name attribute

Specifies the name of the Arbortext product, for example, "Arbortext
Editor". This string is not localized. The localized version of the string can be
obtained by calling getLocalizedMessage on the result.

name
Access read-only
Returns String

optionNames attribute

A StringList containing the names of all Arbortext set options, excluding
ACL hook names.

Application interface 277

optionNames
Access read-only
Returns StringList

path attribute

specifies the location of the directory that contains the program files needed to run
the software.

path
Access read-only
Returns String

userProperties attribute

Returns a PropertyMap object containing user properties (preferences) that
override custom properties set for an application. This object is initialized from
the user property section of the epic.wcf preferences file. Changes made to the
userProperties object are saved back to the preferences file on exit.

userProperties
Access read-only
Returns PropertyMap

alert method

Displays an alert dialog box with the specified message.

alert(message [, title])

Parameters String message
Specifies the message to display in the dialog box String
title
[optional] Specifies the dialog box title. If omitted, the title
defaults to "Alert".

Returns void

confirm method

Displays a modal confirmation dialog box with the specified message.

Programmer's Reference

278

confirm(message [, title])

Parameters String message

Specifies the message to display in the dialog box

String title

[optional] Specifies the dialog box title. If omitted, the title
defaults to "Confirm".

Returns boolean. Returns true if the user clicks OK. Returns
false if the user clicks Cancel.

constructObject method
Create a new CMSObject for the object referenced by logicalld.

constructObject(logicalld [, doc [, reserved]])

Parameters String logicalld
Logical ID for a CMS object to be referenced.
Document doc

[optional] NULL or document to use for context
information.
boolean reserved

[optional] This parameter is reserved for future use and
should always be false.
Returns CMSObject. New object handle.

Throws CMSException
Raised if the CMS object does not exist or an error occurs.

createComposer method

Creates a Composer object for the given ccfPath.

createComposer(ccfPath)

Parameters String ccfPath
The path of the CCF file.

Returns Composer. The Composer object.

Throws AOMException
Raised if the ccfPath is invalid, or if there is an error
creating the Composer.

Application interface 279

createDialogFromDocument method

Creates a dynamic dialog box according to the content of a document.

createDialogFromDocument(document [, propertyMap [, parent]])

Parameters Document document

The document describing the dialog box. This must
conform to the XML User Interface (XUI) document type.
PropertyMap propertyMap

[optional] A PropertyMap object created by the
createPropertyMap method to associate with the
Dialog. This parameter is optional and is not used by
Arbortext Editor or Arbortext Publishing Engine.
Window parent

[optional] The parent window of the new dynamic dialog.
If this parameter is not specified or zero, the parent will be
the current active window.

Returns Dialog. The Dialog object.

createDialogFromFile method

Creates a dynamic dialog box according to the content of an XML file.

createDialogFromFile(filename [, propertyMap [, parent]])

Parameters String filename

The XML file containing the dialog box description. This
must conform to the XML User Interface (XUI) document
type.

PropertyMap propertyMap

[optional] A PropertyMap object created by the
createPropertyMap method to associate with the
Dialog. This parameter is optional and is not used by
Arbortext Editor or Arbortext Publishing Engine.
Window parent

[optional] The parent window of the new dynamic dialog.
If this parameter is not specified or zero, the parent will be
the current active window.

Returns Dialog. The Dialog object.

createEvent method

Creates an event of type ApplicationEvent.

280 Programmer's Reference

createEvent(eventType)

Parameters

String eventType

The eventType parameter specifies the type of Event
interface to be created. If the Event interface specified is
supported by the implementation this method will return a
new Event of the interface type requested. If the Event
is to be dispatched via the dispatchEvent method the
appropriate event init method must be called after creation
in order to initialize the Event's values.

Returns

Event. The newly created Event

Throws

AOMException
Raised if the implementation does not support the type of
Event interface requested.

createPropertyMap method

Creates an empty PropertyMap object that is an unordered collection of name-

value pairs.

createPropertyMap()

Parameters

None

Returns

PropertyMap. The PropertyMap object.

createScriptContext method

Creates a ScriptContext object that may be used to load, compile, and
execute scripts using the Microsoft Windows Script engine. This method is only
available in the COM binding of the Application interface.

Application interface

281

createScriptContext(language, name)

Parameters String language

Specifies the name of the Microsoft Windows Script
language to initialize the script context. The name must be
either "VBScript" or "JScript", the ProgID values
of the respective script language. A ProgID is the
version-independent, user-friendly name of the GUID
(Globally Unique Identifier) found in the Windows
registry. Any ActiveScript-compatible script language can
be named and used, but only VBScript and JScript are
supported.

String name

Specifies the name of the script.

Returns ScriptContext. The IDispatch pointer to the
ScriptContext object. If the object creation fails, the
method returns null.

createStringList method

Creates an empty StringList object that is an ordered collection of
DOMStrings.

createStringList(size)

Parameters long size
The initial size of the array.

Returns StringList. The StringList object.

createTableObjectStore method

Creates an empty TableObjectStore object that is a collection of
TableObjects.

createTableObjectStore()

Parameters None
Returns TableObjectStore. The TableObjectStore
object.

createTableTilePlex method

Creates an empty TableTilePlex object which can represent a table selection
in a document.

282 Programmer's Reference

createTableTilePlex()

Parameters

None

Returns

TableTilePlex. The TableTilePlex object.

createWindow method

Creates a window of the specified windowClass with optional components
given by flags. The window created is not initially displayed. Use the
Window.show () method to make the window appear.

xuiPath]]]]])

createWindow(windowClass [, flags [, doc [, geometry [, parent [,

Parameters

String windowClass

Windows are of two types:

* Document class windows that display a document tree
and have a windowClass of edit, helpwin[1-4], or
msgwin[1-4].

* Dialog class windows that display either a list selection
dialog box of windowClass list or xui.

The class determines the default geometry and, for classes
other than list, the class-specific keymap. By default, a new
keymap is created for the window on the first map ACL
command processed for the window. This keymap has the
name windown, where n is the identifier of the window,
and is deleted when the window is destroyed. If a set
keymap=user ACL command is executed for the window,
or if bit 0x00040 is specified in f1ags, the global
keymap for the class will be used. See the f1ags bit
descriptions below.

int flags

[optional] The £1ags parameter is a bit mask that depends
on the windowClass and is defined below:

The following are the flag bits for list and xui class
windows.

* 0x1 - Supply vertical scrollbar.

e 0x2 - Verify input (that is, set verify Item attribute).
* 0x4 - Supply an Apply button,

* 0x8 - Supply a Help button.

* 0x10 - For XUI dialog boxes, delete the document

Application interface

283

after the window is destroyed. In the following
example, doc will be destroyed automatically after
win is destroyed:

Document doc =
Application.openDocument ("c:\\
myproject\\myxuifile", 1);

Window win =
Application.createWindow ("xui", 0x10,
doc) ;

284 Programmer's Reference

OK and Cancel buttons are always supplied.

The following are the £f1ag bits for document class (all
non-list) windows.

0x040000 - Make the new window a top-level
window with its parent being the desktop. This flag is
only useful to the xui and list class windows; the
windows of all other window classes are created as top-
level windows.

0x00001 - Supply vertical scrollbar (pane).
0x00002 - Supply menu bar.

0x00004 - Supply command subwindow if
windowClass is edit.

0x00008 - Supply message footer subwindow.

0x00010 - Automatically call

ADocument.close () on the attached document
when the window is destroyed. (pane).

0x00020 -Supply edit toolbar (that is, Toolbar 1)
(pane).

0x00040 -Attach the global window class keymap to
the window instead of creating a private keymap
(pane).

0x00080 - Supply horizontal scrollbar (pane).
0x00100 - Do edit command intializations, include
reading the document type instance command files (
instance.acl and instance. js) and document
command files (docname . acl and docname . js) if
they exist, and calling the ACL editfilehook
when a document is attached to the window. This bit
applies only to edit class windows (pane).

0x00800 - Make the window a typical user edit
window (as opposed to a display window).

0x01000 - Supply a table column width ruler (pane).
0x02000 - Supply a table row height ruler (pane).

0x04000 - Supply the Markup toolbar (that is,
Toolbar 2).

0x08000 - Supply the Table toolbar (that is, Toolbar
3).

Application interface

285

0x10000 - Supply the Application toolbar (that is,

Toolbar 4).

286

Programmer's Reference

* 0x080000 - Do not update the Arbortext Editor File
menu list of recently edited documents, or the
Microsoft Windows list of recently edited documents
with the path name associated with the doc parameter
(if the 0x00800 flag is specified). Note that this does
not apply to documents subsequently loaded in the
window.

If a menu bar is requested, it must be initialized using the
menu_load or menu_add ACL commands before the
window is first displayed.

If a message footer is created, error messages and output
from the message ACL command are displayed in the left
part of the footer if the message is short enough (otherwise
a popup dialog box is used). Any messages directed to the
message footer are considered transient and are erased on
the next key or button event received in the window.

Document doc

[optional] Specifies the document tree to be attached to the
window. The document must not already be displayed in
another window. If it is, the function returns null. If doc
is null, a scratch document is created that will
automatically be destroyed when the window is destroyed.
In this case, the associated document type is ascii for edit
class windows or the built-in help document type for other
classes.

This parameter does not apply to list class windows and is
ignored if given.

String geometry

[optional] Specifies the initial geometry for the window
and is a string of the form WxH+X+Y, where W and H are
the width and height of the window in pixels, and X and Y
give the location of the upper left corner of the window.

Window parent

[optional] An optional parameter used to specify the parent
window for the new window. Only supports dialog class.

String xuiPath

Application interface

287

[optional] An optional parameter used only by edit
windows to supply an alternative XUI file to define the
toolbars used by the edit window. If xuiPath is not
supplied (or empty), then Arbortext-path \1ib\
dialogs\editwindow.xml is used.

Returns Window. A new Window object.

Throws AOMException
Raised if the method detects any error.

error method

Sounds a beep and displays the error message specified by message in the status
bar of the active window if possible, otherwise in a separate dialog. The message
is also assigned to the ERROR predefined ACL variable

The error method is used by Arbortext Editor to display most error messages.

error(message)
Parameters String message

Specifies the message to display.
Returns void

getAdapter method

Returns the requested adapter if available.

getAdapter(adapterQName)

Parameters String adapterQName
Adapter qualified name.

Returns CMSAdapter. The requested CMSAdapter or null if
no such adapter is registered.

getCustomDirectory method

Returns the installation directory for a specified application. If name is omitted or
the null string, then the default custom directory is returned, either the first value
of the APTCUSTOM environment variable if set or else the custom subdirectory

in the product installation directory.
If name is a number, then this specifies the 0-based index into the list of custom

directories. This allows an iterator to enumerate the list of custom directories by
calling this method in a loop, incrementing the index until a null string is returned.

Programmer's Reference

288

If name is a negative integer, then the list is traversed in reverse. "—1" returns the
last custom directory, "-2" the second to last custom directory and so on.

getCustombDirectory([name])

Parameters String name
[optional] Specifies the application name or index.
Returns String. The full path name of the specified application's

custom directory or null if name is not a loaded
application name or if it specifies an index out of range.

getLocale method

Returns the requested locale string.

Application interface

289

getLocale([category])

Parameters

String category
null[optional] or a supported locale category string.

On UNIX, this returns the shorter form of the locale name
regardless of the value of the category parameter.

On Windows, the following category strings are supported
(case sensitive).
category

Method Result
null or empty string

Abbreviated locale string (2-3 letter code). Example: ENU
LC_COLLATE

The locale governing certain collating functions.
LC CTYPE

The locale governing human-readable messages.
LC_MESSAGES

Equivalent to LC_ CTYPE.
LC MONETARY

The locale governing money formatting.
LC NUMERIC

The locale governing numeric formatting.
LC TIME

The locale governing time formatting.
Any other string.

Method will return an empty string.

Returns

String. The requested locale string. Will be null for any
unrecognized category string.

getLocalizedMessage method

Returns the localized version of the specified message from the default message

catalog file.

290

Programmer's Reference

getLocalizedMessage(message)

Parameters String message
The message to localize.
Returns String. The localized version of message. If the

message is not found in the message file, returns
message.

getOption method

Returns the value of the Arbortext set option, in global scope.

getOption(name)

Parameters String name
Specifies the option name.
Returns String. The string value of the option, or null if name

is not a valid option name. Boolean values return on or
off.

getOptionScope method

Returns the scope of the Arbortext set option.

getOptionScope(name)

Parameters String name
Specifies the option name.
Returns OptionScope. A code representing the scope of the

option as defined by OptionScopeType. If name is not
a valid option name, returns INVALID SCOPE.

getScriptC

ontext method

Returns an IDispatch pointer to a ScriptContext object for the running
script specified by the name parameter. This method is only available in the COM

binding of the Application interface.

getScriptContext(name)

Parameters

String name

Specifies the name of the running script. The script name is
not the file name. It is one of several possible names: the
name passed to CreateScriptContext, a constructed
name that is unique to the dialog for the script context in a

Application interface

291

XUI dialog, "EpicJS" for the global JScript context, or
"EpicVBS" for the global VBScript context.

Returns ScriptContext. The ScriptContext object or
null if the named script does not exist.

Throws AOMException

Raised if Active Scripting is not supported in this version
of Arbortext Editor.

logicalldExists method

Tests the existence of Logical IDs associated with any active CMS session as well
as for file-system and http/https resources.

logicalIdExists(logicalld)

Parameters String logicalld
Logical ID for a CMS or a file-system or http/https
resource.

Returns trueboolean. if the referenced object/resource exists,

false otherwise.
If there is any error accessing the resource, this will return
false and will not throw an exception.

logicalldToSession method

If the specified path is the correct Logical ID format for a connected CMS, this
returns the CMSSession object associated with that session.

logicalIdToSession(logicalld)

Parameters String logicalld

CMS-specific Logical ID. The existence of this Logical ID
is not considered when looking for a session.

Returns CMSSession. CMSSession which claimed ownership of
the given Logical ID. Will return nul1l if no session
claimed ownership.

messageBox method

Displays a message box with the text message and optional title title. The
flags parameter determines what predefined buttons and icons display in the
message box, and is formed by ORing the flags from the following groups of flag
bits.

292 Programmer's Reference

Specify one of the following flags to indicate the buttons that will display in the
message box:

0x00 — Display OK button only. This is the default.
0x01 — Display OK and Cancel buttons.

0x02 — Display Abort, Retry, and Ignore buttons.
0x03 — Display Yes, No, and Cancel buttons.

0x04 — Display Yes and No buttons.

0x05 — Display Retry and Cancel buttons.

Specify one of the following flags to indicate the icon to display in the message
box. If you do not specify one of these flags, an icon does not display.

0x10 — Display the Error (Stop) icon. This icon is typically used with the
Abort, Retry, and Ignore buttons

0x20 — Display the Question icon. This icon is typically used with the Yes
and No buttons.

0x30 — Display the Warning icon.
0x40 — Display the Information icon.

Specify one of the following flags to indicate the default button:
0x000 — The first button is the default. This is the default if no other default

button flag is specified.
0x100 — The second button is the default.
0x200 — The third button is the default.

If the dialog box has a Cancel or Ignore button, the function returns 3 if the
Cancel or Ignore button or ESC key was pressed, or if the dialog box was
closed from the C1ose system menu or C1lose button. If the dialog box does not
have a Cancel or Ignore button and is closed with the ESC key or by the
Close system menu or Close button, the function returns 2 if the dialog has
only Yes and No buttons. If the dialog box only has an OK button, it returns a 1.

Application interface

293

messageBox(message [, flags [, title]])

Parameters String message

Specifies the message to display.

int flags

[optional] Specifies a bitmask of options constructed by
ORing the bits from the MessageBoxFlags
enumeration.

String title

[optional] Specifies the dialog box title. If omitted, the title
defaults to "Message".

Returns int. The return value is one of the following:
e 1 - The first button (Yes, OK, Abort, or Retry) was
pressed.

* 2 - The No button was pressed.

* 3 - The third button (Cancel or Ignore) was pressed.

openDocument method

Reads an XML or SGML file and creates a new Document object that may be
used to navigate the document's content. The method may also be used to create
an empty document if path is null, similar to the createDocument method
of the DOMImplementation interface.

The pubid and sysid arguments specify the document type for the document if
path is omitted or null, if the associated file does not specify a DOCTYPE
declaration, or if bit OPEN FORCEDT is included in f£1ags. The pubid and
sysid arguments are ignored if path specifies an SGML file that starts with a
DOCTYPE declaration, if OPEN FORCEDT is not specified, or if path specifies
a binary document file. If the document type is not specified, is "ascii", or
cannot be determined the document is opened in untagged mode.

openDocument([path [, flags [, name [, publd [, sysld [, stylesheet]]]]]])
Parameters String path

[optional] Specifies the path name of a document directory
or the file name from which to load the initial contents of
the document tree. May bea "file://" or "http://"
URL. If the URL specifies a server supporting WebDAYV,
the file will be opened for editing (Windows only). If the
server does not support WebDAV, the file will be opened as
read-only. If null or an empty string, the document is
empty.

int flags

294 Programmer's Reference

[optional] A bitmask that specifies open options.
Constructed by ORing the bits from the LoadFlags
enumeration.

String name

[optional] Specifies a name to be used for informational
purposes. If null or the empty string, the base name of
pathisused. If path is null or empty, an internal name
is assigned.

String publd

[optional] Specifies the public identifier of the document
type.

String sysld

[optional] Specifies the system identifier of the document

type.
String stylesheet

[optional] Specifies the style sheet to be used instead of the
default style sheet for the document. If flag OPEN
NOSTYLE is set, this parameter is ignored. If the specified
style sheet does not exist, an exception is raised.

Returns

Document. A new Document object.

Throws

AOMException
Raised if the method detects any error.

print method

Outputs a string to the message window. If the user interface is not open on
Windows, the message is discarded. In Arbortext Publishing Engine on Windows,
the message is sent to the trace window if it is open, otherwise it is discarded.

print([str])

Parameters String str
[optional] Specifies the string to print. A line break is not
added. Newline characters in the string will cause line
breaks. If the parameter is omitted or null, a line break is
output.
This method can not be used from Visual Basic since
print is areserved word in Visual Basic and can't be
used as a method name on any object.

Returns void

Application interface

295

prompt method

Displays a modal dialog box with the specified message prompt, a text input
field, and OK and Cancel buttons.
prompt(prompt [, value [, title]])

Parameters String prompt
Specifies the message to display in the dialog box

String value

[optional] Specifies the initial value displayed in the text
input field.

String title

[optional] Specifies the dialog box title. If omitted, the title
defaults to "Prompt".

Returns String. Returns the string in the text input field if the
user clicks OK. Returns null if the user clicks Cancel.

quit method

Terminates the application with the exit status status. The parameter code
determines if the user is prompted for unsaved changes or not and has one of the
values:

* 0 — prompt about any unsaved changes.

* 1 — save all modified documents without prompting.

* 2 — do not prompt about unsaved changes and quit without saving modified
documents.

quit([code [, status]])

Parameters int code

[optional] Specifies whether unsaved changes are
prompted (0), saved without prompting (1), or discarded
without prompting (2). The default is 0.

int status

[optional] Specifies the exit status for the program. The
default is 0.
Returns void

296 Programmer's Reference

registerlOAdapter method

Called during startup by the adapter to register itself with Arbortext Editor. This
call should be the last thing done in the initialization/loading code for the adapter.
An adapter cannot be unregistered once it has been registered.

registerIOAdapter(adapter, name, qName)
Parameters IOAdapter adapter

The adapter instance.
String name

The human-readable name of the adapter.

String gName

The qualified name that uniquely identifies this adapter.
Qualified names should follow the same reverse domain
name convention used by Java.

Returns void
Throws CMSException
Raised for any error.

run method

Runs the macro or alias named name. The name is first looked up as a macro
using the active document macro scope. If no such macro is found in any scope,

then name is looked up as a command alias.

run(name)

Parameters String name
The name of the macro or alias to execute.

Returns void

Throws AOMException
Raised if name is not recognized as a macro or alias or if
an error occurs while executing the macro or alias.

setOption method

Sets the value of the Arbortext set option, in global scope. If name specifies a
Document- or View-scoped option, setting the value does not affect any existing

documents or views, only newly created objects.

setOption(name, value)

Parameters String name
Specifies the option name.

String value

Application interface 297

Specifies the new value of the option. Boolean values are
specified using the string on or of f.

Returns void

Throws AOMException

Raised if the method detects an error (for example, if
name is not a valid option).

298 Programmer's Reference

31

ApplicationEvent interface

detail attribute ... 300
initApplicationEvent Method 300

The ApplicationEvent interface provides specific contextual information
associated with the ApplicationEvent.

299

detail attribute

Specifies detail information about the ApplicationEvent , depending on the
type of event.

detail
Access read-only
Returns long

initApplicationEvent method

Initializes the value of an ApplicationEvent created through the
Application interface. This method should only be called before the
ApplicationEvent has been dispatched using the dispatchEvent
method, though it may be called multiple times during that phase if necessary. If
called multiple times, the final invocation takes precedence.

initApplicationEvent(typeArg, canBubbleArg, cancelableArg, detailArg

)
Parameters String typedrg

Specifies the event type.

boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

long detailArg
Specifies the Event detail.

Returns void

300 Programmer's Reference

32

ARange interface

MarkupFlags enUMErationooiiuiiii i e 303
allowedInsertElements attribute......... ... 303
allowedSurroundElements attribute ... 304
coNtexXtSENG attribULE.......coue 304
eNAOID AtIDULE.....ceeee e e 304
eNAPOS attriDULE ... e 304
StartOID attribULE ... s 305
canInsertNOde MEthOd i e 305
caninsertNodeWIithFixup method............coooiii i 305
insertNodeWithFixup Method ... e 306
insertParsedString MEthOd............oiiiii i 306
toMarkupString Method....... oo 307
toMarkupStringEX method........ooou i 307

The Arbortext extension to the W3C DOM Range interface.

ARange adds four read-only attributes (startOID, startPos, endOID,
endPos) that give the start and end points of the Range as strings that may be
spliced into ACL commands. Note that ACL represents a point as an OID/POS
pair.

Arbortext Editor (and Arbortext Publishing Engine) and the DOM represent
ranges differently. Therefore, the individual components of a DOM range
endpoint (attributes startNode, startOffset) and an Arbortext endpoint
(attributes startOID, startPos) may differ. That is, the OID indicated by
startOID will not necessarily be the starting OID for the node indicated by
startNode, and the integer value startOf fset will not necessarily be equal
to the integer value startPos. Nor will there necessarily be equivalences
between endNode and endOID or endOffset and endPos.

301

PTC only guarantees that the point in the document represented by the pair
(startNode, startOffset) will be the same point as that indicated by the
pair (startOID, startPos) and that the point represented by the pair
(endNode, endOf fset) will be the same point as that represented by the pair
(endOID, endPos).

The DOM allows the endpoint of a range to be within a processing instruction;
Arbortext products do not. If a DOM (node, offset) pair is located within a
processing instruction, the corresponding (OID, pos) pair will indicate the point
just before the start of the processing instruction (if the [node, offset] is the start of
the range) or just after the end of the processing instruction (if the [node, offset] is
the end of the range).

302 Programmer's Reference

MarkupFlags enumeration

The MarkupFlags enumerated type is used to construct the £ 1ags parameter
to the toMarkupStringEx method by ORing any of the following options:

The MarkupF1lags enumeration has the following constants of type int.

MARKUP_HEADER = 0x01
Include the XML or SGML header associated with the Range . If the Range
does not include the entire document, this will be a fragment header.

MARKUP_FORCE_XML = 0x02
Use XML syntax in the string returned even if the Range is in an SGML
document.

MARKUP_FORCE_SGML = 0x04
Use SGML syntax in the string returned even if the Range is in an XML
document.

MARKUP_NO_PI = 0x08
Suppress Arbortext processing instructions. Arbortext processing instructions
can also be suppressed using the writepi set option.

MARKUP_FORCE_PI =0x10
Force Arbortext processing instructions to be included. This option overrides
the MARKUP_ NO_PT option and the writepi set option.

MARKUP_EXPAND XINCLUDE = 0x20
Force XML inclusions to be replaced by their contents.

MARKUP_CHAR = 0x40
Non-ASCII characters are converted according to the current
writenonasciichar setoption. Ifthe entityoutputconvert set
option is also on, then character entities will also be output according to the
writenonasciichar set option.

allowedinsertElements attribute

Elements that can be inserted into the Document or DocumentFragment at the
start of the Range such that the result will be compliant with VAL SCHEMA
validity type. If the start container is a Text node it will be assumed to be split into
two text nodes and the list of elements valid between them will be returned.

allowedInsertElements
Access read-only

Returns NamelList

ARange interface 303

allowedSurroundElements attribute

Elements that can surround the Range such that the result will be compliant with
VAL SCHEMA validity type.

allowedSurroundElements
Access read-only
Returns NameList

contextString attribute

This function returns a DOMString describing the context of the start of this
Range. This string consists of a list of element names and parentheses, such as:
doc (body (chapter (title ()paral (title () para (The left
parenthesis following an element name represents a start tag, and the right
parenthesis represents the end tag for the corresponding unmatched start tag. If
this Range is before the opening start tag or if context checking is not relevant
for the current document, a null string will be returned.

contextString
Access read-only
Returns String

endOID attribute

The end OID of the Range. Note that the OID indicated by the endOID is not
necessarily the same as the ending OID for the node indicated by the endNode.

endOID

Access read-only
Returns String

Get throws DOMException

INVALID STATE ERR: Raised if the Range has already
been detached.

endPos attribute

The end position (in ACL) of the Range. Note that the position indicated by the
endPos is not necessarily equal to the value of endOffset.

endPos
Access ’ read-only

304 Programmer's Reference

Returns String
Get throws DOMException

INVALID STATE ERR: Raised if the Range has already
been detached.

startOID attribute

The start OID of the Range. Note that the OID indicated by the startOID is
not necessarily the same as the starting OID for the node indicated by the
startNode.

startOID

Access read-only
Returns String

Get throws DOMException

INVALID STATE ERR: Raised if the Range has already
been detached.

caninsertNode method

This method indicates whether a Node can be inserted at a position specified by
the start of this Range such that the result is compliant with VAL SCHEMA
validity type. If the container is a text node, it will be considered to have been split
and the test will be made between the two resulting text nodes.

canInsertNode(node)

Parameters Node node

The Node to be inserted.
Returns unsigned short. A validation state constant.

caninsertNodeWithFixup method

This method indicates whether a Node can be inserted at a position specified by
the start of this Range such that the result is compliant with VAL SCHEMA
validity type. This test considers adding required ancestors or descendents to make
context valid.

canInsertNodeWithFixup(node)
Parameters Node node

The Node to be inserted.
Returns unsigned short. A validation state constant.

ARange interface 305

insertNodeWithFixup method

This method inserts a Node to the position specified by the start of this Range. It
will try to add required ancestors or descendents to make context compliant with
VAL SCHEMA validity type. If the start container of the range is a text node it
will be split and the node will be inserted between the two resulting text nodes.

insertNodeWithFixup(node)

Parameters Node node

The Node to be inserted.
Returns Range. The Range inserted.
Throws DOMException

NO_MODIFICATION ALLOWED_ ERR: Raised if an
ancestor container of the start of the Range is read-only.
WRONG DOCUMENT ERR: Raised if newNode and
the container of the start of the Range were not created
from the same document.

HIERARCHY REQUEST ERR: Raised if the container
of the start of the Range is of a type that does not allow
children of the type of newNode or if newNode is an
ancestor of the container.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

RangeException

INVALID NODE TYPE ERR: Raised if newNode is an
Attr, Entity, Notation, or Document node.

insertParsedString method

Parses text and inserts the resulting DOM objects into a document at the
location indicated by the start of the Range.

insertParsedString(text)

Parameters

String text

The text to be inserted. Markup is interpreted as XML or
SGML according to the target document. If an empty
string, this method does nothing.

306

Programmer's Reference

Returns void
Throws AOMException

Raised if the method detects an error, for example, the
insertion is not permitted due to context checking.

toMarkupString method

Returns the contents of a Range as a string. This string contains the character
data and markup representing the entire contents of the range.

toMarkupString()

Parameters None

Returns String. The contents of the Range.

Throws DOMEZxception
INVALID STATE ERR: Raised if the Range has already
been detached.

toMarkupStringEx method

Returns the contents of a Range as a string, with control over the markup. This
string contains the character data and markup representing the entire contents of
the range.

toMarkupStringEx([flags])
Parameters int flags

[optional] A bitmask that specifies markup options.
Constructed by ORing the bits from the MarkupFlags

enumeration.
Returns String. The contents of the Range.
Throws DOMException

INVALID STATE ERR: Raised if the Range has already
been detached.

ARange interface 307

33

W3C Attr interface

(153 Lo JR= 5] 01U | = 311
Name attribULEo 312
ownerElement attribULeooniinii s 312
schemaTypelnfo attribute. e 312
specified attribUute e 312
ValUE attribULE ... s 313

The At tr interface is defined in the W3C Document Object Model (DOM) Level
2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-Level-2-
Core-20001113.)

The At tr interface represents an attribute in an Element object. Typically the
allowable values for the attribute are defined in a document type definition.

Attr objects inherit the Node interface, but since they are not actually child
nodes of the element they describe, the DOM does not consider them part of the
document tree. Thus, the Node attributes parentNode, previousSibling,
and nextSibling have a null value for At tr objects. The DOM takes the
view that attributes are properties of elements rather than having a separate
identity from the elements they are associated with; this should make it more
efficient to implement such features as default attributes associated with all
elements of a given type. Furthermore, At t r nodes may not be immediate
children of a DocumentFragment. However, they can be associated with
Element nodes contained within a DocumentFragment. In short, users and
implementors of the DOM need to be aware that At t r nodes have some things in
common with other objects inheriting the Node interface, but they also are quite
distinct.

The attribute's effective value is determined as follows: if this attribute has been
explicitly assigned any value, that value is the attribute's effective value;
otherwise, if there is a declaration for this attribute, and that declaration includes a
default value, then that default value is the attribute's effective value; otherwise,

309

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

the attribute does not exist on this element in the structure model until it has been
explicitly added. Note that the nodeVvalue attribute on the At t r instance can
also be used to retrieve the string version of the attribute's value(s).

In XML, where the value of an attribute can contain entity references, the child
nodes of the At t r node may be either Text or EntityReference nodes
(when these are in use; see the description of EntityReference for
discussion). Because the DOM Core is not aware of attribute types, it treats all
attribute values as simple strings, even if the DTD or schema declares them as
having tokenized types.

310 Programmer's Reference

isld attribute

Returns whether this attribute is known to be of type ID (i.e. to contain an
identifier for its owner element) or not. When it is and its value is unique, the
ownerElement of this attribute can be retrieved using the method

Document .getElementById. The implementation could use several ways to
determine if an attribute node is known to contain an identifier:

If validation occurred using an XML Schema [XML Schema Part 1] while
loading the document or while invoking
Document.normalizeDocument (), the post-schema-validation infoset
contributions (PSVI contributions) values are used to determine if this
attribute is a schema-determined ID attribute using the schema-determined ID
definition in [XPointer].

If validation occurred using a DTD while loading the document or while
invoking Document .normalizeDocument (), the infoset [type
definition] value is used to determine if this attribute is a DTD-determined ID
attribute using the DTD-determined ID definition in [XPointer].

from the use of the methods Element.setIdAttribute (),
Element.setIdAttributeNS (), or
Element.setIdAttributeNode (), i.e. it is an user-determined ID
attribute;

~ Note

XPointer framework (see section 3.2 in [XPointer]) consider the DOM
user-determined ID attribute as being part of the XPointer externally-
determined ID definition.

using mechanisms that are outside the scope of this specification, it is then an
externally-determined ID attribute . This includes using schema languages
different from XML schema and DTD.

If validation occurred while invoking Document .normalizeDocument (),
all user-determined ID attributes are reset and all attribute nodes ID information
are then reevaluated in accordance to the schema used. As a consequence, if the

Attr.schemaTypeInfo attribute contains an ID type, 1 sId will always

return true.

isId

Access read-only
Returns boolean

W3C Attr interface 311

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/

name attribute

Returns the name of this attribute.

name
Access read-only
Returns String

ownerElement attribute

The Element node this attribute is attached to or null if this attribute is not in
use.

ownerElement
Access read-only
Returns Element

schemaTypelnfo attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

The type information associated with this attribute. While the type information
contained in this attribute is guarantee to be correct after loading the document or
invoking Document .normalizeDocument (), schemaTypeInfo may not
be reliable if the node was moved.

schemaTypelInfo
Access read-only
Returns TypeInfo

specified attribute

If this attribute was explicitly given a value in the original document, this is
true; otherwise, it is false. Note that the implementation is in charge of this
attribute, not the user. If the user changes the value of the attribute (even if it ends
up having the same value as the default value) then the specified flagis
automatically flipped to t rue. To re-specify the attribute as the default value
from the DTD, the user must delete the attribute. The implementation will then
make a new attribute available with specified setto false and the default
value (if one exists).

312 Programmer's Reference

In summary:

» Ifthe attribute has an assigned value in the document then specifiedis
true, and the value is the assigned value.

» Ifthe attribute has no assigned value in the document and has a default value
in the DTD, then specifiedis false, and the value is the default value in
the DTD.

» Ifthe attribute has no assigned value in the document and has a value of
#IMPLIED in the DTD, then the attribute does not appear in the structure
model of the document.

* Ifthe ownerElement attribute is null (i.e. because it was just created or
was set to null by the various removal and cloning operations) specified

is true.
specified
Access read-only
Returns boolean

value attribute

On retrieval, the value of the attribute is returned as a string. Character and
general entity references are replaced with their values. See also the method
getAttribute onthe Element interface.

On setting, this creates a Text node with the unparsed contents of the string. I.e.
any characters that an XML processor would recognize as markup are instead
treated as literal text. See also the method setAttribute onthe Element
interface.

value

Access read-write
Returns String

Set throws DOMEZxception

NO_MODIFICATION ALLOWED_ERR: Raised when
the node is readonly.

W3C Attr interface 313

34

W3C CDATASection interface

The CDATASection interface is defined in the W3C Document Object Model
(DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Core-20001113.)

CDATA sections are used to escape blocks of text containing characters that
would otherwise be regarded as markup. The only delimiter that is recognized in a
CDATA section is the "]]>" string that ends the CDATA section. CDATA sections
cannot be nested. Their primary purpose is for including material such as XML
fragments, without needing to escape all the delimiters.

The DOMString attribute of the Text node holds the text that is contained by
the CDATA section. Note that this may contain characters that need to be escaped
outside of CDATA sections and that, depending on the character encoding
("charset") chosen for serialization, it may be impossible to write out some
characters as part of a CDATA section.

The CDATASection interface inherits from the CharacterData interface
through the Text interface. Adjacent CDATASection nodes are not merged by
use of the normalize method of the Node interface.

315

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

=

316

Note

Because no markup is recognized within a CDATASection, character
numeric references cannot be used as an escape mechanism when serializing.
Therefore, action needs to be taken when serializing a CDATASection with
a character encoding where some of the contained characters cannot be
represented. Failure to do so would not produce well-formed XML.

One potential solution in the serialization process is to end the CDATA section
before the character, output the character using a character reference or entity
reference, and open a new CDATA section for any further characters in the
text node. Note, however, that some code conversion libraries at the time of
writing do not return an error or exception when a character is missing from
the encoding, making the task of ensuring that data is not corrupted on
serialization more difficult.

Programmer's Reference

35

W3C CharacterData interface

Lo F= = T 111 4] o 10 - 318
length attribUute oo 318
appendData MEthOdooouu i 318
deleteData method e 319
insertData MethOd e 319
replaceData method ... 320
substringData method. 320

The CharacterData interface is defined in the W3C Document Object Model
(DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Core-20001113.)

The CharacterData interface extends Node with a set of attributes and
methods for accessing character data in the DOM. For clarity this set is defined
here rather than on each object that uses these attributes and methods. No DOM
objects correspond directly to CharacterData, though Text and others do
inherit the interface from it. All of fsets in this interface start from 0.

As explained in the DOMSt ring interface, text strings in the DOM are
represented in UTF-16, i.e. as a sequence of 16-bit units. In the following, the
term 16-bit units is used whenever necessary to indicate that indexing on
CharacterData is done in 16-bit units.

317

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

data attribute

The character data of the node that implements this interface. The DOM
implementation may not put arbitrary limits on the amount of data that may be
stored in a CharacterData node. However, implementation limits may mean
that the entirety of a node's data may not fit into a single DOMSt ring. In such
cases, the user may call substringData to retrieve the data in appropriately
sized pieces.

data

Access read-write
Returns String

Get throws DOMException

DOMSTRING SIZE ERR: Raised when it would return
more characters than fit in a DOMSt ring variable on the
implementation platform.

Set throws DOMEZxception

NO_MODIFICATION ALLOWED_ ERR: Raised when
the node is readonly.

length attribute

The number of 16-bit units that are available through data and the
substringData method below. This may have the value zero, i.e.,
CharacterData nodes may be empty.

length
Access read-only
Returns unsigned long

appendData method

Append the string to the end of the character data of the node. Upon success,
data provides access to the concatenation of data and the DOMString
specified.

appendDataf(arg)
Parameters Stringarg

The DOMString to append.

318 Programmer's Reference

Returns

void

Throws

DOMEzxception
NO_MODIFICATION ALLOWED_ ERR: Raised if this

node is readonly.

deleteData

method

Remove a range of 16-bit units from the node. Upon success, data and 1ength

reflect the change.

deleteData(offset, count)

Parameters

unsigned long offset
The offset from which to start removing.
unsigned long count

The number of 16-bit units to delete. If the sum of
offset and count exceeds 1ength then all 16-bit
units from of fset to the end of the data are deleted.

Returns

void

Throws

DOMException

INDEX SIZE ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in
data, or if the specified count is negative.

NO_MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

insertData method

Insert a string at the specified 16-bit unit offset.

insertData(offset, arg)

Parameters

unsigned long offset

The character offset at which to insert.
Stringarg

The DOMString to insert.

W3C CharacterData interface

319

Returns void

Throws DOMEZxception

INDEX SIZE ERR: Raised if the specified of fset is
negative or greater than the number of 16-bit units in
data.

NO MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

replaceData method

Replace the characters starting at the specified 16-bit unit offset with the specified
string.

replaceData(offset, count, arg)
Parameters unsigned long offset

The offset from which to start replacing.

unsigned long count

The number of 16-bit units to replace. If the sum of
offset and count exceeds 1ength, then all 16-bit
units to the end of the data are replaced; (i.e., the effect is
the same as a remove method call with the same range,
followed by an append method invocation).

Stringarg

The DOMString with which the range must be replaced.
Returns void
Throws DOMEZXxception

INDEX SIZE ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in
data, or if the specified count is negative.

NO MODIFICATION ALLOWED ERR: Raised if this
node is readonly.

substringData method

Extracts a range of data from the node.

substringData(offset, count)

Parameters ‘ unsigned long offset

320 Programmer's Reference

Start offset of substring to extract.

unsigned long count

The number of 16-bit units to extract.

Returns String. The specified substring. If the sum of of fset
and count exceeds the 1ength, then all 16-bit units to
the end of the data are returned.

Throws DOMException

INDEX SIZE ERR: Raised if the specified of fset is
negative or greater than the number of 16-bit units in
data, or if the specified count is negative.

DOMSTRING SIZE ERR: Raised if the specified range
of text does not fit into a DOMString.

W3C CharacterData interface 321

36

W3C CharacterDataEditVAL
interface

canAppendData method ... 324
canDeleteData methodcooeii i 324
caninsertData method ... 324
canReplaceData mMethodccooiiiiiiii e 325
canSetData Method...........ooiii 325
isWhitespaceOnly Methodcoooiiiiii e 325

The CharacterDataEditVAL interface is defined in the W3C Document
Object Model (DOM) Level 3 Validation Specification. (Refer to http://www.w3.
org/TR/DOM-Level-3-Val.)

This interface extends the NodeEditVAL interface with additional methods for
document editing. An object implementing this interface must also implement
CharacterData interface. When validating CharacterData nodes, the
NodeEditVAL.nodeValidity operation must find the nearest parent node in order to
do this; if no parent node is found, VAL _UNKNOWN is returned. In addition,
when VAL INCOMPLETE is passed in as an argument to the
NodeEditVAL.nodeValidity operation to operate on such nodes, the
operation considers all the text and not just some of it.

323

http://www.w3.org/TR/DOM-Level-3-Val
http://www.w3.org/TR/DOM-Level-3-Val

canAppendData method

Determines if character data can be appended.

canAppendData(arg)
Parameters Stringarg
Data to be appended.
Returns unsigned short. A validation state constant.

canDeleteData method

Determines if character data can be deleted.

canDeleteData(offset, count)
Parameters unsigned long offset

Offset.

unsigned long count

Number of 16-bit units to delete.
Returns unsigned short. A validation state constant.

Throws DOMEZxception
INDEX SIZE ERR: Raised if the specified offset is

negative or greater than the number of 16-bit units in data,
or if the specified count is negative.

caninsertData method

Determines if character data can be inserted.

canInsertData(offset, arg)

Parameters unsigned long offset

Offset.

Stringarg

Argument to be set.
Returns unsigned short. A validation state constant.
Throws DOMEZxception

INDEX SIZE ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data.

324 Programmer's Reference

canReplaceData method

Determines if character data can be replaced.

canReplaceData(offset, count, arg)

Parameters unsigned long offset
Offset.

unsigned long count
Replacement.
Stringarg

Argument to be set.

Returns unsigned short. A validation state constant.
Throws DOMException
INDEX SIZE ERR: Raised if the specified offset is

negative or greater than the number of 16-bit units in data,
or if the specified count is negative.

canSetData method

Determines if character data can be set.

canSetData(arg)
Parameters Stringarg

Argument to be set.

Returns unsigned short. A validation state constant.

isWhitespaceOnly method

Determines if character data is only whitespace.

isWhitespaceOnly()

Parameters None
Returns unsigned short. A validation state constant.

W3C CharacterDataEditVAL interface 325

37

CMSAdapter interface

ACHd AtrIDULE ..o 328
NAaME attriDULE ... s 328
qualifiedName attribULE ..o 328
Valid AtIDULE ..o e 328
(oTo] T aT=Tot 4 1 T=1 4 (o Yo [N PP 328
createEvent Method ... 329
getUserData method ... 330
hasFeature MEethOd ..o e 330
setOldUserData methodooeiiiii e 330
setUserData MethOd. e 331

Represents an installed content management system (CMS) adapter.

327

aclld attribute

Specifies the adapter ID associated with this CMSAdapter object. You can use
this ID with the Arbortext Command Language (ACL) programming language
such as with the sess connect () function. However, such usage is
discouraged because the appropriate AOM method should be used instead.

aclId
Access read-only
Returns int

name attribute

Specifies the human-readable name for this adapter.

name
Access read-only
Returns String

qualifiedName attribute

Specifies the adapter qualified name associated with this adapter. Each adapter is
guaranteed to have a unique qualified name.

qualifiedName
Access read-only
Returns String

valid attribute

Indicates whether this adapter object is still valid. Some (older) adapters can get
unloaded before application exit.

valid
Access read-only
Returns boolean

connect method

Establishes a content management system (CMS) session. On success, this session
will become the "active" session. See the activeSession attribute of the
Application interface for more details.

328 Programmer's Reference

connect(loginld, password, dmsld)
Parameters String loginld
Specifies the CMS user name.
String password
Specifies the password for the 10ginId parameter.
String dmsld
Specifies the CMS-specific identifier for the repository
domain, library, docbase, and so forth.
Returns CMSSession. A new CMS session.
Throws CMSException
Raised for any error.

createEvent method
Creates a CMS adapter event.

createEvent(eventType)

Parameters

String eventlype

Specifies the type of Event interface to be created. The
event modules supported by this method are
CMSAdapterConnectEvent and
CMSAdapterDisconnectEvent.

If the Event is to be dispatched with the
dispatchEvent method, the appropriate event init
method must be called after creation in order to initialize
the Event's values. As an example, a user wishing to
synthesize a CMSAdapterPreConnect event would
call createEvent with the parameter
"CMSAdapterPreConnect". The
initCMSAdapterConnectEvent method could then
be called on the newly created
CMSAdapterConnectEvent to set the specific type of
CMSAdapterConnectEvent to be dispatched and to
set its context information.

Returns

Event. The newly created Event

Throws

AOMException

Raised if the implementation does not support the type of
Event interface requested.

CMSAdapter interface

329

getUserData method

Retrieves application data from the adapter. This method enables user interface or
application code to retrieve named data that was previously stored by calling the
setUserData method.

getUserData(key)

Parameters String key

Specifies the unique key used to identify the data.

Returns String. The data associated with the given key, or null
if there is none.
Throws CMSException

Raised for any error.

hasFeature method

Indicates whether this adapter implements a specified feature.

1 Note
No feature strings are currently defined.

hasFeature(feature)

Parameters String feature

Specifies the name of the feature.

Returns boolean. Returns true if the feature is supported.
Returns false if it is not.
Throws CMSException

Raised for any error.

setOldUserData method

Can be used to allow the connect method to work with older adapters ("Oracle
iFS Adapter" or "Documentum Adapter"). Some older adapters require usage of a
"user data" field while connecting.

This stores the given data for use with the next call to the connect method.
After that call, the stored data will be automatically erased so it won't affect
future calls.

330 Programmer's Reference

~ Note
This should only be used with older adapters and will have no effect on newer
adapters.
The data is stored directly with this AOM object. If this object is disposed

before the method call, the data will not be available for use by the method. To
avoid any issues, set the data immediately before making the method call.

setOldUserData(data)
Parameters String data

Specifies the value to store as the old user data.

Returns void

setUserData method

Stores some application data on the adapter. Any existing data for the same key is
replaced by the new data. This method enables user interface or application code
to associate named data with the adapter, which it can later retrieve by calling the
getUserData method. User data is not saved between Arbortext Editor or

Arbortext Publishing Engine sessions.
Some adapters may support additional arguments to certain methods by having the

application call setUserData with a predefined key just before calling the
method. The adapter documentation will describe any such additional arguments.

setUserData(key, data)
Parameters String key

Specifies the unique key used to identify the data.
String data

Specifies the data to associate with the given key, or null
to remove any existing data for the key.

Returns void
Throws CMSException

Raised for any error.

CMSAdapter interface 331

38

CMSAdapterConnectEvent
interface

initCMSAdapterConnectEvent method................cooiiiiii i, 334

The CMSAdapterConnectEvent interface provides specific contextual
information associated with the CMSAdapterConnectEvent extension. These
event types notify programmers of events related to logging onto a CMS.

333

initCMSAdapterConnectEvent method

Initializes the value of an CMSAdapterConnectEvent created through the
CMSAdapterConnectEvent interface. This method should only be called
before the CMSAdapterConnectEvent has been dispatched using the
dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence.

initCMSAdapterConnectEvent(typeArg, canBubbleArg, cancelableArg)

Parameters

String typedrg

Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Returns

void

334

Programmer's Reference

39

CMSAdapterDisconnectEvent
interface

currentUser attribUte 336
initCMSAdapterDisconnectEvent method................cooiiiiiii e, 336

The CMSAdapterDisconnectEvent interface provides specific contextual
information associated with the CMSAdapterDisconnectEvent extension.
These event types notify programmers of events related to logging off a CMS
session.

335

currentUser attribute

Specifies the CMS user name associated with the session.

currentUser
Access read-only
Returns String

initCMSAdapterDisconnectEvent method

Initializes the value of an CMSAdapterDisconnectEvent created through
the CMSAdapterDisconnectEvent interface. This method should only be
called before the CMSAdapterDisconnectEvent has been dispatched using
the dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence.

initCMSAdapterDisconnectEvent(typeArg, canBubbleArg,
cancelableArg, currentUser)

Parameters

String typedrg

Specifies the event type.

boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

String currentUser

Returns

void

336

Programmer's Reference

40

CMSBrowseltem interface

CMSIEMTYPE ENUMEIAtION.....cciiii e 338
CMSLockStatus enumMeration.............couuuiiiiiiiie e 338
applyoverlay attribute............oo i 339
displaylcon attribute. 339
fullPath attribute ... e 339
itemMType attribULe. ... o 340
lockStatus attribute e 340
logicalld attribULe e 340
Name attribULe ... e 340
revision attribute. e 340

The CMSBrowseItem interface contains information returned from
CMSBrowseIterator.getNext (). CMSBrowseltem objects are static and
do not reflect changes made after the iterator was created.

337

CMSlItemType enumeration

The CMSTItemType enumerated type indicates the type of object. Some values
may be combined with others, as specified below.

The CMSItemType enumeration has the following constants of type int.

CMS_ITEM_TYPE_UNKNOWN = 0
This is an unknown object.

CMS_ITEM_TYPE DOC =1
This is a document object.

CMS_ITEM_TYPE_FOLDER =2
This is a folder object.

CMS_ITEM_TYPE_CONTAINER =4
This constant can be combined with the CMS ITEM TYPE DOC constant to
indicate that the document object contains other objects.

CMS_ITEM_TYPE_GRAPHIC =8
This is a graphic or other non-CMS object.

CMS_ITEM_TYPE_DISABLED =16
This constant can be combined with the IO ITEM TYPE DOC and IO
ITEM TYPE GRAPHIC constants to indicate that the object should be
“disabled”. This should be used for objects which should not be constructed
by the application.

CMSLockStatus enumeration

The CMSLockStatus enumerated type indicates the lock status of an object.
The CMSLockStatus enumeration has the following constants of type int.

CMS_ITEM_LOCKED UNKNOWN =0
Cannot determine the lock status.

CMS_ITEM _NOT_LOCKED =1
The object is not locked or checked out.

CMS_ITEM_NOT_LOCKED _CANT_LOCK =2
The object is not locked or checked out, but it cannot be locked by the current
user.

CMS_ITEM_LOCKED ME =3
The object is locked or checked out by the current user.

338 Programmer's Reference

CMS_ITEM_LOCKED ME_CANT _EDIT =4
The object is locked or checked out by the current user, but it cannot be edited.
The object may have been checked out in a different context.

CMS_ITEM_LOCKED_OTHER =5
The object is locked or checked out by another user.

CMS_ITEM_LOCKED OTHER CANT_VIEW = 6
The object is locked or checked out by another user, and it cannot be accessed.

applyOverlay attribute

Specifies whether the CMS browser should apply its default icon overlay logic
(the corresponding value is 1.) Overlay icons represent an object's lock status. A 0
value indicates that the display icon is a composite icon that includes a lock status
icon. This attribute is optional. The default is 1. A 0 value is ignored when no
displaylcon is provided.

applyOverlay

Access read-only

Returns unsigned short
Get throws CMSException

NOT IMPLEMENTED ERR: Raised if the adapter does
not support this feature.

displaylcon attribute

Specifies the graphic icon used to represent this object instance in the Editor's
CMS browser. The value is a relative pathname, and the standard search path is
used. This attribute is optional and may contain an empty string.

displayIcon

Access read-only
Returns String

Get throws CMSException

UNIMPL ERR: Raised if the adapter does not support this
feature.

fullPath attribute

Specifies the adapter-specific full path name of the CMS object. This attribute is
optional and may contain an empty string.

CMSBrowseltem interface 339

fullPath
Access read-only
Returns String

itemType attribute

Contains a bit mask of the CMST temType constants.

itemType
Access read-only
Returns unsigned short

lockStatus attribute

Contains one of the CMSLockStatus constants.

lockStatus
Access read-only
Returns unsigned short

logicalld attribute
Specifies the object's Logical ID.

logicalld
Access read-only
Returns String

name attribute

Specifies the human-readable object name.

name
Access read-only
Returns String

revision attribute

Specifies the object's content management system (CMS) version identifier. This
attribute is optional and may contain an empty string.

Programmer's Reference

340

revision

Access

read-only

Returns

String

CMSBrowseltem interface

341

41

CMSBrowselterator interface

getNext Method....... ... 344
hasNext method

For searching and browsing functions, the adapter returns this iterator over the
sequence of results. A CMSBrowseIterator object is a static view of the
browsing results. It does not reflect any changes made to the content management
system (CMS) after the iterator was created.

343

getNext method

Returns the next item in the sequence.

getNext()
Parameters None
Returns CMSBrowseItem. The next item.
Throws CMSException
NOMORE_ERR: Raised if no more items exist.

hasNext method

Indicates whether there are any more items in the sequence.

hasNext()

Parameters None

Returns boolean. Returns true if the iterator has more items.
Returns false if it does not.

Throws CMSException
Raised if an error occurs.

344 Programmer's Reference

42

CMSEXxception exception

CMSEXxceptionCode eNUMETatioN...........uviiiiiiiiie e e e e e 346

Defines the exception thrown by the methods and properties in the Arbortext
Object Model (AOM) that work with content management systems (CMS).
CMSException objects contain an error code, an error message, and an optional
detailed message.

The code field stores one of the CMSExceptionCode constants to indicate the
error condition. Arbortext defines the error codes.

The message field contains a human-readable description of the error. These
messages should be localized.

The detail field contains an in-depth description of the error that may be
written to a log. The description could be something like a Java stack trace or a
detailed error description provided by the CMS. Detailed error descriptions do not
need to be localized.

Objects that implement the CMSException interface include the following
properties:

unsigned short code
Stringmessage

Stringdetail

345

CMSExceptionCode enumeration

An integer indicating the type of CMS error generated.

The CMSExceptionCode enumeration has the following constants of type
unsigned short.

NO _NESTED TRANS ERR =1
Adapter does not support nested transactions.

INVALID POID ERR =2
Invalid POID format.

INVALID LOGID_ERR =3
Invalid logical ID format.

INVOKE _FAILED ERR =4
Adapter method call failed.

BAD_EXTENSION_ERR =5
Extension operation does not exist.

NO_LICENSE_ERR =6
Unable to obtain a license for the adapter.

OBJECT_NOT_FOUND_ERR =7
Object doesn't exist.

NO_CONFIG_ERR =8
Error opening configuration file.

UNSUP_PROTO_ERR =9
This version of the adapter is not supported.

STILL _CONNECTED_ERR =10
Session still connected.

CANT_CONNECT_ERR =11
Error connecting.

CANT_DISCONNECT_ERR =12
Error disconnecting.

CANT_LOGIN_ERR =13
Invalid login.

CANT_INIT_ERR =14
Adapter initialization failed.

CANT_ALLOC_ERR =15
Can't allocate resource.

346 Programmer's Reference

NO _SGML_INCLUDE_ERR =16
Xinclude cannot be used with SGML documents.

PARENT_UNLOCKED_ERR =17
Operation failed because parent is not locked.

OPERATION_CANCELED_ERR =18

Operation was canceled.

DECLS_LOCKED _ERR =19

Declarations are locked by another user.

UNSUP_ATTR_ERR = 20
Unsupported attribute.

NOMORE_ERR =21
No more entries.

UNLOCK_ERR =22
Object is locked.

PARSE_ERR =23
Parse error.

RESOURCE_ERR =24
Out of resource.

FOLDER_ERR =25
Object is a folder.

READ_ONLY_ERR =26
Object is read-only.

LEAF_ERR =27
Object is a leaf.

CONTAINER_ERR =28
Object is a container.

CANT_CREATE_ERR =29
Can't create object.

CANT_UNLOCK_ERR =30
Can't unlock object.

CANT _LOCK _ERR =31
Can't lock object.

CANT_OPEN_ERR =32
Can't open object.

CMSException exception

347

BAD_ARG_ERR =33
Invalid argument.

UNIMP_ERR =34
Unimplemented operation.

FAIL_ERR =35
General failure.

NOT_CONTAINER_ERR =36
Object is not a container.

LOCKED BY YOU_ERR =38
Object is already locked by locker.

LOCKED _BY OTHER_ERR =39
Object is locked by another.

TOO_MANY_SESSIONS_ERR =40
Too many open connections.

TOO_MANY_ADAPTERS_ERR =41
No more adapters can be registered.

SESS_PREFIX_EXISTS_ERR = 42
Connection already established for this session.

ADAPTER_INIT_FAILED_ERR =43
Adapter failed to initialize.

CANT_FIND_SYM_ERR =44
Can't find program symbol.

ADAPTER_LOAD_FAILED ERR =45
Adapter failed to load.

INVALID ATTR _ERR =46
Attribute value is invalid.

INVOCATION_FAILED_ERR =47
Error invoking the adapter method.

LOG_ERR =48
Error opening a log output device.

INVALID CMSADAPTER ERR =49
CMSAdapter object is invalid (adapter may have been unloaded).

INVALID CMSSESSION_ERR =50
CMSSession object is invalid (session may have been disconnected).

348 Programmer's Reference

INVALID CMSOBJECT_ERR =51
CMSObject object is invalid (session may have been disconnected or
document may have been closed).

ADAPTER_ALREADY_REGISTERED_ERR =52
An adapter with the same qualified name has already been registered.

OPERATION _NOT_ENABLED ERR =53
Method cannot be called in the current state. Some adapters support more than
one mode, such as online versus offline editing, and not all operations are

allowed in every mode. For example, you might not be able to create new
CMS folders while working offline.

CMSException exception 349

43

CMSObject interface

CMSSaveFIags eNUMEratioN..........coiiiiiiiii e e e e e e s 353
CMSLoCKFIags enuUmMErationc.. oo e e e 353
CMSODbjectClassType enNUMErAtioNc.uiiiiuuiiiiiiee e e e e e 353
CMSObjectLockStatusType enumerationcoouuuiiiiiiiiiiiiiii e 354
CMSBuUrstFlags enUMErationcoouiiiiiiiiiie e 354
aClld AttriDULE ... 355
allReferences attribUteooiiii e 355
cmsObjectType attribute ... 355
cmsPathName attribute ... 356
commMENt AttrIDULE ... e 356
contentType attribute ... 356
creationDate attribute ..o 357
enclosingObject attribute ... 357
eNCOdiNg AtrIDULE. ... e 357
N AU e 358
fullTextindexed attribUtecoee i 358
hasChildRefs attribULecocuniieiiii e 359
instanceDoctypeName attribute. ... 359
isFolder attribute e 359
isLatestVersion attribute............oooiiiii e 360
isVirtualDocContainer attribute 360
lockable attribULe e 360
[ockOWwWner attributeo 361
lockStatus attributeo e 361
lockStatusDisplay attribute ... 361
logicalld attribDULEooee e e 362
modificationDate attribute ... 362
modified attribULe...... ... 362
NamMe attribULeo 362
objectClass attribULEoouii e 363
pPermission attribute 363

351

[T0] o 1= 1441 o 10 (= S 363
PUBLICIA @tFIDULEo 364
readOnly attribDULE e 364
SESSION AIDUTEe e 364
SIZE AtIDULE ... e 365
Start AtIIDULE ... 365
systemld attribute ... 365
tagName attribUte. ... 366
(2= 110 1= 1 5] 01U | (= 366
VEISION AtHHDULEoeieii e 366
oW1 0 411 (T T 367
cancelCheckoUut MEthOdiveiii e 367
Checkin MEthOd e 367
CheCKOUE MENOA e 368
createEvent MEthOdorie e 368
deleteObject Method ... e 369
GetAtribULE MELhOdo 369
getAttributes Method ... 370
getChildren method e 370
getParents Method ... 370
getUserData method ... 371
getVersions Method..........ooo i 371
INVOKEEXIENSION MethOdcouii e, 371
MOVE MELNOA ... e e ans 372
releaseReference MEethOd............oouiiiiiiiiii e 372
SAVE METNOA ... o 372
setAttribute method ... 373
SetAttributes Method. 373
setOldUserData MEthOdo e 374
setUserData metho ... e 375

The CMSObject interface represents a reference to a content management
system (CMS) object. If a document references the same child object twice then
there will be two different references to that same child CMS object. Each
reference will have its own distinct CMSObject object that can have different
properties from the other. For example, the start and end properties would be
different for each.

352 Programmer's Reference

CMSSaveFlags enumeration

The CMSSaveFlags enumerated type is used to construct the £ 1ags parameter
to the save method by ORing any of the following options.

The CMSSaveFlags enumeration has the following constants of type int.

CMS_SAVE_OBJECT ATTR = 0x1
Indicates to save the attributes.

Will force the adapter to commit any pending attribute changes for this object
into the CMS.

CMS_SAVE_OBJECT_CONTENT = 0x2
Indicates to save the object's content into the CMS.

CMS_SAVE _OBJECT DECLS = 0x4
Indicates to save the XML/SGML declarations.

For adapters which do not support the separate saving of declarations, just
include this along with the CMS SAVE OBJECT CONTENT bit since the
declarations will be saved with the content.

CMS_SAVE_OBJECT _NO_PI=0x8
Do not save processing instructions (PIs).

CMS_SAVE OBJECT _UPDATE_ENT_LINKS = 0x10
Indicates to always update internal references, even if they have not changed.

If set, Arbortext Editor and Arbortext Publishing Engine will call the adapter's
IO0Object.modifyChildRefs method even if the child links have not
changed.

CMS_SAVE _OBJECT_CHILDREN = 0x20
Indicates to save the object's children (recursively) when the object is saved.

CMSLockFlags enumeration

The CMSLockFlags enumerated type is used to construct the £ 1ags parameter
to the checkout method by ORing any of the following options.

The CMSLockFlags enumeration has the following constants of type int.

CMS_LOCK_FORCE = 0x1
Break existing locks (if supported).

CMSObjectClassType enumeration

The CMSObjectClassType enumerated type is used with the objectClass
read-only attribute.

CMSObject interface 353

The CMSObjectClassType enumeration has the following constants of type
int.

CMSOBJECT_CLASS _UNKNOWN =0
The class type is unknown.

CMSOBJECT_CLASS CONTAINER =1
The class type is a virtual document object with children.

CMSOBJECT_CLASS LEAF =2
The class type is a virtual document object with no children.

CMSOBJECT_CLASS EXPANDED FILE ENTITY =3
The class type is an expanded file entity.

CMSOBJECT_CLASS UNEXPANDED FILE ENTITY =4
The class type is an unexpanded file entity.

CMSOBJECT_CLASS FILE ENTITY_WINDOW =5
The class type is a file entity open for editing in a separate window.

CMSOBJECT_CLASS INCLUDE =6
The class type is an included object (via XInclude).

CMSOBJECT CLASS_FALLBACK =7
The class type is fallback markup for an XInclude that could not be expanded.

CMSObjectLockStatusType enumeration

The CMSObjectLockStatusType enumerated type is used with the
lockStatus read-only attribute.

The CMSObjectLockStatusType enumeration has the following constants of
type int.

CMSOBJECT_STATUS_UNLOCKED =1
Indicates that this object is not locked or checked out by any user.

CMSOBJECT_STATUS _LOCKED_BY_ME =3
Indicates that this object is locked or checked out by the current user.

CMSOBJECT_STATUS LOCKED BY _OTHER =S5
Indicates that this object is locked or checked out by another user.

CMSBurstFlags enumeration

The CMSBurstFlags enumerated type is used to construct the flags
parameter to the burst method by ORing any of the following options.

The CMSBurstFlags enumeration has the following constants of type int.

354 Programmer's Reference

CMS_BURST_SET_METADATA = 0x1
Indicates that, in addition to possibly creating new child objects via bursting,
metadata on the object should be set according to the rules in the applicable
burst configuration file.

aclld attribute

Specifies the dobj ID equivalent to this CMSObject object. You can use this ID
with the Arbortext Command Language (ACL) programming language. If this
object is no longer valid, the attribute value will be 0 (an invalid dobj ID).

Each access returns a new dobj ID. The caller is responsible for calling the ACL
dobj close () function on each returned valid ID. Calling dobj close ()
does not affect the original CMSObject or the IDs returned previously.

aclId
Access read-only
Returns int

allReferences attribute

Returns a collection of all active object references to the same associated CMS
object version.

Each CMSObject represents a specific reference (or usage) of a CMS object. If a
CMS object references (through File Entity or XInclude) the same child object
twice in different parts of the document content, then each reference would have
its own CMSObject object. Use the al1References attribute to write
application code that iterates over all open references to this CMS object. Note
that the c1ass attribute of each reference may be different.

This attribute can return object references from multiple distinct documents.

allReferences

Access read-only

Returns CMSObjectList

Get throws CMSException
Raised for any error.

cmsObjectType attribute

Specifies the name of the CMS object type.

cmsObjectType

Access ‘ read-only

CMSObject interface 355

Returns String
Get throws CMSException

Raised for any error.

cmsPathName attribute

Specifies the path name of object in the CMS. If the object exists in multiple
folders, any one of the folder paths could be returned.

cmsPathName

Access read-only

Returns String

Get throws CMSException
Raised for any error.

comment attribute
Specifies the check in or check out comment for the object.

There is currently no standard way of setting the comment for an object. This
must be handled in an adapter-specific way.

comment

Access read-only

Returns String

Get throws CMSException
Raised for any error.

contentType attribute

Specifies the type of the object's content.

For non-graphics, this may be one of the following values:

e xml

* sgml
* html
e text
* ascii

356 Programmer's Reference

For graphics and non-markup documents, this will be a file extension ("bmp",
"gif', ijgV" "SVg"’ HdOC"’ etc').

contentType

Access read-write

Returns String

Get throws CMSException
Raised for any error.

Set throws CMSException
Raised for any error.

creationDate attribute

Specifies the object's creation date in an adapter-specific human-readable form.

creationDate

Access read-only

Returns String

Get throws CMSException
Raised for any error.

enclosingObject attribute

Specifies the object reference that encloses this particular CMS object reference.
If this is a top level object, the value is null.

For example, if the user inserts reference to a "chapter" object into a checked out
"book" object (via File Entity or XInclude) then the enclosingObject for the
"chapter" object reference would be the containing "book" object.

enclosingObject

Access read-only

Returns CMSObject

Get throws CMSException
Raised for any error.

encoding attribute

Specifies the character encoding of the object's content.

CMSObject interface 357

For most adapters, this attribute would only be available if the object was

currently loaded.

encoding

Access read-write

Returns String

Get throws CMSException
Raised for any error.

Set throws CMSException
Raised for any error.

end attribute

Specifies the last DOM Node associated with the object reference. You can
reference a given CMS object in multiple places in either a single document or

multiple documents. See al1References for more details.

This may be null if this object reference is not currently associated with any
DOM Nodes. For example, this could represent a folder object or an object whose

content has not yet been loaded into a document.

end
Access read-only
Returns Node
Get throws CMSException
Raised for any error accessing this attribute.

fullTextIndexed attribute

Indicates whether the document is marked for full text indexing.

fullTextIndexed

Access read-write
Returns boolean

Get throws CMSException

Raised for any error.

Set throws CMSException

Raised for any error.

358

Programmer's Reference

hasChildRefs attribute

Specifies whether non-folder objects have any child object references.

A true value suggests that the getChildren method can safely be called to
enumerate the children.

hasChildRefs

Access read-write

Returns boolean

Get throws CMSException
Raised for any error.

Set throws CMSException
Raised for any error.

instanceDoctypeName attribute

Specifies the object's instance document type name. If the object's content
contains a document type declaration such as...

<!DOCTYPE book PUBLIC "-//Arbortext//DTD DocBook XML
V4.0//EN" "axdocbook.dtd">

then this attribute would represent the string book. Note that this value has
nothing to do with the DTD or Schema associated with this object.

Some XML instances do not contain a document type declaration and so this
value would be an empty string.

For most adapters, this attribute would only be available if the object was
currently loaded.

instanceDoctypeName

Access read-write
Returns String
Get throws CMSException

Raised for any error.
Set throws CMSException

Raised for any error.

isFolder attribute

Indicates whether the object is a folder or folder subtype.

CMSObject interface 359

isFolder

Access read-only

Returns boolean

Get throws CMSException
Raised for any error.

isLatestVersion attribute

Indicates whether this version is the most recent version of the object on a
particular CMS branch.

isLatestVersion

Access read-only

Returns boolean

Get throws CMSException
Raised for any error.

isVirtualDocContainer attribute

Indicates whether the object contains references to child objects which are virtual
document objects. Objects that reference all of their children using file entities,
XlIncludes, and graphic tags are not virtual document containers.

isVirtualDocContainer

Access read-write
Returns boolean
Get throws CMSException

Raised for any error.
Set throws CMSException

Raised for any error.

lockable attribute

Indicates whether the current user can attempt to lock the object. For example, if
another user has the object checked out, this attribute should be false.

A true value is not a guarantee that a checkout will succeed since, for
example, another user could have checked this out in the mean time.

lockable
Access read-only

Programmer's Reference

360

Returns

boolean

Get throws

CMSException

Raised for any error.

lockOwner attribute

Specifies the CMS user name that currently holds the lock. Returns an empty
string if the object is not locked.

lockOwner

Access read-only

Returns String

Get throws CMSException
Raised for any error.

lockStatus attribute

Specifies the lock status of this CMS object. The value is one of the
CMSObjectLockStatusType enumerated constants.

lockStatus

Access read-only

Returns int

Get throws CMSException
Raised for any error.

lockStatusDisplay attribute

Specifies a human-readable string describing the lock status. For example, the
value of this attribute could be "locked", "unlocked", and so forth. The returned
string can be displayed in the user interface and should be localized.

lockStatusDisplay
Access read-only
Returns String
Get throws CMSException
Raised for any error accessing this attribute.

CMSObject interface

logicalld attribute

Specifies the Logical ID of the object used for external binding. A Logical ID
identifies a class of objects, any one of which may be selected at any given time.
For example, a Logical ID can identify a specific version of a specific CMS object
(fixed reference) or the current version (floating reference). Logical IDs are valid
across sessions, and are stored inside structured documents. At any time, you can
translate a Logical ID into a POID that identifies a specific version of a specific

object.

logicalld

Access read-only

Returns String

Get throws CMSException
Raised for any error.

modificationDate attribute

Specifies the object's last modification date in an adapter-specific human-readable
form.

modificationDate

Access read-only

Returns String

Get throws CMSException
Raised for any error.

modified attribute

Will be true if the object's content has been modified in memory and has not yet
been saved.

modified
Access read-only
Returns boolean
Get throws CMSException
Raised for any error accessing this attribute.

name attribute

Specifies the name of object. This is normally a human-readable name and is used
primarily for display purposes.

362 Programmer's Reference

name

Access read-write
Returns String
Get throws CMSException

Raised for any error.
Set throws CMSException

Raised for any error.

objectClass attribute

Specifies the class of the CMS object. The value is one of the
CMSObjectClassType enumerated constants.

objectClass
Access read-only
Returns int
Get throws CMSException
Raised for any error accessing this attribute.

permission attribute

Specifies the permissions associated with the object in a human-readable string.
The format of the string is adapter-specific and is for display purposes only.

permission

Access read-only

Returns String

Get throws CMSException
Raised for any error.

poid attribute

Specifies the Persistent Object Identifier (POID) associated with the object. This
is different from a Logical ID, which can represent different versions of an object
over time. For example, the Logical ID could represent the "LATEST" version of
the object. The POID always references the same version of the object. An
application programmer seldom needs to use a POID. Instead, they should mainly

use the 1ogicalId attribute.

CMSObject interface 363

poid
Access read-only
Returns String
Get throws CMSException
Raised for any error accessing this attribute.

publicld attribute
Specifies the Public ID of the object's DTD or Schema.

For most adapters, this attribute would only be available if the object was
currently loaded.

publicId

Access read-write

Returns String

Get throws CMSException
Raised for any error.

Set throws CMSException
Raised for any error.

readOnly attribute

Indicates whether the object's content is read-only. Note that this is independent of
whether the current user has this object checked out because some adapter's may

allow for such a combination.

readOnly

Access read-only

Returns boolean

Get throws CMSException
Raised for any error.

session attribute

Specifies the CMSSession object associated with this object.

session
Access | read-only

Programmer's Reference

364

Returns CMSSession
Get throws CMSException

Raised for any error accessing this attribute.

size attribute

Specifies the size of the object content in bytes. This is optional and some
adapters may choose to not implement it.

size

Access read-only

Returns int

Get throws CMSException
Raised for any error.

start attribute

Specifies the first DOM Node associated with the object reference. You can
reference a given CMS object in multiple places in either a single document or
multiple documents. See the al 1References attribute for more details.

This may be null if this object reference is not currently associated with any
DOM Nodes. For example, this could represent a folder object or an object whose
content has not yet been loaded into a document.

start
Access read-only
Returns Node
Get throws CMSException
Raised for any error accessing this attribute.

systemld attribute
Specifies the System ID of the object's DTD or Schema.

For most adapters, this attribute would only be available if the object was
currently loaded.

systemId
Access read-write
Returns String

CMSObject interface 365

Get throws CMSException

Raised for any error.

Set throws CMSException

Raised for any error.

tagName attribute

Specifies the tag name for the top-level element in the object. The value is blank
for objects with unstructured content.

tagName

Access read-write

Returns String

Get throws CMSException
Raised for any error.

Set throws CMSException
Raised for any error.

valid attribute

Indicates whether this still represents a valid object reference. For example, if the
associated session has been disconnected then this object reference is considered
invalid.

valid

Access read-only

Returns boolean

Get throws CMSException
Raised for any error.

version attribute

Specifies the CMS version ID of the object in an adapter-specific format. This is
for display purposes only.

version
Access read-only

366 Programmer's Reference

Returns String
Get throws CMSException
Raised for any error.

burst method

Bursts the checked out object. The bursting process follows the established
defaults and specific rules for the associated document type. If the object contains
sibling (that is, more than one) top-level elements, it is not burst.

burst([flags])
Parameters int flags
[optional] Specifies how to burst the object. The value is

determined through a bit-wise OR of the
CMSBurstFlags constants.

Returns CMSObject. This object or, possibly, a new CMSObject
which has been burst.
Throws CMSException

If an error occurs.

cancelCheckout method

Unlocks the object in the CMS without updating it. The adapter can optionally
return the previous version of the object.

cancelCheckout()

Parameters None

Returns CMSObject. This object, or possibly a new CMSObject
representing the previous version.

Throws CMSException
If an error occurs.

checkin method

Checks the object in to the CMS. To properly update the revised object in the
CMS, you must save the object before calling this method.

checkin()
Parameters |None

CMSObject interface 367

Returns CMSObject. This object, or possibly a new CMSObject
representing the checked in object.

Throws CMSException
If an error occurs.

checkout method

Locks the CMS object for modification. If the CMS LOCK FORCE flag is set and
the object is locked by another user, the object will be forcibly unlocked if the

caller has that right.

The exact semantics of this method are adapter-specific. For example, if a CMS
does not support versioning then this may simply "lock" the object to prevent
other users from editing it.

checkout([flags])

Parameters int flags
[optional] Specifies the optional flags controlling the
checkout. The value is determined through a bit-wise OR
of CMSLockFlags constants.

Returns CMSObject. This object, or possibly a new CMSObject
representing the working copy.

Throws CMSException
Raised for any error.

createEvent method

Creates an event of type CMSObjectEvent.

createEvent(eventType)

Parameters

String eventType

Specifies the type of Event interface to be created. The
only event module supported by this method is
CMSObjectEvents.

If the Event is to be dispatched with the
dispatchEvent method, the appropriate event init
method must be called after creation in order to initialize
the Event's values. As an example, a user wishing to
synthesize a CMSObjectPreCheckin event would call
createEvent with the parameter
"CMSObjectPreCheckin". The initCMSObjectEvent

368

Programmer's Reference

method could then be called on the newly created
CMSObjectEvent to set the specific type of
CMSObjectEvent to be dispatched and to set its context

information.
Returns Event. The newly created Event.

Throws CMSException

NOT SUPPORTED ERR: Raised if the implementation
does not support the type of Event interface requested.

deleteObject method

Deletes the object from the CMS. All versions of the object will be deleted. After
calling this method, you can no longer use this CMSObject object.

If the CMS supports referential integrity, this will fail if any of the deleted object
versions are referenced as children of other objects.

deleteObject()
Parameters None
Returns void
Throws CMSException
If an error occurs.

getAttribute method

Reads the value of an attribute. Attributes are identified by name. If the attribute
has more than one value, an index is used to identify which value to return.

To get the values of multiple attributes, use the getAttributes method.

getAttribute(attribute [, index])
Parameters String attribute

Specifies the attribute name.
int index

[optional] Specifies the repeating attribute index (zero-

based).
Returns String. The attribute value.
Throws CMSException

Raised for any error.

CMSObject interface 369

getAttributes method

Gets the values for a list of attributes. Attributes with a single value are stored as
String entries in the returned PropertyMap. Attributes with multiple values
are stored as StringList entries.

getAttributes([attributes])
Parameters StringList attributes

[optional] Specifies the array of attributes to retrieve. If
the value is nul1l, all attributes are retrieved.

-~ Note

If an adapter does not support a null value, it will
throw a CMSException with a code value of

UNIMP ERR.
Returns PropertyMap. A PropertyMap containing the
requested attribute names and values.
Throws CMSException

Raised for any error.

getChildren method

Retrieves the contents of a folder or the children of a document object.

getChildren()
Parameters None
Returns CMSBrowseIterator. The iterator over the object's
children. The iterator returns CMSBrowse I tem objects.
Throws CMSException
Raised for any error.

getParents method

Returns an iterator over the set of documents that reference this object.

getParents()
Parameters |None

370 Programmer's Reference

Returns CMSBrowseIterator. The iterator over the objects that
reference the specified object. The iterator returns
CMSBrowseItem objects.

Throws CMSException
Raised for any error.

getUserData method

Retrieves application data from the object. This method enables user interface or
application code to retrieve named data that was previously stored by calling the
setUserData method.

getUserDatal(key)
Parameters String key

Specifies the unique key used to identify the data.

Returns String. The data associated with the given key, or null
if there is none.
Throws CMSException

If an error occurs.

getVersions method

Returns an iterator over all versions of the object.

getVersions()

Parameters None
Returns CMSBrowselIterator. An iterator over all versions of
the object. The iterator returns CMSBrowseItem objects.
Throws CMSException
Raised for any error.

invokeExtension method

Invokes an adapter-specific extension function. Some adapters provide
functionality beyond the standard CMS API.

invokeExtension(opcode, map)
Parameters int opcode

Specifies the adapter-specific value which identifies the
extension method to invoke.

CMSObject interface 371

PropertyMap map

Specifies the collection of adapter-specific parameters to
the specified extension method.

Returns PropertyMap. A PropertyMap populated with
adapter-specific content.
Throws CMSException

Raised for any error calling the extension method.

move method
Moves the object to a new folder in the CMS.

move(targetFolder)

Parameters CMSObject targetFolder
Specifies the target folder object.

Returns void

Throws CMSException

Raised for any error.

releaseReference method

Releases this reference to the underlying repository object. After this call, most
methods on this object will throw a CMSException with a code value of
INVALID CMSOBJECT ERR.However, the valid attribute is always safe to
access and will return false in this case.

releaseReference()

Parameters None
Returns void

save method

Saves a CMS object without checking it in (interim save). The object remains
checked out.

Some adapters may support the saving of attributes for objects which are not
checked out. See the CMS SAVE OBJECT ATTR enumerated constant.

save(flags)
Parameters int flags

Specifies how to save the object. The value is determined

372 Programmer's Reference

through a bit-wise OR of the CMSSaveFlags constants.
Returns void
Throws CMSException
If an error occurs.

setAttribute method
Sets the value of an attribute. Attributes are identified by name.

To set the values of multiple attributes, use the setAttributes method.

setAttribute(attribute, value [, index])
Parameters String attribute

Specifies the attribute name.

String value

Specifies the attribute value.

int index
[optional] Specifies the repeating attribute index (zero-
based).

Returns void

Throws CMSException

Raised for any error.

setAttributes method

Sets the values for a list of attributes. The calling function passes a
PropertyMap containing entries for each of the attributes to be set. Attributes
with a single value are stored as St ring entries in the PropertyMap.
Attributes with multiple values are stored as StringList entries.

setAttributes(attributeValues)
Parameters PropertyMap attributeValues
Specifies the PropertyMap containing attribute names
and values.
Returns void
Throws CMSException
Raised for any error.

CMSObject interface 373

setOldUserData method

This method can be used to allow some properties and methods in this interface to
work with older adapters ("Oracle iFS Adapter" or "Documentum Adapter").
Some older adapters require usage of a "user data" field with certain ACL
functions (such as those starting with sess or dobj). This allows such
functionality of older adapters to be accessed via this AOM interface.

This may be used with the following methods:

* getChildren{()

* getParents ()

* getVersions()

* save()

* checkout ()

* checkin{()

* cancelCheckout ()
* deleteObject ()

* move ()

This stores the given data for use with the next method call which can make use
of it. After that method call, the stored data will be automatically erased so it
won't affect future calls.

~ Note

This should only be used with older adapters and will have no affect on newer
adapters.

The data is stored directly with this AOM object. If this object is disposed
before the method call, the data will not be available for use by the method. To
avoid any issues, set the data immediately before making the method call.

setOldUserData(data)
Parameters String data

Specifies the value to store as the old user data.

Returns void

374 Programmer's Reference

setUserData method

Stores some application data on the object. Any existing data for the same key is
replaced by the new data. This method enables user interface or application code
to associate named data with the object, that it can later retrieve by calling the
getUserData method. User data only exists in memory and is not stored

persistently.

Some adapters may support additional arguments to certain methods by having the
application call setUserData with a predefined key just before calling the
method. The adapter documentation will describe any such additional arguments.

setUserData(key, data)

Parameters

String key
Specifies the unique key used to identify the data.
String data

Specifies the data to associate with the given key, or null
to remove any existing data for the key.

Returns

void

Throws

CMSException

If an error occurs.

CMSObject interface

375

44

CMSObjectEvent interface

end attribUte. ... 378
errorCode attribULe ... 378
errorMessage attribute.... ... 378
flags @tIHIDULE ... e 378
FESUIL AttriDULE .. e 378
start attribute. ... 379

initCMSObjectEvent method

The CMSObjectEvent interface provides specific contextual information
associated with the CMSObjectEvent extension. These event types notify
programmers of important CMS object operations.

377

end attribute

Specifies an event-dependent DOM end Node associated with the event.

end
Access read-only
Returns Node

errorCode attribute

Used when the event handler wants to cancel the operation or throw an error
exception. This can hold any defined CMSExceptionCode value. To cancel the
operation, call preventDefault () and store a value of OPERATION
CANCELED_ ERR into errorCode. To cause an error exception, call
preventDefault (), store any other defined CMSExceptionCode value
into errorCode, and optionally store a message into errorMessage.

errorCode
Access read-write
Returns unsigned short

errorMessage attribute

Used when the event handler wants to throw an error exception and additionally
provide a human-readable error message. To do this, call preventDefault (),
store the appropriate value into errorCode, and store a message into
errorMessage.

errorMessage
Access read-write
Returns String

flags attribute

Provides an event-dependent bitmask of information.

flags
Access read-only
Returns int

result attribute

Represents the event-dependent result of an event.

378 Programmer's Reference

result

Access

read-write

Returns

CMSObject

start attribute

Specifies an event-dependent DOM start Node associated with the event.

start
Access read-only
Returns Node

initCMSObjectEvent method

Initializes the value of an CMSObjectEvent created through the
CMSObjectEvent interface. This method should only be called before the
CMSObjectEvent has been dispatched using the di spatchEvent method,
though it may be called multiple times during that phase if necessary. If called
multiple times, the final invocation takes precedence.

CMSObjectEvent interface

379

initCMSObjectEvent(typeArg, canBubbleArg, cancelableArg, endArg,
flagsArg, resultArg, startArg)

Parameters

String typedrg
Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.

boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Node endArg

Specifies an event-dependent DOM end Node associated
with the event.

int flagsArg

Provides an event-dependent bitmask of information.
CMSObject resultArg

Represents the event-dependent result of an event.
Node startArg

Specifies an event-dependent DOM start Node associated
with the event.

Returns

void

380

Programmer's Reference

45

CMSObjectList interface

length attribute ... e 382
(10T 0B 0 41T 4 (o Lo [382
releaseReferences MeEethodoviiiiiii e 382

The CMSObjectList interface provides fast, random access to a collection of
CMSObjects. Do not confuse this with CMSBrowseIterator which provides
sequential access to CMSBrowseItems and is used when there are possibly high-
latency calls being made into the CMS.

381

length attribute

Specifies the number of items in the collection.

length
Access read-only
Returns unsigned long

item method

Returns the item in the collection associated with the i ndex parameter. If the
index parameter value is out of range, this method returns null.

item(index)

Parameters unsigned long index

Specifies the index into the collection.

Returns CMSObject. The requested item from the collection.
Throws CMSException

Raised if an error occurs.

releaseReferences method

For each CMSObject in this list, releases a reference to the underling repository
object. After this call the list length is 0.

releaseReferences()

Parameters None
Returns void

382 Programmer's Reference

46

CMSSession interface

CMSBurstBoundaryType enumMErationcoooieeuuiiiiiii e 385
CMSBuUrstPOolicy enUMEratioN...........cooiuuiiiiiii e 385
CMSCreateFlags enumerationcc.uiiiiiiiiiiii e 385
CMSOperationEnabledType enumerationccoooiiiiiiiii e 386
CMSSessBurstFlags enumerationoooouuiiiiiiiii e 386
aclld attribute ... e 387
adapter attribULe ... e 387
burstPolicy attribute ... 388
burstUserOverride attribute 388
connected attribULE e 388
currentUser attribute 389
defaultFolder attribute..........oooiii e 389
fullTextSearch attributeoou i e 389
ObjeCtREUSE attribULE.... ... 390
SeSsSIONTOKEN AttribDULEe e 390
burstDocument Method. 390
clearBurstConfig method ... 392
createEvent method ... 392
createFolder Methodi i e 393
createNewODbject Method. ... 393
createObjectFromSubtree method............ooooii i 394
Lo 1T elo a1 o =Y o3 1411 1. Lo o P 395
getAttribute methodo 395
getBurstBoundaryType method ... 396
getDefaultCreatelnfo methodo 396
GetFile MEhOdo e 397
getFileMappingEntry method..... ... 398
getGraphicCreateInfo method ... 398
getRangeCreatelnfo method ... 399
getUserData method ... 400
INVOKEEXIENSION MEthOd oo e 401

383

logicalldTOPOId Method.........c.iiei e 401
ObJECtEXISIS MELNOQ ... oo 402
poidToLogicalld Methodoooiii e 402
PULFIlE MELNOA e 402
refreshObjectStatus method..............ooiiiiii e 403
SEArCh METNOd ... e e 404
SEtALtribULE MEthOdo s 404
setFileMappingEntry method........ ... 404
setOldUserData method ... e 405
setUserData MethOd.........ooouiiii e 406
verifyOperationEnabledInCurrentState method..............ccoooo i 407

The CMSSession interface represents a content management system (CMS)
session.

384 Programmer's Reference

CMSBurstBoundaryType enumeration

The CMSBurstBoundaryType enumerated type specifies the available types
of bursting that can be configured for any given element. It is used with the
getBurstBoundaryType method.

The CMSBurstBoundaryType enumeration has the following constants of
type int.

CMS_BURST_NO_BOUNDARY =0

This element is not configured to be burst.

CMS_BURST_FILE_ENTITY =1
This element is configured to burst as a file entity.

CMS_BURST_VIRTUAL DOC =2
This element is configured to burst as a virtual document.

CMS_BURST_XINCLUDE =3
This element is configured to burst as an xinclude.

CMSBurstPolicy enumeration

The CMSBurstPolicy enumerated type specifies when document bursting
should occur. It is used with the burstPolicy attribute.

The CMSBurstPolicy enumeration has the following constants of type int.

CMS_BURST POLICY NEVER =0
The adapter does not support bursting.

CMS_BURST _POLICY_ON_CHECKIN =1
The adapter performs bursting during document check-in.

CMSCreateFlags enumeration

The CMSCreateFlags enumerated type is used to construct the f1lags
parameter to the createObjectFromSubtree and createNewObject
methods by ORing any of the following options.

The CMSCreateFlags enumeration has the following constants of type int.

CMS_CREATE_LOCKED = 0x1
The object is initially locked.

CMS_CREATE_VIRTUAL_CONTAINER = 0x2
The object will be a virtual document container. Objects which will reference
child objects via File Entity or XInclude need not specify this flag.

CMSSession interface 385

CMSOperationEnabledType enumeration

The CMSOperationEnabledType enumerated type is used as the return value
of the verifyOperationEnabledInCurrentState method.

The CMSOperationEnabledType enumeration has the following constants of
type unsigned short.

CMS_OPERATION_ENABLED =0
Operation is allowed in the current state.

CMS_OPERATION_NOT_ENABLED =1
Operation is not allowed in the current state. If any methods in the category
are called, they will raise a CMSException with error code
CMSException.OPERATION NOT ENABLED ERR.

CMS_OPERATION_NOT_SUPPORTED =2
Operation is not supported by the adapter. If any methods in the category are
called, they will raise a CMSException with error code
CMSException.UNIMP ERR.

CMS_OPERATION_UNKNOWN =3
Operation is not recognized by the adapter. This may be returned if a new
category was added to Arbortext Editor but the adapter has not been updated.
The caller can assume that methods in the category are enabled (they will
throw CMSException.UNIMP ERR if not implemented).

CMSSessBurstFlags enumeration

The CMSSessBurstFlags enumerated type is used to construct the f1lags
parameter to the burstDocument method by ORing any of the following
options. The negative flags allow the application developer to override the default
session bursting rules.

The CMSSessBurstFlags enumeration has the following constants of type
int.
CMS_BURST_FULLTEXT = 0x0001

Enable full text indexing on the top most object.

CMS_BURST_IMPORT_FILEENTS = 0x0002
Import file entities.

CMS_BURST_NO_IMPORT_FILEENTS = 0x0004
Do not import file entities.

CMS_BURST_IMPORT_GRAPHICS = 0x0008
Import graphic files.

386 Programmer's Reference

CMS_BURST_NO_IMPORT_GRAPHICS = 0x0010
Do not import graphic files.

CMS_BURST_ELEMENTS = 0x0020
Burst on element boundaries.

CMS_BURST_NO_ELEMENTS = 0x0040
Ignore element boundaries.

CMS_BURST_TOP_FILENAME = 0x0080
Use the file name for the topmost object name.

CMS_BURST_NO_TOP_FILENAME = 0x0100
Do not use the file name for the topmost object name.

CMS_BURST_TOP_LOCK = 0x0200
Lock the topmost object for editing.

CMS_BURST_NO_TOP_LOCK = 0x0400
Do not lock the topmost object.

CMS_BURST_USE_LOCATION_RULES = 0x0800
Follow location rules for child objects even if useroverride=on.

CMS_BURST_CREATE_PARTREF_LINKS = 0x01000
Create part reference links

CMS_BURST _NO_CREATE_PARTREF_LINKS = 0x02000
Do not create part reference links

aclld attribute

Represent the session ID associated with the CMSSession object. You can use
this ID with the Arbortext Command Language (ACL) programming language. If
the session is no longer valid, the ac11d value is an invalid session ID (=1).

aclId
Access read-only

Returns int

adapter attribute

Specifies the CMSAdapter object associated with this session.

adapter

Access ’ read-only

CMSSession interface 387

Returns CMSAdapter
Get throws CMSException

Raised for any error accessing this attribute.

burstPolicy attribute

Represents the burst policy of the adapter. The value is one of the
CMSBurstPolicy enumerated constants.

burstPolicy

Access read-only

Returns int

Get throws CMSException
Raised for any error.

burstUserOverride attribute

Set to t rue if this session has the user override set to on for bursting-related
options such as object names. This setting allows the user to override certain
options that would otherwise be completely dictated by the bursting rules. Set to
false ifitis not. This setting prevents the user from overriding the bursting

options.

burstUserOverride

Access read-only

Returns boolean

Get throws CMSException
Raised for any error.

connected attribute

Set to t rue if the session is still connected. Set to false if it is not.

connected
Access read-only
Returns boolean

Programmer's Reference

388

currentUser attribute

Specifies the current CMS user name. This will normally match the loginId
parameter to the CMSAdapter.connect () method which established this

session.

currentUser

Access read-only

Returns String

Get throws CMSException
Raised for any error.

defaultFolder attribute

Specifies the Logical ID of the current user's default folder.

defaultFolder

Access read-write

Returns String

Get throws CMSException
Raised for any error.

Set throws CMSException
Raised for any error.

fullTextSearch attribute

Indicates whether to index new documents for full-text searching. Not all adapters
will implement full text searching.

fullTextSearch

Access read-write

Returns boolean

Get throws CMSException
Raised for any error.

Set throws CMSException
Raised for any error.

CMSSession interface

389

objectReuse attribute

Indicates whether the session supports object reuse during bursting by maintaining
a Logical ID and filename cache. See the setFileMappingEntry for more
details.

objectReuse

Access read-only

Returns boolean

Get throws CMSException
Raised for any error.

sessionToken attribute

Specifies an adapter-specific session identifier that can be used to make calls
directly into the CMS vendor APIL.

This attribute might not be supported by all adapters.

sessionToken

Access read-only

Returns String

Get throws CMSException
Raised for any error.

burstDocument method

Bursts the specified file system document using this session. If the specified
document contains more than one top-level element, it will not be burst.

burstDocument(doc [, name [, folderLogicalld [, flags [, logFile]]]])
Parameters Document doc

Specifies the document to burst. The document must be a
file system object.

String name

[optional] Specifies the name to use for the topmost
object. If the value of this parameter is null or empty,
then the bursting rules are consulted.

The adapter is allowed to use a variant of this name if, for
example, the CMS disallows two objects with the same
name in the same folder. The actual name used can be
obtained by accessing the CMSObject attribute on the

390 Programmer's Reference

ADocument after a successful burst and then accessing
that object's name attribute.

String folderLogicalld

[optional] Specifies the destination folder for all objects
created. If the value of this parameter is null or empty,
then the bursting rules are consulted. This may be the
Logical ID of a folder or it may be in an adapter-specific
path format.

If your system-wide bursting configuration specification
has the useroverride setting set to on, then the
folder parameter provides a user-specified destination
folder for all objects created. If the value of this parameter
is null or empty, then the bursting rules determine in
which folders the new objects are created.

If your system-wide bursting configuration specification
has the useroverride setting set to of £, then the
folder parameter is not used and the bursting rules
determine in which folders the new objects are created.

See the burstUserOverride attribute for more
details.

int flags

[optional] Specifies the flags which control the bursting
behavior. The value is a bit-wise OR of the
CMSSessBurstFlags constants. The negative flag
settings override session defaults.

String logFile
[optional] Specifies the full path of a local log file to

which this method will append diagnostic information
related to bursting this document.

Returns void. The given document is now associated with a new
top-level object in the CMS. The CMSObject attribute of
the ADocument interface can be used to access
information about the new top-level object.

Throws CMSException

Raised for any error bursting the document.

CMSSession interface

391

clearBurstConfig method

This is a special method for administrators to use while they are developing the
burst configuration files. It clears out all of the burst configuration settings you
have loaded and reloads the system-wide settings. The document type-specific
configurations are loaded as they are needed — for example, when a document of
that document type is burst. This enables new settings to be tested without having
to exit Arbortext Editor. This method does not change the folder that Arbortext
Editor uses to load burst configuration files.

clearBurstConfig()

Parameters None
Returns void
Throws CMSException

Raised for any error.

createEvent method

Creates a CMSSession event.

createEvent(eventType)
Parameters String eventType

Specifies the type of Event interface to be created. The
only event module supported by this method is
"CMSSessionEvents".

If the Event is to be dispatched with the
dispatchEvent method, the appropriate event init
method must be called after creation in order to initialize
the Event's values. As an example, a user wishing to
synthesize a CMSSessionConstructEvent would
call createEvent with the parameter
"CMSSESSIONCONSTRUCTEVENTS". The
initCMSSessionEvent method could then be called
on the newly created CMSSessionConstructEvent
to set the specific type of
CMSSessionConstructEvent to be dispatched and
to set its context information.

Returns Event. The newly created Event.

Throws CMSException

NOT _SUPPORTED ERR: Raised if the implementation
does not support the type of Event interface requested.

392 Programmer's Reference

createFolder method
Creates a new CMS folder object

createFolder(name, folderLogicalld [, objType])
Parameters String name

Specifies the name of the new CMS folder object. The
adapter is allowed to use a variant of this name if, for
example, the CMS disallows two objects with the same
name in the same folder. The actual name used can be
obtained by accessing the name attribute of the returned
CMSObject.

String folderLogicalld

Specifies the folder to put the object in. This may be the
Logical ID of a folder or it may be in an adapter-specific
path format.

String objType
[optional] Specifies the CMS object type for the new

folder object.
Returns CMSObject. A new object handle.
Throws CMSException

If an error occurs.

createNewObject method

Creates an empty CMS object of the same type as the specified document. If
bursting rules are set up, you may use them to supply or override some of the
parameter values.

createNewObject(name, folderLogicalld, doc [, flags [, objType]])
Parameters String name

Specifies the name of the new CMS object. The adapter is
allowed to use a variant of this name if, for example, the
CMS disallows two objects with the same name in the
same folder. The actual name used can be obtained by
accessing the name attribute of the returned CMSObject.

String folderLogicalld

Specifies the folder to put the object in. This may be the
Logical ID of a folder or it may be in an adapter-specific
path format.

CMSSession interface 393

Document doc

Provides context information for the creation of the object.
int flags

[optional] Specifies the creation options. The value is

determined by a bit-wise OR of the CMSCreateFlags
constants.

String objType
[optional] Specifies the CMS object type for the new

object.
Returns CMSObject. A new object handle.
Throws CMSException

If an error occurs.

createObjectFromSubtree method

Creates a new CMS object, assigning content from an in-memory document. If the
new object is a folder or an empty document, use null values for the start and
end parameters. If bursting rules are setup, you may use them to supply or
override some of the parameter values.

After successful completion, the given DOM Nodes will be associated with the
new CMS object. However, this does not replace the Nodes with a file entity or
XlInclude reference and so the association will be lost when the containing
document is closed unless some additional action is performed.

createObjectFromSubtree(name, folderLogicalld, start, end [, flags [,
objType]])
Parameters String name

Specifies the name of the new CMS object. The adapter is
allowed to use a variant of this name if, for example, the
CMS disallows two objects with the same name in the
same folder. The actual name used can be obtained by
accessing the name attribute of the returned CMSObject.

String folderLogicalld

Specifies the folder to put the object in. This may be the
Logical ID of a folder or it may be in an adapter-specific
path format.

Node start

Specifies the DOM Node representing the first node to be

394 Programmer's Reference

included in the new object.
Node end
Specifies the DOM Node representing the last node to be

included in the new object. This node should be the same
as the start node or a subsequent sibling of it.

int flags
[optional] Specifies the creation options. The value is

determined by a bit-wise OR of the CMSCreateFlags
constants.

String objType

[optional] Specifies the CMS object type for the new
object.

Returns

CMSObject. A new object handle.

Throws

CMSException

If an error occurs.

disconnect method

Closes the CMS session. Only the connected attribute can be safely accessed
after this method is called.

disconnect()

Parameters None
Returns void
Throws CMSException

Raised for any error.

getAttribute method

Reads the value of a session attribute. Attributes are identified by name. The
attribute names supported by this method will vary with each adapter.

getAttribute(attribute)

Parameters String attribute

Specifies the attribute name.
Returns String. The attribute value.
Throws CMSException

Raised for any error.

CMSSession interface

395

getBurstBoundaryType method

For the given node, determines the burst boundary type according to the bursting

rules associated with this session.

getBurstBoundaryType(node)

Parameters Node node

Specifies the DOM Node to look up in the burst rules.

node.

Returns int. Returns one of the CMSBurstBoundaryType
enumerated types describing the bursting rule for the given

Throws CMSException

If an error occurs.

getDefaultCreatelnfo method

Returns the default object creation information that is not specific to any particular
document type. This information is defined in the atidefaults configuration

file.

The information is returned in a PropertyMap. The following table shows the

supported key string values:

Key Value Type
I0 CRE_FILE String
REFERENCE

IO CRE FULL TEXT Number
SEARCH

IO_CRE_LATEST ID String

IO0_CRE_LOGICAL_ ID String

396

Value Description

Determines whether
Insert and Share Object
will create an entity or an
Xlnclude. Allowed values
are xinclude or
entity.

Determines whether the
object is flagged for full
text searching. Allowed
values are 0 and 1.
Specifies the default
version label that
indicates an object is the
"official" current version.
Specifies the default
version label that tells the
adapter to load the
working copy of an

Programmer's Reference

object. If no working
copy exists, the adapter
loads the "official"

current copy.

IO CRE MAX LEN Number Specifies the default
maximum name length
for CMS objects.

IO _CRE_ROOT_TYPE String Specifies the root object
type for Arbortext Editor
and Arbortext Publishing
Engine objects.

IO CRE _TEMP ID String Specifies the default
version label that
indicates an object is a
working copy.

IO CRE TOP LOCKED Number Determines whether the
topmost CMS object is
locked for editing after
bursting. Allowed values

are 0 and 1.
getDefaultCreateInfo()
Parameters None
Returns PropertyMap. A PropertyMap containing the
requested information.
Throws CMSException
If an error occurs.

getFile method

Downloads an object from the CMS to a local file and returns the local path name.
This method is typically used to retrieve graphic objects.

getFile(logicalld [, notation])

Parameters String logicalld

Specifies the Logical ID.

String notation

[optional] Specifies the graphic file format, if applicable.

CMSSession interface 397

Returns String. A local file name. It can be assumed that the
adapter is tracking the files it returns and it will manage
them appropriately. The application developer must not
delete this file.

Throws CMSException

If an error occurs.

getFileMappingEntry method

Checks whether a resolved path name already exists in the CMS. You use this
method to avoid creating multiple CMS objects from a single source file — for
example, by loading multiple entity references to one file. Before calling this
method, use the objectReuse attribute to determine if this session is managing
file mapping entries or not.

getFileMappingEntry(pathname)

Parameters String pathname

Specifies the resolved entity path name. This should be a
normalized form of a local resource path. For example on
Windows-based systems, the following paths all represent
the same local resource:

e c:\graphics\engine.jpg

* c:\Graphics\Engine.JPG
* c:\graphics\..\graphics\engine.jpg

For this reason, the caller should normalize this path in a
consistent manner before calling this method.

Returns String. Returns the associated Logical ID, if it is in the
CMS. Returns null if it is not.
Throws CMSException

If an error occurs.

getGraphicCreatelnfo method

Returns the default creation information for a new graphic object. This
information is defined in the atidefaults configuration file.

The information is returned in a PropertyMap. The following table shows the
supported key string values:

398 Programmer's Reference

Key
IO CRE LOCATION

I0 CRE_OBJECT
TYPE

I0 CRE LABEL

Value Type
String

String

String

Value Description
Specifies the default
location for new graphics.
This may be the Logical
ID of a folder or it may be
in an adapter-specific
path format.

Specifies the default
object type for graphics.
Specifies the default
version label for graphics.

getGraphicCreateInfo(graphicNode)

Parameters Node graphicNode

Represents a graphic tag. Elements are designated as
graphic tags by a document type's DCF (document
configuration file) file or by the document's current Styler
stylesheet. The stylesheet overrides the DCF file.

Returns PropertyMap. A PropertyMap containing the
requested information.

Throws CMSException

If an error occurs.

getRangeCreatelnfo method

Returns the default creation information for a new object, according to the given
start and end Nodes. This information can be defined in a configuration file
that is specific to the document type associated with the given Nodes. As a
fallback, Arbortext Editor and Arbortext Publishing Engine will use the
atidefaults configuration file.

The information is returned in a PropertyMap. The following table shows the
supported key string values:

Key
I0 CRE NAME

IO CRE LOCATION

CMSSession interface

Value Type

String

String

Value Description

Specifies the default
name for the new object,
according to the default
naming rules.

Specifies the default
location for the new

399

object. This may be the
Logical ID of a folder or
it may be in an adapter-
specific path format.

IO0_CRE_OBJECT String Specifies the default

TYPE object type for the new
object.

IO _CRE_LABEL String Specifies the default
version label for the new
object.

getRangeCreateInfo(start, end, isTop)
Parameters Node start

Specifies the first node in the range to consider.
Node end

Specifies the last node in the range to consider. This node
should be the same as the start node or a subsequent sibling
of it.

boolean isTop

Indicates whether the "topmost is filename" naming rule is
being used.

If t rue and the associated burst configuration file has
<namerule rule="topmost-is-filename" /> as
the very first defaultnamecriteria then the returned
IO CRE_NAME value will be derived from the name (if
any) of the document containing the start and end Nodes.

Otherwise, the naming rules in the associated burst
configuration file are used to generate the name.

Returns PropertyMap. A PropertyMap containing the
requested information.
Throws CMSException

If an error occurs.

getUserData method

Retrieves application data from the session. This method enables user interface or
application code to retrieve named data that was previously stored by calling the
setUserData method.

400 Programmer's Reference

getUserData(key)
Parameters String key

Specifies the unique key used to identify the data.

Returns String. Returns the data associated with the given key.
Returns null if there is none.
Throws CMSException

Raised for any error.

invokeExtension method

Invokes an adapter-specific extension function. Some adapters provide
functionality beyond the standard CMS API.

invokeExtension(opcode, map)
Parameters int opcode

Specifies the adapter-specific value which identifies the
extension method to invoke.

PropertyMap map

Specifies the collection of adapter-specific parameters to
the specified extension method.

Returns PropertyMap. A PropertyMap populated with
adapter-specific content.
Throws CMSException

Raised for any error calling the extension method.

logicalldToPoid method

Translates a Logical ID to a Persistent Object Identifier (POID). POIDs are used
internally by Arbortext Editor and Arbortext Publishing Engine and are not
normally used by an application developer.

logicalIdToPoid(logicalld)
Parameters String logicalld

Specifies the Logical ID to translate.
Returns String. A POID.
Throws CMSException

If an error occurs.

CMSSession interface 401

objectExists method

Indicates whether an object exists in the CMS. The object is identified by a
Logical ID. It is sufficient for this method to ensure that the Logical ID or
Persistent Object Identifier (POID) format is correct. To verify the object's actual
existence in the CMS, and its accessibility,
Application.constructObject must be used.

objectExists(logicalld)

Parameters String logicalld
Specifies a Logical ID.

Returns boolean. Returns true if the object exists. Returns
false if it does not.

Throws CMSException

If an error occurs.

poidToLogicalld method

Translates a Persistent Object Identifier (POID) and version to a Logical ID.
POIDs are used internally by Arbortext Editor and Arbortext Publishing Engine

and are not normally used by an Application Developer.

poidToLogicalId(poid [, label])
Parameters String poid

Specifies the POID to translate.

String label

S

[optional] Specifies the optional version label. The synta
is adapter-specific.

Returns String. A Logical ID.

Throws CMSException

If an error occurs.

putFile method

Stores a file in the CMS. If the adapter is tracking imported files (see the
objectReuse attribute), an entry is created in the persistent lookup table
associating the filename with the new Logical ID. See the
getFileMappingEntry method for more details.

putFile(filename, objectName, folderLogicalld, notation [, objType])

Parameters ‘ String filename

Programmer's Reference

402

Specifies the path name to store. Because the adapter may
create a file mapping entry, this path should be normalized.
See the getFileMappingEntry for more details.

String objectName

Specifies the name of the CMS object to create. This is the
suggested name. The adapter is allowed to use a variant of
this name if, for example, the CMS disallows two objects
with the same name in the same folder. The actual name
used can be obtained by calling the
Application.constructObject method with the
returned Logical ID and accessing that object's name
attribute.

String folderLogicalld

Specifies the location of the new object in the CMS. This
may be the Logical ID of a folder or it may be in an
adapter-specific path format.

String notation
Specifies the graphic file format. This is optional.
String objType

[optional] Specifies the CMS object type for new object. If
not supplied, the bursting rules are consulted to determine
the object type.

Returns

String. The Logical ID of the new object.

Throws

CMSException

If an error occurs.

refreshObjectStatus method

To improve performance, the internal implementation keeps track of the lock and
read-only status of all constructed objects. This method will cause all constructed
objects to refresh this information from the adapter. All appropriate views will be
updated (if needed) to reflect any change in an object's status.

refreshObjectStatus()

Parameters

None

Returns

void

CMSSession interface

403

search method

Searches the CMS for objects that match the specified search criteria. The
criteria string is created by the search dialog. Its format is adapter-specific.

search(criteria)

Parameters String criteria

Specifies the adapter-specific string containing search

criteria.

Returns CMSBrowseIterator. An iterator over search results.
The iterator returns CMSBrowseItem objects.

Throws CMSException

If an error occurs.

setAttribute method

Sets the value of a session attribute. The attribute names supported by this method
will vary with each adapter.

setAttribute(attribute, value)
Parameters String attribute

Specifies the attribute name.
String value
Specifies the attribute value.

Returns void
Throws CMSException

Raised for any error.

setFileMappingEntry method

Instructs the adapter to persistently store a path name to a Logical ID association.
If a mapping already exists for the path name, it will be replaced with the new
Logical ID. Use this method in conjunction with the getFileMappingEntry
method to prevent creating multiple CMS objects based on a single file.

The getFileMappingEntry and setFileMappingEntry calls are not
atomic. During bursting, a new CMS object is created between the
getFileMappingEntry and setFileMappingEntry calls. If multiple
processes are performing burst operations, the result might be multiple CMS
objects for the same source file. For example, assume process A and process B
both call the getFileMappingEntry method at the same time and find that an

404 Programmer's Reference

association does not currently exist. Both processes then create new CMS objects
and call the setFileMappingEntry method to create the association. The last
setFileMappingEntry call takes precedence, and its CMS object will be
reused by subsequent burst operations. The other CMS object continues to exist
and be referenced by its XML document.

There is no standard way to tell the adapter to remove a path name to Logical ID
mapping.
setFileMappingEntry(pathname, logicalld)

Parameters String pathname

Specifies the resolved entity path name. See the
pathname parameter to the getFileMappingEntry
method for information about normalization of this path
name.

String logicalld

Specifies the associated Logical ID in the CMS.

Returns void
Throws CMSException

If an error occurs.

setOldUserData method

Can be used to allow some methods and properties in this interface to work with
older adapters ("Oracle iFS Adapter" or "Documentum Adapter"). Some older
adapters require usage of a "user data" field with certain ACL functions (such as
those starting with sess_ or dobj). This allows such functionality of older
adapters to be accessed via this AOM interface.

This may be used with the following methods...

e disconnect ()

e getFile ()

* putFile ()

* createObjectFromSubtree ()
* createNewObject ()

e search{()

This stores the given data for use with the next method call which can make use
of it. After that method call, the stored data will be automatically erased so it
won't affect future calls.

CMSSession interface 405

~ Note
This should only be used with older adapters and will have no effect on newer
adapters.
The data is stored directly with this AOM object. If this object is disposed

before the method call, the data will not be available for use by the method. To
avoid any issues, set the data immediately before making the method call.

setOldUserData(data)
Parameters String data

Specifies the value to store as the old user data.

Returns void

setUserData method

Stores some application data on the session. Any existing data for the same key is
replaced by the new data. This method enables user interface or application code
to associate named data with the session, which it can retrieve later by calling the
getUserData method. User data only exists in memory, and is not stored
between sessions.

Some adapters may support additional arguments to certain methods by having the

application call setUserData with a predefined key just before calling the
method. The adapter documentation will describe any such additional arguments.

setUserData(key, data)
Parameters String key

Specifies the unique key used to identify the data.
String data

Specifies the data to associate with the given key, or null
to remove any existing data for the key.

Returns void
Throws CMSException

Raised for any error.

406 Programmer's Reference

verifyOperationEnabledInCurrentState

method

Indicates whether an operation is allowed in the current state. Some adapters

support more than one mode, and different operations may be allowed in each
mode. Arbortext Editor does not define what modes or states are possible. Instead,
it asks the adapter which operations are enabled in the current state.

verifyOperationEnabledInCurrentState(operation)

Parameters

String operation

Specifies the type of operation. The following table lists
the valid strings for the operation parameter, along
with the corresponding AOM methods.

operation Methods

createObjectMethods |CMSSession.createNe
wObject,
CMSSession.createOb
jectFromSubtree

createFolderMethods |CMSSession.createFold
er

burstMethods CMSObject.burst,
CMSSession.burstDocu
ment

checkinoutMethods CMSObject.checkin,
CMSObject.checkout,
CMSObject.cancelCheck
out

attributeMethods CMSObject.getAttri
bute,
CMSObject.getAttri
butes,
CMSObject.setAttri
bute,
CMSObject.setAttri
butes

fileContentMethods CMSSession.getFile,
CMSSession.putFile

fileMappingMethods CMSSession.getFileMap
pingEntry,
CMSSession.putFileMap
ping Entry

deleteObjectMethods |CMSObject.deleteOb

CMSSession interface

407

ject
moveObjectMethods CMSObject.moveObject
searchMethods CMSObject.search
childTraversalMethods |CMSObject.getChildren
parentTraversalMe- CMSObject.getParents
thods
versionTraversalMe- CMSObject.getVersions
thods
burstConfigMethods CMSSession.getBurstU
seroverride,
CMSSession.getDefault
Createlnfo,
CMSSession.getGraphic
CreatelInfo,
CMSSession.getObjec
tReuse,
CMSSession.getRange
CreatelInfo
Returns unsigned short. One of the
CMSSession.OPERATION constants which indicates
whether the operation is enabled in the current state.
Throws CMSException
UNIMP_ERR: Raised if the adapter does not implement
this method. In that case, the caller may assume that the
operation is enabled.
408 Programmer's Reference

47

CMSSessionBurstDocumentEvent
interface

canOverride attribULecouii 410
document attribULE. s 410
errorCode attriDULEcoiei e 410
errorMessage attribute..... ... 410
flags attriDULE ... e 411
folderLogicalld attribute.............cooiiii 411
topLevelName attribute...........coo i 411
initCMSSessionBurstDocumentEvent method ... 411

The CMSSessionBurstDocumentEvent interface provides specific
contextual information associated with the CMSSessionBurstDocument
extension. These event types notify programmers of events related to document
bursting and the resultant objects created in the repository.

409

canOverride attribute

If true, for the CMSSessionBurstDocument event, the event handler can
override the values in the topLevelName and folderLogicalld properties.

canOverride
Access read-only
Returns boolean

document attribute

For the CMSSessionBurstDocument event, this is the document that will be
burst. For the CMSSessionPostBurstDocument event, this is the document
that was burst.

document
Access read-only
Returns Document

errorCode attribute

Used when the event handler wants to cancel the operation or throw an error
exception. This can hold any defined CMSExceptionCode value. To cancel the
operation, call preventDefault () and store a value of OPERATION
CANCELED ERR into errorCode. To cause an error exception, call
preventDefault (), store any other defined CMSExceptionCode value
into errorCode, and optionally store a message into errorMessage.

errorCode
Access read-write
Returns unsigned short

errorMessage attribute

Used when the event handler wants to throw an error exception and additionally
provide a human-readable error message. To do this, call preventDefault (),
store the appropriate value into errorCode, and store a message into
errorMessage.

errorMessage
Access read-write
Returns String

410 Programmer's Reference

flags attribute

Creation options. Same as the f1ags parameter of the
CMSSession.createNewObject.

flags
Access read-only
Returns int

folderLogicalld attribute

Parent folder for the CMS object.

folderLogicallId
Access read-write
Returns String

topLevelName attribute

Name of the top-level object which will result from bursting the document. This
may be null or empty which means the name will be auto-generated according to

the bursting rules for this adapter. For the CMSSessionBurstDocument
event, the event handler can override this value if canOverride is true.

topLevelName
Access read-write
Returns String

initCMSSessionBurstDocumentEvent

method

Initializes the value of an CMSSessionBurstDocumentEvent created
through the CMSSessionBurstDocumentEvent interface. This method
should only be called before the CMSSessionBurstDocumentEvent has
been dispatched using the di spatchEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times, the final
invocation takes precedence.

CMSSessionBurstDocumentEvent interface

411

initCMSSessionBurstDocumentEvent(typeArg, canBubbleArg,
cancelableArg, canOverrideArg, topLevelNameArg, folderLogicalldArg,
documentArg, flagsArg)

Parameters String typedrg

Specifies the event type.

boolean canBubbleArg

Specifies whether or not the event can bubble.

boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

boolean canOverrideArg

If true, then, for the CMSSessionBurstDocument
event, the event handler can override the values in the
topLevelName and folderLogicalld properties.

String topLevelNameArg
Name of the repository object.
String folderLogicalldArg

Represents the parent folder for the new object.

Document documentArg

Represents a full path to a resource (file or HTTP)
accessible from the client.

int flagsArg

Represents an adapter-specific format specification.
Returns void

412 Programmer's Reference

48

CMSSessionConstructEvent
interface

errorCode attribULee i 414
errorMessage attribute...........coooii i 414
FESUIt AtIrIDULE .. oo 414
initCMSSessionConstructEvent method..............ccoooi i 414

The CMSSessionConstructEvent interface provides specific contextual
information associated with the CMSSessionConstructEvent extension.
These event types notify programmers of operations that construct in-memory
representations of repository objects.

413

errorCode attribute

Used when the event handler wants to cancel the operation or throw an error
exception. This can hold any defined CMSExceptionCode value. To cancel the
operation, call preventDefault () and store a value of OPERATION
CANCELED ERR into errorCode. To cause an error exception, call
preventDefault (), store any other defined CMSExceptionCode value
into errorCode, and optionally store a message into errorMessage.

errorCode
Access read-write
Returns unsigned short

errorMessage attribute

Used when the event handler wants to throw an error exception and additionally
provide a human-readable error message. To do this, call preventDefault (),
store the appropriate value into errorCode, and store a message into
errorMessage.

errorMessage
Access read-write
Returns String

result attribute
The constructed CMS object.

result
Access read-write
Returns CMSObject

initCMSSessionConstructEvent method

Initializes the value of an CMSSessionConstructEvent created through the
CMSSessionConstructEvent interface. This method should only be called
before the CMSSessionConstructEvent has been dispatched using the
dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence.

414 Programmer's Reference

Parameters

initCMSSessionConstructEvent(typeArg, canBubbleArg,
cancelableArg, resultArg)

Returns

String typedrg
Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

CMSObject resultArg

Represents the constructed CMS object.
void

CMSSessionConstructEvent interface

415

49

CMSSessionCreateEvent interface

ENA AHIIDULE. ... 418
errorCode attribULeooei 418
errorMessage attribute. 418
flags @ttriDULE ... e 418
folderLogicalld attribute.o 418
Name attribULE ... 419
OBJTYPE AttriDULE. ... e 419
FESUIL AttriDULE .. e 419
start attribute. ... 419
VEISION AttDULE ... e 419
initCMSSessionCreateEvent Mmethodcoovviieiiiiiii e 420

The CMSSessionCreateEvent interface provides specific contextual
information associated with the CMSSessionCreateEvent extension. These
event types notify programmers of events related to creating new CMS objects in
the repository.

417

end attribute

DOM end Node associated with the event.

end
Access read-only
Returns Node

errorCode attribute

Used when the event handler wants to cancel the operation or throw an error
exception. This can hold any defined CMSExceptionCode value. To cancel the
operation, call preventDefault () and store a value of OPERATION
CANCELED_ ERRinto errorCode. To cause an error exception, call
preventDefault (), store any other defined CMSExceptionCode value
into errorCode, and optionally store a message into errorMessage.

errorCode
Access read-write
Returns unsigned short

errorMessage attribute

Used when the event handler wants to throw an error exception and additionally
provide a human-readable error message. To do this, call preventDefault (),
store the appropriate value into errorCode, and store a message into
errorMessage.

errorMessage
Access read-write
Returns String

flags attribute

Creation options. Same as the f1ags parameter of the
CMSSession.createNewObject.

flags
Access read-only
Returns int

folderLogicalld attribute

Parent folder for the new object.

418 Programmer's Reference

folderLogicallId
Access read-write
Returns String

name attribute

Name of the object being created.

name
Access read-write
Returns String

objType attribute

Adapter-specific object type string.

objType
Access read-write
Returns String

result attribute
The CMS object created.

result
Access read-write
Returns CMSObject

start attribute

DOM start Node associated with the event.

start
Access read-only
Returns Node

version attribute

The object's version number. The value is represented using CMS-specific syntax.

version
Access read-only
Returns String

CMSSessionCreateEvent interface

419

initCMSSessionCreateEvent method

Initializes the value of an CMSSessionCreateEvent created through the
CMSSessionCreateEvent interface. This method should only be called
before the CMSSessionCreateEvent has been dispatched using the
dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence.

Programmer's Reference

420

initCMSSessionCreateEvent(typeArg, canBubbleArg, cancelableArg,
nameArg, objTypeArg, folderLogicalldArg, flagsArg, startArg, endArg,
versionArg, resultArg)

Parameters String typedrg

Specifies the event type.

boolean canBubbleArg

Specifies whether or not the event can bubble.

boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

String nameArg

Represents the name of the object being created.
String objTypeArg

Represents an adapter-specific object type string.
String folderLogicalldArg

Represents the parent folder for the new object.
int flagsArg

Same as the f1ags parameter of the
CMSSession.createNewObject method.
Node startArg

First DOM Node in the object's content.

Node endArg

Last DOM Node in the object's content.
String versionArg

The object's version number. The value is represented
using CMS-specific syntax.

CMSObject resultArg
The created CMS object.

Returns void

CMSSessionCreateEvent interface 421

50

CMSSessionDisconnectEvent
interface

currentUSEr attribULEo 424
initCMSSessionDisconnectEvent method............c.oooviiiiiiiiiiii e, 424

The CMSSessionDisconnectEvent interface provides specific contextual
information associated with the CMSSessionDisconnectEvent extension.
These event types notify programmers of events related to logging off a CMS
session.

423

currentUser attribute

Specifies the CMS user name associated with the session.

currentUser
Access read-only
Returns String

initCMSSessionDisconnectEvent method

Initializes the value of an CMSSessionDisconnectEvent created through
the CMSSessionDisconnectEvent interface. This method should only be
called before the CMSSessionDisconnectEvent has been dispatched using
the dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence.

initCMSSessionDisconnectEvent(typeArg, canBubbleArg,
cancelableArg, currentUser)
Parameters String typedrg

Specifies the event type.

boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

String currentUser

Currently logged on user's name.

Returns void

424 Programmer's Reference

51

CMSSessionFileEvent interface

errorCode attribULEieiei e 426
errorMessage attribute. 426
folderLogicalld attribute....... ..o 426
localPath @ttribute ... 426
logicalld attribDULEcooee e e 426
NOtatioN attribULE ... 427
objectName attribute ... 427
FESUIL AttriDULE .. e 427
iNitCMSSessionFileEvent method.............ooniiii e, 427

The CMSSessionFileEvent interface provides specific contextual
information associated with the CMSSessionFileEvent extension. These
event types notify programmers of events related to managing non-textual
document objects in the repository.

425

errorCode attribute

Used when the event handler wants to cancel the operation or throw an error
exception. This can hold any defined CMSExceptionCode value. To cancel the
operation, call preventDefault () and store a value of OPERATION
CANCELED ERR into errorCode. To cause an error exception, call
preventDefault (), store any other defined CMSExceptionCode value
into errorCode, and optionally store a message into errorMessage.

errorCode
Access read-write
Returns unsigned short

errorMessage attribute

Used when the event handler wants to throw an error exception and additionally
provide a human-readable error message. To do this, call preventDefault (),
store the appropriate value into errorCode, and store a message into
errorMessage.

errorMessage
Access read-write
Returns String

folderLogicalld attribute

Parent folder for the CMS object.

folderLogicallId
Access read-write
Returns String

localPath attribute

Full path to a resource (file or HTTP) accessible from the client.

localPath
Access read-write
Returns String

logicalld attribute

Logicalld for the object being accessed.

426 Programmer's Reference

logicalld
Access read-only
Returns String

notation attribute

An adapter-specific format specification.

notation
Access read-only
Returns String

objectName attribute

Name of a repository object.

objectName
Access read-only
Returns String

result attribute

The logical ID of an object created in the repository.

result
Access read-write
Returns String

initCMSSessionFileEvent method

Initializes the value of an CMSSessionFileEvent created through the
CMSSessionFileEvent interface. This method should only be called before
the CMSSessionFileEvent has been dispatched using the dispatchEvent
method, though it may be called multiple times during that phase if necessary. If
called multiple times, the final invocation takes precedence.

CMSSessionFileEvent interface 427

initCMSSessionFileEvent(typeArg, canBubbleArg, cancelableArg,
logicalldArg, localPathArg, notationArg,objectNameArg, folderLogicalldArg)

Parameters String typedrg
Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.

boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

String logicalldArg

Represents the logicalld of the object being accessed.
String localPathArg

Represents a full path to a resource (file or HTTP)
accessible from the client.

String notationArg

Represents an adapter-specific format specification.
String objectNameArg

Name of the repository object.

String folderLogicalldArg

Represents the parent folder for the new object.
Returns void

428

Programmer's Reference

52

W3C Comment interface

The Comment interface is defined in the W3C Document Object Model (DOM)
Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113.)

This interface inherits from CharacterData and represents the content of a
comment, i.e., all the characters between the starting '< ! --"and ending ' —->".
Note that this is the definition of a comment in XML, and, in practice, HTML,

although some HTML tools may implement the full SGML comment structure.

429

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

53

Component interface

ComponentType ENUMETALIONuiiiiiiiiiii e e e e e e e e e e e e e eaaes 432
componentType attribute ... 432
firstChild attributeo 432
[@stChild AttribDULEceeeee e 432
NEeXtSIbING attribULe ... 433
ownNerWindow attribULeo s 433
parentComponent attribute..............oi i 433
previousSibling attribute. 433
teXt AttrIDULE .. e 433
appendChild MEthOdiii e 434
insertBefore Method e 434
isSameComponent MEthOdc..iiiii e 435
removeChild method ... e 435
replaceChild Method...........ooou i e 436

The Component interface is the base interface for all window components.

431

ComponentType enumeration

The ComponentType enumeration is an integer showing which type of
component object this is.

The ComponentType enumeration has the following constants of type
unsigned short.

DIALOG_COMPONENT =1
The component is a Dialog object.

FRAME_COMPONENT =2
The component is a Window object.

MENUBAR_COMPONENT =3
The component is a MenuBar object.

MENUITEM_COMPONENT =4
The component is a MenuItem object.

componentType attribute

A code representing the type of the underlying object, as defined by
ComponentType.

componentType
Access read-only
Returns unsigned short

firstChild attribute

The first child of this component. If there is no such component, this returns
null.

firstChild
Access read-only
Returns Component

lastChild attribute

The last child of this component. If there is no such component, this returns
null.

lastChild
Access read-only
Returns Component

432 Programmer's Reference

nextSibling attribute

The next sibling of this component. If there is no such component, this returns
null.

nextSibling
Access read-only
Returns Component

ownherWindow attribute

The Window in which this component resides.

ownerWindow
Access read-only
Returns Window

parentComponent attribute

The parent of this component. If a component has just created and not yet added
to the tree, or if it has been removed from the tree, this is null.

parentComponent
Access read-only
Returns Component

previousSibling attribute

The previous sibling of this component. If there is no such component, this returns
null.

previousSibling
Access read-only
Returns Component

text attribute

The text associated with the component. The values vary according to the
component type as follows:

Component Type text
Dialog title of window
Frame title of window

Component interface 433

MenuBar #menubar
Menultem label of menu item

For menu items, you can specify an access key in the label by placing an
ampersand (&) before the character to be used as the key. For example, to specify
F as the access key for "File", you should specify the label as "&File". The
character that follows the ampersand in a label is also known as the mnemonic of
the menu item. The label for a menu separator is a dash (-).

text

Access read-write

Returns String

Set throws WindowException

INVALID MODIFICATION ERR: Raised if the new text
is not valid for the component.

NO_MODIFICATION ALLOWED_ ERR: Raised if the
text of the component cannot be modified.

appendChild method

Appends the component newChi1d to the end of the list of children. If the
newChild is already in the tree, it is first removed.

appendChild(newChild)
Parameters Component newChild

The component to append.
Returns Component. The component being appended.

Throws WindowException

HIERARCHY REQUEST ERR: Raised if the component
is of a type that does not allow children of the type of the
newChild component, or if the component to append is
one of this component's ancestors.

WRONG_ WINDOW_ERR: Raised if newChild was
created from a different window than the one that created
this component.

insertBefore method

Inserts the component newChi1d before the existing child component
refChild.If refChildis null, insert newChild at the end of the list of

children.

434 Programmer's Reference

insertBefore(newChild [, refChild])
Parameters Component newChild

The component to insert.
Component refChild

[optional] The reference component. That is, the
component before which the new component must be

inserted.
Returns Component. The component being inserted.
Throws WindowException

HIERARCHY REQUEST ERR: Raised if the component
is of a type that does not allow children of the type of the
newChild component, or if the component to insert is
one of this component's ancestors.

WRONG_ WINDOW_ERR: Raised if newChild was
created from a different window than the one that created
this component.

NOT _FOUND ERR: Raised if refChild is not a child
of this component.

isSameComponent method

Returns whether this component is the same component as the given one.

This method provides a way to determine whether two Component references
returned by the implementation reference the same object. When two
Component references are references to the same object, even if through a
proxy, the references may be used completely interchangeably, such that all
attributes have the same values and calling the same AOM method on either
reference always has exactly the same effect.

isSameComponent(other)

Parameters Component other

The component to test against.

Returns boolean. Returns true if the components are the same,
false otherwise.

removeChild method

Removes the child component indicated by 01dChild from the list of children,
and returns it.

Component interface 435

removeChild(oldChild)

Parameters Component oldChild

The component to remove.
Returns Component. The component being removed.
Throws WindowException

NOT _FOUND ERR: Raised if o1dChild is not a child
of this component.

replaceChild method

Replaces the child component 01dChild with newChild in the list of children,
and return the 01dChild component.

replaceChild(newChild, oldChild)

Parameters Component newChild

The new component to put in the child list.

Component oldChild

The component being replaced in the child list.
Returns Component. The component being replaced.
Throws WindowException

HIERARCHY REQUEST ERR: Raised if the component
is of a type that does not allow children of the type of the
newChild component, or if the component to put in is
one of this component's ancestors.

WRONG_ WINDOW_ERR: Raised if newChild was
created from a different window than the one that created
this component.

NOT _FOUND ERR: Raised if o1dChild is not a child

of this component.

436

Programmer's Reference

54

Composer interface

getDefaultParameters method.............ooiiii i 438
getParamDocumentation method ... 438
getParamEnumerationValues method ... 438
getParambLabel MethOd. 438
getParamType MethOd e 439
isParamRequired Method ... 439
rUNPIPEling MEthodoouiii e 439

The Composer interface represents a composition pipeline defined by a
Composer Configuration File (CCF). The CCF is an XML document
corresponding to the Arbortext Composer DTD.

437

getDefaultParameters method

Returns the pipeline's default parameters.

getDefaultParameters()

Parameters None

Returns PropertyMap. The pipeline default parameters (as
specified in the pipeline configuration) or null if the
pipeline could not be parsed.

getParamDocumentation method

Returns the documentation DOMString for a parameter. The result is the content
of the Documentation child of the Parameter element in the Interface
section of the CCF.

getParamDocumentation(parameter)
Parameters String parameter

The parameter name.
Returns String. The requested value or null if not in the CCF.

getParamEnumerationValues method

Returns an array of options for an enumeration parameter. Each entry in the
list is a DOMSt ring object. The parameter value, as passed to

runPipeline (Map), must match an option. The list is the content of the
Value children of the Parameter element in the Interface section of the

CCF.
getParamEnumerationValues(parameter)
Parameters String parameter

The parameter name.

Returns StringList. The List of options if the
getParamType is "enumeration", otherwise returns
null.

getParamLabel method

Returns the label DOMString for a parameter. The result is the content of the
Label child of the Parameter element in the Interface section of the CCF.

438 Programmer's Reference

getParamLabel(parameter)
Parameters String parameter

The parameter name.
String. The requested value or null if not in the CCF.

Returns

getParamType method

Returns the type string for a parameter. The result is the t ype attribute of the
Parameter element in the Interface section of the CCF.

getParamType(parameter)
Parameters String parameter

The parameter name.
String. The requested value or null if not in the CCF.

Returns

isParamRequired method

Returns the required flag for a parameter. A composer cannot be run unless all
required parameters have been given values. The value is the required attribute
of this Parameter in the Interface section of the CCF.

isParamRequired(parameter)

Parameters String parameter
The parameter name.

Returns trueboolean. if the named parameter is required.
Otherwise, false.

runPipeline method

Runs the pipeline defined by the CCF using the given map of parameter values.

runPipeline([pipelineParameters])

Parameters PropertyMap pipelineParameters

[optional] A map object containing the pipeline
parameters. The value of a parameter can only be strings.
Returns trueboolean. if the composition run succeeded.
Otherwise, false.

Composer interface 439

29

ControlEvent interface

initControlEvent method

The ControlEvent interface provides specific contextual information
associated with Control events.

441

initControlEvent method

Initializes the value of a ControlEvent created through the Window
createEvent method. This method should only be called before the
ControlEvent has been dispatched with the di spatchEvent method,
though it may be called multiple times during that phase if necessary. If called
multiple times, the final invocation takes precedence.

initControlEvent(typeArg, canBubbleArg, cancelableArg)

Parameters

String typedrg

Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Returns

void

442

Programmer's Reference

56

Dialog interface

dialogView attribute

The Dialog interface extends the Window interface. It represents a XUI dialog
and has the single attribute dialogView.

443

dialogView attribute

The XUI dialog view of the dialog. Through this attribute, application

programmers can get the XUI document of the dialog.

dialogView

Access read-only

Returns View
444 Programmer's Reference

of

W3C Document interface

dOCtype attribULe. ... 447
documentElement attribute ... 447
documentURI attribUte 447
domConfig attribute ... 448
implementation attribute............. e 448
iNnpUtENcoding attribute e 448
strictErrorChecking attributeiiiiiii 449
XMIENCOdING @ttribULE ... e 449
xmiStandalone attribute ... 449
XMIVErSION attribULE e 450
adoptNOdE METhOd 451
createAttribute Method ... 453
create AttributeNS Method ... 453
createCDATASection Method.........c.iiiiiii e 454
createComment MEthOd ..o e 454
createDocumentFragment method ... 455
createElement method............oo 455
createElementNS Method 456
createEntityReference methodccoouiiiii i 456
createProcessingInstruction methodoooiuiiiiiiii e 457
createTextNode Method....... ... e 458
getElementByld method... ... 458
getElementsByTagName method ... 458
getElementsByTagNameNS method............ooiii i 459
iMportNode Method e 459
normalizeDocument method ... 461
renameNOode MEthO e 462

445

The Document interface is defined in the W3C Document Object Model (DOM)
Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113.)

The Document interface represents the entire HTML or XML document.
Conceptually, it is the root of the document tree, and provides the primary access
to the document's data.

Since elements, text nodes, comments, processing instructions, etc. cannot exist
outside the context of a Document, the Document interface also contains the
factory methods needed to create these objects. The Node objects created have a
ownerDocument attribute which associates them with the Document within
whose context they were created.

446 Programmer's Reference

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

doctype attribute

The Document Type Declaration (see DocumentType) associated with this
document. For HTML documents as well as XML documents without a document
type declaration this returns null. The DOM Level 2 does not support editing the
Document Type Declaration. docType cannot be altered in any way, including
through the use of methods inherited from the Node interface, such as
insertNode or removeNode.

doctype
Access read-only
Returns DocumentType

documentElement attribute

This is a convenience attribute that allows direct access to the child node that is
the root element of the document. For HTML documents, this is the element with
the tagName "HTML".

documentElement
Access read-only
Returns Element

documentURI attribute

The location of the document or nul1 if undefined or if the Document was
created using DOMImplementation.createDocument. No lexical
checking is performed when setting this attribute; this could result in a null
value returned when using Node . baseURI.

Beware that when the Document supports the feature "HTML" [DOM Level 2
HTML], the href attribute of the HTML BASE element takes precedence over this
attribute when computing Node . baseURI.

documentURI
Access read-write
Returns String

W3C Document interface 447

http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML

domConfig attribute

~ Note
This DOM Level 3 attribute is defined, but is currently unimplemented by

Arbortext Editor.

The configuration used when Document .normalizeDocument is invoked.

domConfig
Access read-only
Returns DOMConfiguration

implementation attribute

The DOMImplementation object that handles this document. A DOM
application may use objects from multiple implementations.

implementation
Access read-only
Returns DOMImplementation

inputEncoding attribute

1 Note
This DOM Level 3 attribute is defined, but is currently unimplemented by

Arbortext Editor.

An attribute specifying the encoding used for this document at the time of the
parsing. This is null when it is not known, such as when the Document was

created in memory.

inputEncoding
Access read-only
Returns String

Programmer's Reference

448

strictErrorChecking attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

An attribute specifying whether error checking is enforced or not. When set to
false, the implementation is free to not test every possible error case normally
defined on DOM operations, and not raise any DOMException on DOM
operations or report errors while using Document .normalizeDocument ().
In case of error, the behavior is undefined. This attribute is t rue by default.

strictErrorChecking

Access read-write
Returns boolean

xmlEncoding attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

An attribute specifying, as part of the XML declaration, the encoding of this
document. This is null when unspecified or when it is not known, such as when
the Document was created in memory.

xmlEncoding
Access read-only
Returns String

xmlStandalone attribute

>~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

W3C Document interface 449

An attribute specifying, as part of the XML declaration, whether this document is
standalone. This is false when unspecified.

~ Note

No verification is done on the value when setting this attribute. Applications
should use Document .normalizeDocument () with the "validate"
parameter to verify if the value matches the validity constraint for standalone
document declaration as defined in [XML 1.0].

xmlStandalone

Access read-write
Returns boolean

Set throws DOMException

NOT _SUPPORTED_ERR: Raised if this document does
not support the "XML" feature.

xmlVersion attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

An attribute specifying, as part of the XML declaration, the version number of this
document. If there is no declaration and if this document supports the "XML"
feature, the value is "1 .0" . If this document does not support the "XML"
feature, the value is always null. Changing this attribute will affect methods that
check for invalid characters in XML names. Application should invoke
Document .normalizeDocument () in order to check for invalid characters
in the Nodes that are already part of this Document.

DOM applications may use the

DOMImplementation.hasFeature (feature, version) method with
parameter values "XMLVersion" and "1.0" (respectively) to determine if an
implementation supports [XML 1.0]. DOM applications may use the same method
with parameter values "XMLVersion" and "1.1" (respectively) to determine if an
implementation supports [XML 1.1]. In both cases, in order to support XML, an
implementation must also support the "XML" feature defined in this specification.

450 Programmer's Reference

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml11/

Document objects supporting a version of the "XMLVersion" feature must not
raise a NOT SUPPORTED_ ERR exception for the same version number when
using Document .xmlVersion.

xmlVersion

Access read-write
Returns String

Set throws DOMException

NOT _SUPPORTED ERR: Raised if the version is set to a
value that is not supported by this Document or if this
document does not support the "XML" feature.

adoptNode method

~ Note

This DOM Level 3 method is defined, but is currently unimplemented by
Arbortext Editor.

Attempts to adopt a node from another document to this document. If supported, it
changes the ownerDocument of the source node, its children, as well as the
attached attribute nodes if there are any. If the source node has a parent it is first
removed from the child list of its parent. This effectively allows moving a subtree
from one document to another (unlike importNode () which create a copy of
the source node instead of moving it). When it fails, applications should use
Document . importNode () instead. Note that if the adopted node is already
part of this document (i.e. the source and target document are the same), this
method still has the effect of removing the source node from the child list of its
parent, if any. The following list describes the specifics for each type of node.

ATTRIBUTE_NODE
The ownerElement attribute is set to null and the specified flagis set
to true on the adopted At t r. The descendants of the source Attr are
recursively adopted.

DOCUMENT_FRAGMENT _NODE
The descendants of the source node are recursively adopted.

DOCUMENT_NODE
Document nodes cannot be adopted.

DOCUMENT _TYPE NODE
DocumentType nodes cannot be adopted.

W3C Document interface 451

ELEMENT_NODE
Specified attribute nodes of the source element are adopted. Default attributes
are discarded, though if the document being adopted into defines default
attributes for this element name, those are assigned. The descendants of the
source element are recursively adopted.

ENTITY_NODE
Entity nodes cannot be adopted.

ENTITY_REFERENCE_NODE
Only the EntityReference node itself is adopted, the descendants are
discarded, since the source and destination documents might have defined the
entity differently. If the document being imported into provides a definition for
this entity name, its value is assigned.

NOTATION_NODE
Notation nodes cannot be adopted.

PROCESSING_INSTRUCTION_NODE, TEXT NODE, CDATA _
SECTION_NODE, COMMENT NODE
These nodes can all be adopted. No specifics.

~ Note

Since it does not create new nodes unlike the Document . importNode ()
method, this method does not raise an INVALID CHARACTER_ERR
exception, and applications should use the
Document.normalizeDocument () method to check if an imported
name is not an XML name according to the XML version in use.

adoptNode(source)

Parameters Node source

The node to move into this document.

Returns Node. The adopted node, or null if this operation fails,
such as when the source node comes from a different
implementation.

Throws DOMEZxception

NOT _SUPPORTED_ERR: Raised if the source node is of
type DOCUMENT, DOCUMENT TYPE.

NO_MODIFICATION _ALLOWED_ERR: Raised when
the source node is readonly.

452 Programmer's Reference

createAttribute method

Creates an At tr of the given name. Note that the At t r instance can then be set
on an Element using the setAttributeNode method.

To create an attribute with a qualified name and namespace URI, use the
createAttributeNS method.

createAttribute(name)

Parameters

String name

The name of the attribute.

Returns

Attr. Anew Attr object with the nodeName attribute
set to name, and 1localName, prefix, and
namespaceURT set to null. The value of the attribute is
the empty string.

Throws

DOMEzxception

INVALID CHARACTER_ERR: Raised if the specified
name contains an illegal character.

createAttributeNS method

Creates an attribute of the given qualified name and namespace URI. HTML-only
DOM implementations do not need to implement this method.

createAttributeNS(namespaceURI, qualifiedName)

Parameters

String namespaceURI

The namespace URI of the attribute to create.

String qualifiedName

The qualified name of the attribute to instantiate.

W3C Document interface

453

Returns Attr. A new Attr object with the following attributes:

Node.nodeName qualifiedName
Node.namespaceURI namespaceURT

Node.prefix prefix, extracted from
qualifiedName, or
null if there is no prefix

Node.localName local name, extracted from
qualifiedName
Attr.name qualifiedName
Node.nodeValue the empty string
Throws DOMException

INVALID CHARACTER ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI isnull, ifthe qualifiedName hasa
prefix that is "xml" and the name spaceURT is different
from " http://www.w3.org/XML/1998/namespace", or if
the qualifiedName is "xmlns" and the
namespaceURI is different from " http://www.w3.org/
2000/xmlns/".

createCDATASection method

Creates a CDATASection node whose value is the specified string.

createCDATASection(data)
Parameters String data

The data for the CDATASection contents.

Returns CDATASection. The new CDATASection object.
Throws DOMEzxception
NOT_SUPPORTED_ ERR: Raised if this document is an
HTML document.

createComment method

Creates a Comment node given the specified string.

454 Programmer's Reference

createComment(data)
Parameters String data
The data for the node.
Returns Comment. The new Comment object.

createDocumentFragment method

Creates an empty DocumentFragment object.

createDocumentFragment()

Parameters

None

Returns

DocumentFragment. A new DocumentFragment.

createElement method

Creates an element of the type specified. Note that the instance returned
implements the E1lement interface, so attributes can be specified directly on the

returned object.

In addition, if there are known attributes with default values, At tr nodes
representing them are automatically created and attached to the element.

To create an element with a qualified name and namespace URI, use the
createElementNS method.

createElement(tagName)

Parameters

String tagName

The name of the element type to instantiate. For XML, this
is case-sensitive. For HTML, the tagName parameter may
be provided in any case, but it must be mapped to the
canonical uppercase form by the DOM implementation.

Returns

Element. A new Element object with the nodeName
attribute set to tagName, and 1ocalName, prefix, and
namespaceURI settonull.

Throws

DOMException

INVALID CHARACTER ERR: Raised if the specified
name contains an illegal character.

W3C Document interface

455

createElementNS method

Creates an element of the given qualified name and namespace URI. HTML-only
DOM implementations do not need to implement this method.

createElementNS(namespaceURI, qualifiedName)

Parameters String namespaceURI

The namespace URI of the element to create.

String qualifiedName
The qualified name of the element type to instantiate.
Returns Element. A new Element object with the following
attributes:
Node.nodeName qualifiedName
Node.namespaceURI namespaceURI
Node.prefix prefix, extracted from
qualifiedName, or
null if there is no prefix
Node.localName local name, extracted from
qualifiedName
Element.tagName qualifiedName
Throws DOMEZXxception

INVALID CHARACTER ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURT is null, orifthe qualifiedName
has a prefix that is "xml" and the namespaceURI is
different from " http://www.w3.org/XML/1998/
namespace" [XML Namespaces].

createEntityReference method

Creates an EntityReference object. In addition, if the referenced entity is
known, the child list of the EntityReference node is made the same as that
of the corresponding Ent ity node.

456 Programmer's Reference

http://www.w3.org/TR/REC-xml-names/

~ Note
If any descendant of the Ent ity node has an unbound namespace prefix, the
corresponding descendant of the created EntityReference node is also
unbound; (its namespaceURI is null). The DOM Level 2 does not support
any mechanism to resolve namespace prefixes.

createEntityReference(name)
Parameters String name

The name of the entity to reference.

Returns EntityReference. The new EntityReference
object.
Throws DOMException

INVALID CHARACTER ERR: Raised if the specified
name contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createProcessinglnstruction method

Creates a ProcessingInstruction node given the specified name and data
strings.

createProcessingInstruction(target, data)
Parameters String target

The target part of the processing instruction.

String data

The data for the node.
Returns ProcessingInstruction. The new
ProcessingInstruction object.
Throws DOMEzxception

INVALID CHARACTER ERR: Raised if the specified
target contains an illegal character.

NOT _SUPPORTED_ ERR: Raised if this document is an
HTML document.

W3C Document interface 457

createTextNode method

Creates a Text node given the specified string.

createTextNode(data)
Parameters String data

The data for the node.
Returns Text. The new Text object.

getElementByld method

Returns the Element whose ID is given by elementId. If no such element
exists, returns null. Behavior is not defined if more than one element has this

ID.

~ Note
The DOM implementation must have information that says which attributes
are of type ID. Attributes with the name "ID" are not of type ID unless so
defined. Implementations that do not know whether attributes are of type ID or

not are expected to return null.

getElementById(elementld)
Parameters String elementld

The unique id value for an element.
Returns Element. The matching element.

getElementsByTagName method

Returns a NodeList of all the Elements with a given tag name in the order in
which they are encountered in a preorder traversal of the Document tree.

getElementsByTagName(tagName)

Parameters String tagName

The name of the tag to match on. The special value "*"
matches all tags.

Returns NodeList. A new NodeList object containing all the
matched Elements.

Programmer's Reference

458

getElementsByTagNameNS method

Returns a NodeList of all the Elements with a given local name and
namespace URI in the order in which they are encountered in a preorder traversal
of the Document tree.

getElementsByTagNameNS(namespaceURI, localName)
Parameters String namespaceURI

The namespace URI of the elements to match on. The
special value "*" matches all namespaces.

String localName

The local name of the elements to match on. The special
value "*" matches all local names.

Returns NodeList. A new NodeList object containing all the
matched Elements.

importNode method

Imports a node from another document to this document. The returned node has
no parent; (parentNode is null). The source node is not altered or removed
from the original document; this method creates a new copy of the source node.

For all nodes, importing a node creates a node object owned by the importing
document, with attribute values identical to the source node's nodeName and
nodeType, plus the attributes related to namespaces (prefix, localName,
and namespaceURI). As in the cloneNode operation on a Node, the source
node is not altered.

Additional information is copied as appropriate to the nodeType, attempting to
mirror the behavior expected if a fragment of XML or HTML source was copied
from one document to another, recognizing that the two documents may have
different DTDs in the XML case. The following list describes the specifics for
each type of node.

ATTRIBUTE _NODE
The ownerElement attribute is set to null and the specified flagis set
to true on the generated At t r. The descendants of the source Attr are
recursively imported and the resulting nodes reassembled to form the
corresponding subtree.

Note that the deep parameter has no effect on At t r nodes; they always carry
their children with them when imported.

W3C Document interface 459

DOCUMENT_FRAGMENT NODE
If the deep option was set to t rue , the descendants of the source element
are recursively imported and the resulting nodes reassembled to form the
corresponding subtree. Otherwise, this simply generates an empty
DocumentFragment.

DOCUMENT _NODE
Document nodes cannot be imported.

DOCUMENT _TYPE NODE
DocumentType nodes cannot be imported.

ELEMENT NODE
Specified attribute nodes of the source element are imported, and the
generated At t r nodes are attached to the generated Element. Default
attributes are not copied, though if the document being imported into defines
default attributes for this element name, those are assigned. If the
importNode deep parameter was set to t rue, the descendants of the
source element are recursively imported and the resulting nodes reassembled
to form the corresponding subtree.

ENTITY_NODE
Entity nodes can be imported, however in the current release of the DOM
the DocumentType is readonly. Ability to add these imported nodes to a
DocumentType will be considered for addition to a future release of the
DOM.

On import, the publicId, systemId, and notationName attributes are
copied. If a deep import is requested, the descendants of the the source
Entity are recursively imported and the resulting nodes reassembled to form
the corresponding subtree.

ENTITY_REFERENCE_NODE
Only the EntityReference itself is copied, even if a deep import is
requested, since the source and destination documents might have defined the
entity differently. If the document being imported into provides a definition for
this entity name, its value is assigned.

NOTATION_NODE
Notation nodes can be imported, however in the current release of the
DOM the DocumentType is readonly. Ability to add these imported nodes
to a Document Type will be considered for addition to a future release of the
DOM.

On import, the publicIdand systemId attributes are copied.

Note that the deep parameter has no effect on Notat ion nodes since they
never have any children.

PROCESSING_INSTRUCTION_NODE
The imported node copies its target and data values from those of the
source node.

460 Programmer's Reference

TEXT_NODE, CDATA_SECTION_NODE, COMMENT_NODE
These three types of nodes inheriting from CharacterData copy their
data and length attributes from those of the source node.

importNode(importedNode, deep)
Parameters Node importedNode

The node to import.
boolean deep

If true, recursively import the subtree under the specified
node; if false, import only the node itself, as explained
above. This has no effect on Attr, EntityReference,
and Notation nodes.

Returns Node. The imported node that belongs to this Document.

Throws DOMException

NOT _SUPPORTED ERR: Raised if the type of node
being imported is not supported.

normalizeDocument method

~ Note

This DOM Level 3 method is defined, but is currently unimplemented by
Arbortext Editor.

This method acts as if the document was going through a save and load cycle,
putting the document in a "normal" form. As a consequence, this method updates
the replacement tree of EntityReference nodes and normalizes Text nodes,
as defined in the method Node .normalize ().

Otherwise, the actual result depends on the features being set on the
Document .domConfig object and governing what operations actually take
place. Noticeably this method could also make the document namespace well-
formed according to the algorithm described in , check the character
normalization, remove the CDATASection nodes, etc. See
DOMConfiguration for details.

// Keep in the document the information defined

// in the XML Information Set (Java example)

DOMConfiguration docConfig = myDocument.getDomConfig() ;
docConfig.setParameter ("infoset", Boolean.TRUE) ;

myDocument .normalizeDocument () ;

W3C Document interface 461

Mutation events, when supported, are generated to reflect the changes occurring
on the document.

If errors occur during the invocation of this method, such as an attempt to update a
read-only node or a Node . nodeName contains an invalid character according to
the XML version in use, errors or warnings (DOMError . SEVERITY ERROR or
DOMError.SEVERITY WARNING) will be reported using the
DOMErrorHandler object associated with the " error-handler" parameter. Note
this method might also report fatal errors (DOMError .SEVERITY FATAL
ERROR) if an implementation cannot recover from an error.

normalizeDocument()

Parameters None
Returns void

renameNode method
Rename an existing node of type ELEMENT NODE or ATTRIBUTE NODE.

When possible this simply changes the name of the given node, otherwise this
creates a new node with the specified name and replaces the existing node with
the new node as described below.

If simply changing the name of the given node is not possible, the following
operations are performed: a new node is created, any registered event listener is
registered on the new node, any user data attached to the old node is removed
from that node, the old node is removed from its parent if it has one, the children
are moved to the new node, if the renamed node is an Element its attributes are
moved to the new node, the new node is inserted at the position the old node used
to have in its parent's child nodes list if it has one, the user data that was attached
to the old node is attached to the new node.

When the node being renamed is an E1lement only the specified attributes are
moved, default attributes originated from the DTD are updated according to the
new element name. In addition, the implementation may update default attributes
from other schemas. Applications should use

Document .normalizeDocument () to guarantee these attributes are up-to-
date.

When the node being renamed is an At t r that is attached to an Element , the
node is first removed from the Element attributes map. Then, once renamed,
either by modifying the existing node or creating a new one as described above, it
is put back.

In addition,

* auser data event NODE RENAMED is fired,

* when the implementation supports the feature "MutationNameEvents", each
mutation operation involved in this method fires the appropriate event, and in

462 Programmer's Reference

the end the event { http://www.w3.0rg/2001/xml-events,
DOME lementNameChanged} or { http://www.w3.0rg/2001/xml-
events, DOMAttributeNameChanged} is fired.

renameNode(n, namespaceURI, qualifiedName)

Parameters

Node n

The node to rename.

String namespaceURI

The new namespace URI.

String qualifiedName

The new qualified name.

Returns

Node. The renamed node. This is either the specified node
or the new node that was created to replace the specified
node.

Throws

DOMEzxception

NOT _SUPPORTED_ ERR: Raised when the type of the
specified node is neither ELEMENT NODE nor
ATTRIBUTE NODE, or if the implementation does not
support the renaming of the document element.

INVALID CHARACTER ERR: Raised if the new
qualified name is not an XML name according to the XML
version in use specified in the Document .xmlVersion
attribute.

WRONG DOCUMENT ERR: Raised when the specified
node was created from a different document than this
document.

NAMESPACE ERR: Raised if the qualifiedName is
a malformed qualified name, if the qualifiedName has
a prefix and the namespaceURT is null, or if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from "http://www.w3.org/
XML/1998/namespace" [XML Namespaces]. Also raised,
when the node being renamed is an attribute, if the
qualifiedName, or its prefix, is "xmlns" and the
namespaceURI is different from " http://www.w3.org/
2000/xmlns/".

W3C Document interface

463

http://www.w3.org/TR/REC-xml-names/

58

W3C DocumentEditVAL interface

continuousValidityChecking attribute............c..oiiii 466
getDefinedElements method ... 466
validateDocument Methodooiiiiiiiii 466

The DocumentEditVAL interface is defined in the W3C Document Object
Model (DOM) Level 3 Validation Specification. (Refer to http://www.w3.org/TR/
DOM-Level-3-Val.)

This interface extends the NodeEditVAL interface with additional methods for
document editing. An object implementing this interface must also implement the
Document interface.

465

http://www.w3.org/TR/DOM-Level-3-Val
http://www.w3.org/TR/DOM-Level-3-Val

continuousValidityChecking attribute

An attribute specifying whether the validity of the document is continuously
enforced. When the attribute is set to t rue, the implementation may raise certain
exceptions, depending on the situation (see the following). This attribute is
false by default.

continuousValidityChecking

Access read-write
Returns boolean
Set throws DOMException

NOT _SUPPORTED_ ERR: Raised if the implementation
does not support setting this attribute to true.

VALIDATION ERR: Raised if an operation makes this
document not compliant with the VAL INCOMPLETE
validity type or the document is invalid, and this attribute
is set to true.

ExceptionVAL

NO_SCHEMA AVAILABLE ERR: Raised if this
attribute is set to t rue and a schema is unavailable.

getDefinedElements method

Returns list of all element information item names of global declaration,
belonging to the specified namespace.

getDefinedElements(namespaceURI)

Parameters String namespaceURI

namespaceURI of namespace. For DTDs, this is null.

Returns NameList. List of all element information item names
belonging to the specified namespace or null if no
schema is available.

validateDocument method

Validates the document against the schema, e.g., a DTD or an W3C XML schema
or another. Any attempt to modify any part of the document while validating
results in implementation-dependent behavior. In addition, the validation
operation itself cannot modify the document, e.g., for default attributes. This
method makes use of the error handler, as described in the [DOM Level 3 Core]
DOMConfiguration interface, with all errors being SEVERITY ERROR as
defined in the DOMError interface.

466 Programmer's Reference

http://www.w3.org/TR/DOM-Level-3-Core

validateDocument()

Parameters

None

Returns

unsigned short. A validation state constant.

W3C DocumentEditVAL interface

467

59

W3C DocumentEvent interface

createEVveNnt MEethod ... e 470

The DocumentEvent interface is defined in the W3C Document Object Model
(DOM) Level 2 Events Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Events-20001113.)

The DocumentEvent interface provides a mechanism by which the user can
create an Event of a type supported by the implementation. It is expected that the
DocumentEvent interface will be implemented on the same object which
implements the Document interface in an implementation which supports the
Event model.

469

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

createEvent method

createEvent(eventType)

Parameters

String eventType The eventType parameter specifies
the type of Event interface to be created. If the Event
interface specified is supported by the implementation this
method will return a new Event of the interface type
requested. If the Event is to be dispatched via the
dispatchEvent method the appropriate event init
method must be called after creation in order to initialize
the Event's values. As an example, a user wishing to
synthesize some kind of UTEvent would call
createEvent with the parameter "UIEvents". The
initUIEvent method could then be called on the newly
created UTEvent to set the specific type of UIEvent to be
dispatched and set its context information.

The createEvent method is used in creating Events
when it is either inconvenient or unnecessary for the user
to create an Event themselves. In cases where the
implementation provided Event is insufficient, users may
supply their own Event implementations for use with the
dispatchEvent method.

Returns

Event. The newly created Event

Throws

DOMEZxception
NOT _SUPPORTED_ ERR: Raised if the implementation
does not support the type of Event interface requested

470

Programmer's Reference

60

W3C DocumentFragment interface

The DocumentFragment interface is defined in the W3C Document Object
Model (DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113.)

DocumentFragment is a "lightweight" or "minimal" Document object. It is
very common to want to be able to extract a portion of a document's tree or to
create a new fragment of a document. Imagine implementing a user command like
cut or rearranging a document by moving fragments around. It is desirable to have
an object which can hold such fragments and it is quite natural to use a Node for
this purpose. While it is true that a Document object could fulfill this role, a
Document object can potentially be a heavyweight object, depending on the
underlying implementation. What is really needed for this is a very lightweight
object. DocumentFragment is such an object.

Furthermore, various operations — such as inserting nodes as children of another
Node — may take DocumentFragment objects as arguments; this results in all
the child nodes of the DocumentFragment being moved to the child list of this
node.

The children of a DocumentFragment node are zero or more nodes
representing the tops of any sub-trees defining the structure of the document.
DocumentFragment nodes do not need to be well-formed XML documents
(although they do need to follow the rules imposed upon well-formed XML
parsed entities, which can have multiple top nodes). For example, a
DocumentFragment might have only one child and that child node could be a
Text node. Such a structure model represents neither an HTML document nor a
well-formed XML document.

When a DocumentFragment is inserted into a Document (or indeed any
other Node that may take children) the children of the DocumentFragment
and not the DocumentFragment itself are inserted into the Node. This makes
the DocumentFragment very useful when the user wishes to create nodes that

471

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

are siblings; the DocumentFragment acts as the parent of these nodes so that
the user can use the standard methods from the Node interface, such as
insertBefore and appendChild.

472 Programmer's Reference

61

W3C DocumentRange interface

createRange Methodo e 474

The DocumentRange interface is defined in the W3C Document Object Model
(DOM) Level 2 Traversal and Range Specification. (Refer to http://www.w3.org/
TR/2000/REC-DOM-Level-2-Traversal-Range-20001113.)

473

http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113

createRange method

This interface can be obtained from the object implementing the Document
interface using binding-specific casting methods.

createRange()

Parameters None

Returns Range. The initial state of the Range returned from this
method is such that both of its boundary-points are
positioned at the beginning of the corresponding
Document, before any content. The Range returned can
only be used to select content associated with this
Document, or with DocumentFragments and Attrs for
which this Document is the ownerDocument.

474 Programmer's Reference

62

W3C DocumentType interface

entities attibULE. ... 476
internalSubset attribute...........ooii 476
Name attribUte 476
notations attribUte..........oo 477
PUDIiCId attribute.o 477
systemld attribute 477

The DocumentType interface is defined in the W3C Document Object Model
(DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Core-20001113.)

Each Document has a doctype attribute whose value is either null or a
DocumentType object. The DocumentType interface in the DOM Core
provides an interface to the list of entities that are defined for the document, and
little else because the effect of namespaces and the various XML schema efforts
on DTD representation are not clearly understood as of this writing.

The DOM Level 2 doesn't support editing Document Type nodes.

475

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

entities attribute

A NamedNodeMap containing the general entities, both external and internal,
declared in the DTD. Parameter entities are not contained. Duplicates are
discarded. For example in:

<!DOCTYPE ex SYSTEM "ex.dtd" [
<!ENTITY foo "foo">

<!ENTITY bar "bar">

<!ENTITY bar "bar2">
<!ENTITY baz "baz">

1>

oe

<ex/>

the interface provides access to foo and the first declaration of bar but not the
second declaration of bar or baz. Every node in this map also implements the
Entity interface.

The DOM Level 2 does not support editing entities, therefore entities cannot
be altered in any way.

entities
Access read-only
Returns NamedNodeMap

internalSubset attribute

The internal subset as a string.

~ Note
The actual content returned depends on how much information is available to
the implementation. This may vary depending on various parameters,
including the XML processor used to build the document.

internalSubset
Access read-only
Returns String

name attribute

The name of DTD; i.e., the name immediately following the DOCTYPE keyword.

476 Programmer's Reference

name

Access

read-only

Returns

String

notations attribute

A NamedNodeMap containing the notations declared in the DTD. Duplicates are

discarded. Every node in this map also implements the Notation interface.

The DOM Level 2 does not support editing notations, therefore notations

cannot be altered in any way.

notations
Access read-only
Returns NamedNodeMap

publicld attribute

The public identifier of the external subset.

publicId
Access read-only
Returns String

systemld attribute

The system identifier of the external subset.

systemId
Access read-only
Returns String

W3C DocumentType interface

477

63

W3C DocumentView interface

defaultView attribDULE e 480

The DocumentView interface is defined in the W3C Document Object Model
(DOM) Level 2 Views Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Views-20001113.)

The DocumentView interface is implemented by Document objects in DOM
implementations supporting DOM Views. It provides an attribute to retrieve the
default view of a document.

479

http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113

defaultView attribute

The default AbstractView for this Document, or null if none available.

defaultView
Access read-only
Returns AbstractView

480 Programmer's Reference

64

W3C DOMConfiguration interface

canSetParameter Method e 488
getParameter method 488
setParameter Method ... e 489

The DOMConfiguration interface is defined in the W3C Document Object
Model (DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113.)

The DOMConfiguration interface represents the configuration of a document
and maintains a table of recognized parameters. Using the configuration, it is
possible to change Document .normalizeDocument () behavior, such as
replacing the CDATASection nodes with Text nodes or specifying the type of
the schema that must be used when the validation of the Document is requested.
DOMConfiguration objects are also used in [DOM Level 3 Load and Save] in
the DOMParser and DOMSerializer interfaces.

The parameter names used by the DOMConfiguration object are defined
throughout the DOM Level 3 specifications. Names are case-insensitive. To avoid
possible conflicts, as a convention, names referring to parameters defined outside
the DOM specification should be made unique. Because parameters are exposed
as properties in the , names are recommended to follow the section 5.16 Identifiers
of [Unicode] with the addition of the character '-' (HYPHEN-MINUS) but it is not
enforced by the DOM implementation. DOM Level 3 Core Implementations are
required to recognize all parameters defined in this specification. Some parameter
values may also be required to be supported by the implementation. Refer to the
definition of the parameter to know if a value must be supported or not.

481

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/DOM-Level-3-LS
http://www.unicode.org/unicode/standard/versions

~ Note

Parameters are similar to features and properties used in SAX2 [SAX].

The following list of parameters defined in the DOM:
"canonical-form"

true
[optional]
Canonicalize the document according to the rules specified in [Canonical
XML], such as removing the DocumentType node (if any) from the tree,
or removing superfluous namespace declarations from each element. Note
that this is limited to what can be represented in the DOM; in particular,
there is no way to specify the order of the attributes in the DOM. In
addition,

Setting this parameter to t rue will also set the state of the parameters
listed below. Later changes to the state of one of those parameters will
revert "canonical-form" back to false.

nn nn

Parameters set to false: " entities", "normalize-characters", "cdata-
sections".

nn nn

Parameters set to t rue: "namespaces", "namespace-declarations", " well-
formed", "element-content-whitespace".

Other parameters are not changed unless explicitly specified in the
description of the parameters.

false
[required] (default)

Do not canonicalize the document.
"cdata-sections"

true
[required] (default)

Keep CDATASect ion nodes in the document.

false
[required]

Transform CDATASection nodes in the document into Text nodes. The
new Text node is then combined with any adjacent Text node.

482 Programmer's Reference

http://www.saxproject.org/sax2-ext.html
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-c14n

"check-character-normalization"

true
[optional]

Check if the characters in the document are fully normalized, as defined in
appendix B of [XML 1.1]. When a sequence of characters is encountered
that fails normalization checking, an error with the DOMError. type
equals to "check-character-normalization-failure" is issued.

false
[required] (default)

Do not check if characters are normalized.
"comments"

true
[required] (default)

Keep Comment nodes in the document.

false
[required]

Discard Comment nodes in the document.
""datatype-normalization"

true
[optional]
Expose schema normalized values in the tree, such as XML Schema
normalized values in the case of XML Schema. Since this parameter
requires to have schema information, the "validate" parameter will also be
set to t rue. Having this parameter activated when "validate" is false
has no effect and no schema-normalization will happen.

Since the document contains the result of the XML 1.0 processing, this
parameter does not apply to attribute value normalization as defined in
section 3.3.3 of [XML 1.0] and is only meant for schema languages other
than Document Type Definition (DTD).

false
[required] (default)

Do not perform schema normalization on the tree.
"element-content-whitespace"

true
[required] (default)

Keep all whitespaces in the document.

W3C DOMConfiguration interface 483

http://www.w3.org/TR/xml11/
http://www.w3.org/TR/REC-xml

false
[optional]
Discard all Text nodes that contain whitespaces in element content, as
described in [element content whitespace] . The implementation is
expected to use the attribute Text .isElementContentWhitespace
to determine if a Text node should be discarded or not.

"entities"

true
[required] (default)

Keep EntityReference nodes in the document.

false
[required]
Remove all EntityReference nodes from the document, putting the
entity expansions directly in their place. Text nodes are normalized, as
defined in Node .normalize. Only unexpanded entity references are
kept in the document.

This parameter does not affect Ent ity nodes.

"error-handler"
[required]
Contains a DOMErrorHandler object. If an error is encountered in the
document, the implementation will call back the DOMErrorHandler
registered using this parameter. The implementation may provide a default
DOMErrorHandler object.

When called, DOMError.relatedData will contain the closest node to
where the error occurred. If the implementation is unable to determine the
node where the error occurs, DOMError.relatedData will contain the
Document node. Mutations to the document from within an error handler
will result in implementation dependent behavior.

"namespaces"

true
[required] (default)

Perform the namespace processing as defined in .

false
[optional]

Do not perform the namespace processing.

""namespace-declarations
This parameter has no effect if the parameter "namespaces" is set to false.

484 Programmer's Reference

true
[required] (default)

Include namespace declaration attributes, specified or defaulted from the
schema, in the document. See also the sections "Declaring Namespaces" in
[XML Namespaces] and [XML Namespaces 1.1].

false
[required]
Discard all namespace declaration attributes. The namespace prefixes
(Node .prefix) are retained even if this parameter is set to false.

"normalize-characters"

true
[optional]
Fully normalized the characters in the document as defined in appendix B
of [XML 1.1].

false
[required] (default)

Do not perform character normalization.

"schema-type"
[optional]
Represent a DOMSt ring object containing an absolute URI and representing
the type of the schema language used to validate a document against. Note that
no lexical checking is done on the absolute URI.

If this parameter is not set, a default value may be provided by the
implementation, based on the schema languages supported and on the schema
language used at load time. If no value is provided, this parameter is null.

For XML Schema [XML Schema Part 1], applications must use the value
"http://www.w3.0rg/2001/XMLSchema". For XML DTD [XML
1.0], applications must use the value "http://www.w3.0rg/TR/REC-
xm1". Other schema languages are outside the scope of the W3C and
therefore should recommend an absolute URI in order to use this method.

"validate"

true
[optional]

Require the validation against a schema (i.e. XML schema, DTD, any
other type or representation of schema) of the document as it is being
normalized as defined by [XML 1.0]. If validation errors are found, or no

W3C DOMConfiguration interface 485

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

schema was found, the error handler is notified. Schema-normalized
values will not be exposed according to the schema in used unless the
parameter " datatype-normalization" is t rue.

This parameter will reevaluate:

* Attribute nodes with Attr.specifiedequalsto false, as
specified in the description of the At t r interface;

* The value of the attribute
Text.isElementContentWhitespace forall Text nodes;

* The value of the attribute At tr.isId for all Attr nodes;

* The attributes Element . schemaTypeInfo and
Attr.schemaTypelInfo.

"validate-if-schema" and "validate" are mutually exclusive, setting one of
them to t rue will set the other one to false. Applications should also
consider setting the parameter "well-formed" to t rue, which is the default
for that option, when validating the document.

false
[required] (default)

Do not accomplish schema processing, including the internal subset
processing. Default attribute values information are kept. Note that
validation might still happen if "validate-if-schema" is true.

"validate-if-schema"

true
[optional]
Enable validation only if a declaration for the document element can be
found in a schema (independently of where it is found, i.e. XML schema,
DTD, or any other type or representation of schema). If validation is
enabled, this parameter has the same behavior as the parameter "validate"
setto true.

"validate-if-schema" and "validate" are mutually exclusive, setting one of
them to t rue will set the other one to false.

false
[required] (default)

No schema processing should be performed if the document has a schema,
including internal subset processing. Default attribute values information
are kept. Note that validation must still happen if "validate" is true.

"well-formed"

true
[required] (default)

486 Programmer's Reference

Check if all nodes are XML well formed according to the XML version in
use in Document .xmlVersion:

false

check if the attribute Node . nodeName contains invalid characters
according to its node type and generate a DOMError of type "wf-
invalid-character-in-node-name", with a
DOMError.SEVERITY ERROR severity, if necessary;

check if the text content inside Attr, Element, Comment, Text,
CDATASection nodes for invalid characters and generate a
DOMError of type "wf-invalid-character", witha
DOMError.SEVERITY ERROR severity, if necessary;

check if the data inside ProcessingInstruction nodes for
invalid characters and generate a DOMError of type "wf -
invalid-character", witha DOMError.SEVERITY ERROR
severity, if necessary;

[optional]
Do not check for XML well-formedness.

The resolution of the system identifiers associated with entities is done using
Document .documentURI. However, when the feature "LS" defined in [DOM
Level 3 Load and Save] is supported by the DOM implementation, the parameter
"resource-resolver" can also be used on DOMConfiguration objects attached
to Document nodes. If this parameter is set,

Document .normalizeDocument () will invoke the resource resolver
instead of using Document .documentURT .

W3C DOMConfiguration interface 487

http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/DOM-Level-3-LS

canSetParameter method

~ Note
This DOM Level 3 method is defined, but is currently unimplemented by
Arbortext Editor.

Check if setting a parameter to a specific value is supported.

canSetParameter(name, value)
Parameters String name

The name of the parameter to check.

DOMUserData value

An object. if null, the returned value is true.

Returns booleantrue if the parameter could be successfully set
to the specified value, or false if the parameter is not
recognized or the requested value is not supported. This
does not change the current value of the parameter itself.

getParameter method

~ Note
This DOM Level 3 method is defined, but is currently unimplemented by
Arbortext Editor.

Return the value of a parameter if known.

getParameter(name)
Parameters String name

The name of the parameter.

Programmer's Reference

488

Returns DOMUserData. The current object associated with the
specified parameter or null if no object has been
associated or if the parameter is not supported.

"by a DOM application" prevents a DOM implementation
to return its default behavior (such as the default "schema-
type") if any.

Throws DOMEZxception

NOT _FOUND_ERR: Raised when the parameter name is
not recognized.

setParameter method

~ Note

This DOM Level 3 method is defined, but is currently unimplemented by
Arbortext Editor.

Set the value of a parameter.

setParameter(name, value)

Parameters String name

The name of the parameter to set.

DOMUserData value

The new value or null if the user wishes to unset the
parameter. While the type of the value parameter is defined
as DOMUserData, the object type must match the type
defined by the definition of the parameter. For example, if
the parameter is "error-handler", the value must be
of type DOMErrorHandler.

Should we allow implementations to raise exception if the
type does not match? INVALID ACCESS ERR seems the
closest exception code...

Returns void
Throws DOMEzxception

NOT_SUPPORTED ERR: Raised when the parameter
name is recognized but the requested value cannot be set.

NOT FOUND_ERR: Raised when the parameter name is
not recognized.

W3C DOMConfiguration interface 489

65

W3C DOMEXxception exception

ExceptionCode eNUMEIatioNcocuuiiiiiiiiiie e 492

The DOMException interface is defined in the W3C Document Object Model
(DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Core-20001113.)

DOM operations only raise exceptions in "exceptional" circumstances, i.e., when
an operation is impossible to perform (either for logical reasons, because data is
lost, or because the implementation has become unstable). In general, DOM
methods return specific error values in ordinary processing situations, such as out-
of-bound errors when using NodeList.

Implementations should raise other exceptions under other circumstances. For
example, implementations should raise an implementation-dependent exception if
anull argument is passed when null was not expected.

Some languages and object systems do not support the concept of exceptions. For
such systems, error conditions may be indicated using native error reporting
mechanisms. For some bindings, for example, methods may return error codes
similar to those listed in the corresponding method descriptions.

Objects that implement the DOMException interface include the following
property:

unsigned short code

491

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

ExceptionCode enumeration

An integer indicating the type of error generated.

~ Note
Other numeric codes are reserved for W3C for possible future use.

The ExceptionCode enumeration has the following constants of type
unsigned short.

INDEX SIZE ERR =1
If index or size is negative, or greater than the allowed value

DOMSTRING_SIZE ERR =2
If the specified range of text does not fit into a DOMString

HIERARCHY_REQUEST_ERR =3
If any node is inserted somewhere it doesn't belong

WRONG_DOCUMENT _ERR =4
If a node is used in a different document than the one that created it (that
doesn't support it)

INVALID CHARACTER_ERR =5
If an invalid or illegal character is specified, such as in a name. See production
2 in the XML specification for the definition of a legal character, and
production 5 for the definition of a legal name character.

NO_DATA ALLOWED_ERR =6
If data is specified for a node which does not support data

NO_MODIFICATION ALLOWED _ERR =7
If an attempt is made to modify an object where modifications are not allowed

NOT_FOUND_ERR =8
If an attempt is made to reference a node in a context where it does not exist

NOT_SUPPORTED_ERR =9
If the implementation does not support the requested type of object or
operation.

INUSE_ATTRIBUTE_ERR =10
If an attempt is made to add an attribute that is already in use elsewhere

INVALID STATE ERR =11
If an attempt is made to use an object that is not, or is no longer, usable.

492 Programmer's Reference

SYNTAX _ERR =12
If an invalid or illegal string is specified.

INVALID MODIFICATION_ERR =13
If an attempt is made to modify the type of the underlying object.

NAMESPACE_ERR =14
If an attempt is made to create or change an object in a way which is incorrect
with regard to namespaces.

INVALID ACCESS _ERR =15
If a parameter or an operation is not supported by the underlying object.

VALIDATION_ERR =16
If a call to a method such as insertBefore or removeChild would
make the Node invalid with respect to "partial validity", this exception would
be raised and the operation would not be done. This code is used in DOM
Validation Specification. Refer to this specification for further information.

TYPE MISMATCH_ERR =17
If the type of an object is incompatible with the expected type of the parameter
associated to the object.

W3C DOMException exception 493

66

W3C DOMImplementation
interface

createDocument Method...... ... 496
createDocumentType Methodoiiiiii i 496
getFeature Method 497
hasFeature Method ... e 498

The DOMImplementation interface is defined in the W3C Document Object

Model (DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113.)

The DOMImplementation interface provides a number of methods for
performing operations that are independent of any particular instance of the
document object model.

495

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

createDocument method

Creates an XML Document object of the specified type with its document
element. HTML-only DOM implementations do not need to implement this
method.

createDocument(namespaceURI, qualifiedName, doctype)

Parameters String namespaceURI
The namespace URI of the document element to create.
String qualifiedName

The qualified name of the document element to be created.
DocumentType doctype

The type of document to be created or null.

When doctype isnot null, its
Node.ownerDocument attribute is set to the document
being created.

Returns Document. A new Document object.

Throws DOMEzxception
INVALID CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI isnull, orif the qualifiedName
has a prefix that is "xml" and the namespaceURT is
different from " http://www.w3.org/XML/1998/
namespace" [XML Namespaces].

WRONG DOCUMENT ERR: Raised if doctype has
already been used with a different document or was created
from a different implementation.

createDocumentType method

Creates an empty DocumentType node. Entity declarations and notations are
not made available. Entity reference expansions and default attribute additions do
not occur. It is expected that a future version of the DOM will provide a way for
populating a DocumentType.

HTML-only DOM implementations do not need to implement this method.

createDocumentType(qualifiedName, publicld, systemld)

Parameters String qualifiedName
The qualified name of the document type to be created.
String publicld

496 Programmer's Reference

http://www.w3.org/TR/REC-xml-names/

The external subset public identifier.
String systemld
The external subset system identifier.
Returns DocumentType. A new DocumentType node with
Node.ownerDocument setto null.
Throws DOMException INVALID CHARACTER ERR: Raised if

the specified qualified name contains an illegal character.
NAMESPACE ERR: Raised if the qualifiedName is
malformed.

getFeature method

~ Note

This DOM Level 3 method is defined, but is currently unimplemented by

Arbortext Editor.

This method returns a specialized object which implements the specialized APIs
of the specified feature and version, as specified in . The specialized object may
also be obtained by using binding-specific casting methods but is not necessarily
expected to, as discussed in . This method also allow the implementation to
provide specialized objects which do not support the DOMImplementation

interface.

W3C DOMImplementation interface 497

getFeature(feature, version)

Parameters String feature

The name of the feature requested. Note that any plus sign
"+" prepended to the name of the feature will be ignored
since it is not significant in the context of this method.
String version

This is the version number of the feature to test.

Returns DOMObject. Returns an object which implements the
specialized APIs of the specified feature and version, if
any, or null if there is no object which implements
interfaces associated with that feature. If the DOMObject
returned by this method implements the
DOMImplementation interface, it must delegate to the
primary core DOMImplementation and not return
results inconsistent with the primary core
DOMImplementation such as hasFeature,
getFeature, etc.

hasFeature method

Test if the DOM implementation implements a specific feature.

498 Programmer's Reference

hasFeature(feature, version)

Parameters

String feature

The name of the feature to test (case-insensitive). The
values used by DOM features are defined throughout the
DOM Level 2 specifications and listed in the section. The
name must be an XML name. To avoid possible conflicts,
as a convention, names referring to features defined
outside the DOM specification should be made unique by
reversing the name of the Internet domain name of the
person (or the organization that the person belongs to) who
defines the feature, component by component, and using
this as a prefix. For instance, the W3C SVG Working
Group defines the feature "org.w3c.dom.svg".

String version

This is the version number of the feature to test. In Level 2,
the string can be either "2.0" or "1.0". If the version is not
specified, supporting any version of the feature causes the
method to return true.

Returns

trueboolean. if the feature is implemented in the
specified version, false otherwise.

W3C DOMImplementation interface 499

67

W3C DOMStringList interface

length attribute ... e 502
ToToT 1 ¢=11 0 <30 4 1S 1 (o Yo I 502
(1= 0 B0 1Y 4 (o Lo [502

The DOMStringList interface is defined in the W3C Document Object Model
(DOM) Level 3 Core Specification. (Refer to http://www.w3.org/TR/DOM-Level-
3-Core.)

The DOMStringList interface provides the abstraction of an ordered collection
of DOMString values, without defining or constraining how this collection is
implemented. The items in the DOMStringList are accessible via an integral
index, starting from 0.

501

http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core

length attribute

The number of DOMSt rings in the list. The range of valid child node indices is 0
to length-1 inclusive.

length
Access read-only
Returns unsigned long

contains method

Test if a string is part of this DOMStringList.

contains(str)

Parameters String str
The string to look for.

Returns booleantrue if the string has been found, false
otherwise.

item method

Returns the indexth item in the collection. If index is greater than or equal to
the number of DOMStrings in the list, this returns nul1l.

item(index)

Parameters unsigned long index

Index into the collection.

String. The DOMString at the indexth position in the
DOMStringList, or null if that is not a valid index.

Returns

Programmer's Reference

502

68

W3C Element interface

schemaTypelnfo attribute........ ... 505
tagName attribULe ... 505
getAttribute MEthOdcooii 505
getAttributeNS Methodo 506
getAttributeNode Methodo 506
getAttributeNodeNS method ... 506
getElementsByTagName method ... e 507
getElementsByTagNameNS method............oooo e 507
hasAtribUte MEthOd ... e 507
hasAttribUtENS Method..... ..., 508
removeAttribute Method....... ... 508
remoVeALttribUtENS MEthOdoouiiii e 508
removeAttributeNode method............ooi 509
SEtALtribUtE MELhOd 509
SEtALtHbULENS Method...........oi e 510
SetAttributeNOde MELhOd oo 511
setAttributeNOdeNS MethOd.........coouniii e 511
setldAttribute Method ... 512
SetldALtbULENS Method........coo e 513
setldAttributeNode method....... ... 513

The Element interface is defined in the W3C Document Object Model (DOM)
Level 2 Core Specification. (Refer to http://www.w3.0rg/TR/2000/REC-DOM-
Level-2-Core-20001113.)

The Element interface represents an element in an HTML or XML document.
Elements may have attributes associated with them; since the Element interface
inherits from Node, the generic Node interface attribute attributes may be
used to retrieve the set of all attributes for an element. There are methods on the
Element interface to retrieve either an At t r object by name or an attribute
value by name. In XML, where an attribute value may contain entity references,

503

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

an At tr object should be retrieved to examine the possibly fairly complex sub-
tree representing the attribute value. On the other hand, in HTML, where all
attributes have simple string values, methods to directly access an attribute value
can safely be used as a convenience.

~ Note

In DOM Level 2, the method normalize is inherited from the Node
interface where it was moved.

504 Programmer's Reference

schemaTypelnfo attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

The type information associated with this element.

schemaTypeInfo
Access read-only
Returns TypeInfo

tagName attribute

The name of the element. For example, in:

<elementExample id="demo">

</elementExample> ,

tagName has the value "elementExample". Note that this is case-preserving
in XML, as are all of the operations of the DOM. The HTML DOM returns the
tagName of an HTML element in the canonical uppercase form, regardless of the
case in the source HTML document.

tagName
Access read-only
Returns String

getAttribute method

Retrieves an attribute value by name.

getAttribute(name)

Parameters String name
The name of the attribute to retrieve.

Returns String. The Attr value as a string, or the empty string
if that attribute does not have a specified or default value.

W3C Element interface 505

getAttributeNS method

Retrieves an attribute value by local name and namespace URI. HTML-only
DOM implementations do not need to implement this method.

getAttributeNS(namespaceURI, localName)

Parameters String namespaceURI
The namespace URI of the attribute to retrieve.
String localName

The local name of the attribute to retrieve.
Returns String. The Attr value as a string, or the empty string
if that attribute does not have a specified or default value.

getAttributeNode method

Retrieves an attribute node by name.

To retrieve an attribute node by qualified name and namespace URI, use the
getAttributeNodeNS method.

getAttributeNode(name)

Parameters String name
The name (nodeName) of the attribute to retrieve.
Returns Attr. The Attr node with the specified name
(nodeName) or null if there is no such attribute.

getAttributeNodeNS method

Retrieves an At tr node by local name and namespace URI. HTML-only DOM
implementations do not need to implement this method.

getAttributeNodeNS(namespaceURI, localName)

Parameters String namespaceURI
The namespace URI of the attribute to retrieve.
String localName

The local name of the attribute to retrieve.

Returns Attr. The Attr node with the specified attribute local
name and namespace URI or nul1l if there is no such
attribute.

506 Programmer's Reference

getElementsByTagName method

Returns a NodeList of all descendant Elements with a given tag name, in the
order in which they are encountered in a preorder traversal of this Element tree.

getElementsByTagName(name)

Parameters String name
The name of the tag to match on. The special value "*"

matches all tags.
Returns NodeList. A list of matching Element nodes.

getElementsByTagNameNS method

Returns a NodeList of all the descendant E1lements with a given local name
and namespace URI in the order in which they are encountered in a preorder
traversal of this Element tree.

HTML-only DOM implementations do not need to implement this method.

getElementsByTagNameNS(namespaceURI, localName)

Parameters String namespaceURI

The namespace URI of the elements to match on. The
special value "*" matches all namespaces.

String localName

The local name of the elements to match on. The special
value "*" matches all local names.

Returns NodeList. A new NodeList object containing all the
matched Elements.

hasAttribute method

Returns t rue when an attribute with a given name is specified on this element or
has a default value, false otherwise.

hasAttribute(name)

Parameters String name
The name of the attribute to look for.

Returns trueboolean. if an attribute with the given name is
specified on this element or has a default value, false
otherwise.

W3C Element interface 507

hasAttributeNS method

Returns t rue when an attribute with a given local name and namespace URI is
specified on this element or has a default value, false otherwise. HTML-only
DOM implementations do not need to implement this method.

hasAttributeNS(namespaceURI, localName)

Parameters String namespaceURI

The namespace URI of the attribute to look for.
String localName

The local name of the attribute to look for.

Returns trueboolean. if an attribute with the given local name
and namespace URI is specified or has a default value on
this element, false otherwise.

removeAttribute method

Removes an attribute by name. If the removed attribute is known to have a default
value, an attribute immediately appears containing the default value as well as the
corresponding namespace URI, local name, and prefix when applicable.

To remove an attribute by local name and namespace URI, use the
removeAttributeNS method.

removeAttribute(name)

Parameters String name

The name of the attribute to remove.
Returns void
Throws DOMException

NO_MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

removeAttributeNS method

Removes an attribute by local name and namespace URI. If the removed attribute
has a default value it is immediately replaced. The replacing attribute has the same
namespace URI and local name, as well as the original prefix.

HTML-only DOM implementations do not need to implement this method.

removeAttributeNS(namespaceURI, localName)

Parameters String namespaceURI
The namespace URI of the attribute to remove.

String localName

Programmer's Reference

508

The local name of the attribute to remove.

Returns void

Throws DOMEzxception

NO_MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

removeAttributeNode method

Removes the specified attribute node. If the removed At t r has a default value it
is immediately replaced. The replacing attribute has the same namespace URI and
local name, as well as the original prefix, when applicable.

removeAttributeNode(oldAttr)

Parameters Attr oldAttr

The Attr node to remove from the attribute list.
Returns Attr. The Attr node that was removed.
Throws DOMEzxception

NO MODIFICATION ALLOWED ERR: Raised if this
node is readonly.

NOT FOUND ERR: Raised if o1dAttr is not an
attribute of the element.

setAttribute method

Adds a new attribute. If an attribute with that name is already present in the
element, its value is changed to be that of the value parameter. This value is a
simple string; it is not parsed as it is being set. So any markup (such as syntax to
be recognized as an entity reference) is treated as literal text, and needs to be
appropriately escaped by the implementation when it is written out. In order to
assign an attribute value that contains entity references, the user must create an
Attr node plus any Text and EntityReference nodes, build the
appropriate subtree, and use setAttributeNode to assign it as the value of an
attribute.

To set an attribute with a qualified name and namespace URI, use the
setAttributeNS method.
setAttribute(name, value)

Parameters String name
The name of the attribute to create or alter.
String value

Value to set in string form.

W3C Element interface 509

Returns void

Throws DOMEZxception

INVALID CHARACTER_ERR: Raised if the specified
name contains an illegal character.

NO_MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

setAttributeNS method

Adds a new attribute. If an attribute with the same local name and namespace URI
is already present on the element, its prefix is changed to be the prefix part of the
qualifiedName, and its value is changed to be the value parameter. This
value is a simple string; it is not parsed as it is being set. So any markup (such as
syntax to be recognized as an entity reference) is treated as literal text, and needs
to be appropriately escaped by the implementation when it is written out. In order
to assign an attribute value that contains entity references, the user must create an
Attr node plus any Text and EntityReference nodes, build the
appropriate subtree, and use setAttributeNodeNS or
setAttributeNode to assign it as the value of an attribute.

HTML-only DOM implementations do not need to implement this method.

setAttributeNS(namespaceURI, qualifiedName, value)

Parameters String namespaceURI
The namespace URI of the attribute to create or alter.
String qualifiedName

The qualified name of the attribute to create or alter.
String value

The value to set in string form.

Returns void

Throws DOMEzxception

INVALID CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NO_MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

NAMESPACE _ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI isnull, ifthe qualifiedName hasa
prefix that is "xml" and the name spaceURT is different
from " http://www.w3.org/XML/1998/namespace", or if
the qualifiedName is "xmlns" and the
namespaceURI is different from " http://www.w3.org/
2000/xmlns/".

510 Programmer's Reference

setAttributeNode method

Adds a new attribute node. If an attribute with that name (nodeName) is already
present in the element, it is replaced by the new one.

To add a new attribute node with a qualified name and namespace URI, use the
setAttributeNodeNS method.

setAttributeNode(newAttr)

Parameters Attr newAttr
The At tr node to add to the attribute list.
Returns Attr. If the newAttr attribute replaces an existing

attribute, the replaced At tr node is returned, otherwise
null is returned.

Throws DOMEzxception

WRONG DOCUMENT ERR: Raised if newAttr was
created from a different document than the one that created
the element.

NO MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

INUSE _ATTRIBUTE_ ERR: Raised if newAttr is
already an attribute of another Element object. The DOM
user must explicitly clone At t r nodes to re-use them in
other elements.

setAttributeNodeNS method

Adds a new attribute. If an attribute with that local name and that namespace URI
is already present in the element, it is replaced by the new one.

HTML-only DOM implementations do not need to implement this method.

setAttributeNodeNS(newAttr)

Parameters Attr newAttr
The At tr node to add to the attribute list.

W3C Element interface 511

Returns

Attr. If the newAttr attribute replaces an existing
attribute with the same local name and namespace URI, the
replaced At t r node is returned, otherwise null is
returned.

Throws

DOMEzxception

WRONG DOCUMENT ERR: Raised if newAttr was
created from a different document than the one that created
the element.

NO_MODIFICATION ALLOWED_ERR: Raised if this
node is readonly.

INUSE_ATTRIBUTE_ ERR: Raised if newAttr is
already an attribute of another Element object. The DOM
user must explicitly clone At t r nodes to re-use them in
other elements.

setldAttribute method

If the parameter 1sId is true, this method declares the specified attribute to be
a user-determined ID attribute. This affects the value of Attr.isId and the
behavior of Document .getElementById, but does not change any schema
that may be in use, in particular this does not affect the
Attr.schemaTypeInfo of the specified Attr node. Use the value false
for the parameter 1 sId to undeclare an attribute for being a user-determined ID

attribute.

To specify an attribute by local name and namespace URI, use the
setIdAttributeNS method.

setIdAttribute(name, isld)

Parameters

String name
The name of the attribute.
boolean isld

Whether the attribute is a of type ID.

Returns

void

Throws

DOMEZxception
NO_MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

NOT _FOUND_ERR: Raised if the specified node is not an
attribute of this element.

512

Programmer's Reference

setldAttributeNS method

If the parameter isId is true, this method declares the specified attribute to be
a user-determined ID attribute. This affects the value of Attr.1isId and the
behavior of Document .getElementById, but does not change any schema
that may be in use, in particular this does not affect the
Attr.schemaTypeInfo of the specified Attr node. Use the value false
for the parameter 1sId to undeclare an attribute for being a user-determined ID
attribute.

setIdAttributeNS(namespaceURI, localName, isld)

Parameters String namespaceURI
The namespace URI of the attribute.
String localName

The local name of the attribute.
boolean isld

Whether the attribute is a of type ID.

Returns void

Throws DOMEzxception

NO_MODIFICATION ALLOWED_ERR: Raised if this
node is readonly.

NOT _FOUND ERR: Raised if the specified node is not an
attribute of this element.

setldAttributeNode method

If the parameter 1sId is t rue, this method declares the specified attribute to be
a user-determined ID attribute. This affects the value of Attr.isId and the
behavior of Document .getElementById, but does not change any schema
that may be in use, in particular this does not affect the
Attr.schemaTypeInfo of the specified Attr node. Use the value false
for the parameter 1sId to undeclare an attribute for being a user-determined ID
attribute.

setIdAttributeNode(idAttr, isld)

Parameters Attr idAtr
The attribute node.
boolean isld

Whether the attribute is a of type ID.

W3C Element interface 513

Returns void
Throws DOMEZxception

NO MODIFICATION ALLOWED ERR: Raised if this
node is readonly.

NOT _FOUND ERR: Raised if the specified node is not an
attribute of this element.

514

Programmer's Reference

69

W3C ElementEditVAL interface

ContentTypeVAL enUMErationoooiuuiiiiieiii e 517
allowedAttributes attribute...........coooiii 517
allowedChildren attribUtecoeiiiiii e 518
allowedFirstChildren attribute ... 518
allowedNextSiblings attribute ... 518
allowedParents attribute ... 518
allowedPreviousSiblings attribute ... 519
contentType attribute e 519
requiredAttributes attribute ... 519
canRemoveAttribute method ..., 519
canRemoveAttribUteNS Methodooiiiiiii e 519
canRemoveAttributeNode method ..., 520
canSetAttribute Methodouoiirii 520
canSetAttributeNS Method.........c.o.iiiniii e 520
canSetAttributeNode Method ... 521
canSetTextContent Method, 521
iSElementDefined Methodcooniiiiii e 521
iSElementDefinedNS Methodc..oviiii e 522

The ElementEditVAL interface is defined in the W3C Document Object
Model (DOM) Level 3 Validation Specification. (Refer to http://www.w3.org/TR/
DOM-Level-3-Val.)

This interface extends the NodeEditVAL interface with additional methods for
guided document editing. An object implementing this interface must also
implement the Element interface.

This interface also has attributes that are a NameList of elements or attributes
which can appear in the specified context. Some schema languages, i.e., W3C
XML schema, define wildcards which provide for validation of attribute and
element information items dependent on their namespace names but independent
of their local names.

515

http://www.w3.org/TR/DOM-Level-3-Val
http://www.w3.org/TR/DOM-Level-3-Val

To expose wildcards, the NameLi st returns the values that represent the
namespace constraint:

* {namespaceURI, name} is {null, ##any} if any;

* {namespaceURI, name} is {namespace a, ##other} ifnotanda
namespace name (namespace a);

* {namespaceURI, name} is {null, ##other} if not and absent;

* Pairs of {namespaceURI, name} with values {a namespaceURI |
null, null} if a set whose members are either namespace names or absent.

516 Programmer's Reference

ContentTypeVAL enumeration

An integer indicating the content type of an element.

The ContentTypeVAL enumeration has the following constants of type
unsigned short.

VAL_EMPTY_CONTENTTYPE =1
The content model does not allow any content. If the schema is a W3C XML
schema, this corresponds to the empty content type; and if the schema is a
DTD, this corresponds to the EMPTY content model.

VAL_ANY_CONTENTTYPE =2
The content model contains unordered child information item(s), i.e., element,
processing instruction, unexpanded entity reference, character, and comment
information items as defined in the XML Information Set. If the schema is a
DTD, this corresponds to the ANY content model.

VAL _MIXED CONTENTTYPE =3
The content model contains a sequence of ordered element information items
optionally interspersed with character data. If the schema is a W3C XML
schema, this corresponds to the mixed content type.

VAL_ELEMENTS CONTENTTYPE =4
The content model contains a sequence of element information items
optionally separated by whitespace. If the schema is a DTD, this is the
element content content model; and if the schema is a W3C XML
schema, this is the element-only content type.

VAL_SIMPLE_CONTENTTYPE =5
The content model contains character information items. If the schema is a
W3C XML schema, then the element has a content type of VAL SIMPLE
CONTENTTYPE if the type of the elementisa simple type definition,
or the type of the element is a complexType whose {content type} isa
simple type definition.

allowedAttributes attribute

A NameList, as described in [DOM Level 3 Core], of all possible attribute
information items or wildcards that can appear as attributes of this element, or
null if this element has no context or schema. Duplicate pairs of
{namespaceURI, name} are eliminated.

allowedAttributes
Access read-only
Returns NamelList

W3C ElementEditVAL interface 517

http://www.w3.org/TR/DOM-Level-3-Core

allowedChildren attribute

A NameList, as described in [DOM Level 3 Core], of all possible element
information items or wildcards that can appear as children of this element, or
null if this element has no context or schema. Duplicate pairs of
{namespaceURI, name} are eliminated.

allowedChildren
Access read-only
Returns NameList

allowedFirstChildren attribute

A NameList, as described in [DOM Level 3 Core], of all possible element
information items or wildcards that can appear as a first child of this element, or
null if this element has no context or schema. Duplicate pairs of
{namespaceURI, name} are eliminated.

allowedFirstChildren
Access read-only

Returns NamelList

allowedNextSiblings attribute

A NameList, as described in [DOM Level 3 Core], of all element information
items or wildcards that can be inserted as a next sibling of this element, or null
if this element has no context or schema. Duplicate pairs of {namespaceURI,
name} are eliminated.

allowedNextSiblings
Access read-only
Returns NameList

allowedParents attribute

A NameList, as described in [DOM Level 3 Core], of all possible element
information items that can appear as a parent this element, or null if this element
has no context or schema.

allowedParents
Access read-only
Returns NameList

518 Programmer's Reference

http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core

allowedPreviousSiblings attribute

A NameList, as described in [DOM Level 3 Core], of all element information
items or wildcards that can be inserted as a previous sibling of this element, or
null if this element has no context or schema.

allowedPreviousSiblings

Access read-only
Returns NameList

contentType attribute

The content type of an element as defined above.

contentType
Access read-only
Returns unsigned short

requiredAttributes attribute

A NameList, as described in [DOM Level 3 Core], of required attribute
information items that must appear on this element, or nul1 if this element has
no context or schema.

requiredAttributes
Access read-only
Returns NameList

canRemoveAttribute method

Verifies if an attribute by the given name can be removed.

canRemoveAttribute(attrName)
Parameters String attrName
Name of attribute.
Returns unsigned short. A validation state constant.

canRemoveAttributeNS method

Verifies if an attribute by the given local name and namespace can be removed.

W3C ElementEditVAL interface 519

http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core

canRemoveAttributeNS(namespaceURI, localName)

Parameters String namespaceURI
The namespace URI of the attribute to remove.
String localName
Local name of the attribute to be removed.
Returns unsigned short. A validation state constant.

canRemoveAttributeNode method

Determines if an attribute node can be removed.

canRemoveAttributeNode(attrNode)

Parameters Node attrNode
The At tr node to remove from the attribute list.
Returns unsigned short. A validation state constant.

canSetAttribute method

Determines if the value for specified attribute can be set.

canSetAttribute(attrName, attrval)
Parameters String attrName
Name of attribute.
String attrval
Value to be assigned to the attribute.
Returns unsigned short. A validation state constant.

canSetAttributeNS method

Determines if the attribute with given namespace and qualified name can be
created if not already present in the attribute list of the element. If the attribute
with the same qualified name and namespaceURI is already present in the
element's attribute list, it tests whether the value of the attribute and its prefix can

be set to the new value.

520

Programmer's Reference

canSetAttributeNS(namespaceURI, qualifiedName, value)
Parameters String namespaceURI
namespaceURI of namespace.

String qualifiedName

Qualified name of attribute.

String value

Value to be assigned to the attribute.

Returns unsigned short. A validation state constant.

canSetAttributeNode method

Determines if an attribute node can be added.

canSetAttributeNode(attrNode)
Parameters Attr attrNode

Node in which the attribute can possibly be set.
Returns unsigned short. A validation state constant.

canSetTextContent method

Determines if the text content of this node and its descendants can be set to the
string passed in.

canSetTextContent(possibleTextContent)
Parameters String possibleTextContent
Possible text content string.
Returns unsigned short. A validation state constant.

isElementDefined method

Determines if name is defined in the schema. This only applies to global
declarations. This method is for non-namespace aware schemas.

isElementDefined(name)
Parameters String name
Name of element.
Returns unsigned short. A validation state constant.

W3C ElementEditVAL interface 521

isElementDefinedNS method

Determines if name in this namespace is defined in the current context. Thus not
only does this apply to global declarations. but depending on the content, this may
also apply to local definitions. This method is for namespace aware schemas.

isElementDefinedNS(namespaceURI, name)
Parameters String namespaceURI
namespaceURI of namespace.
String name
Name of element.
Returns unsigned short. A validation state constant.

522

Programmer's Reference

70

W3C Entity interface

iNpUtENcoding attribute e 525
notationName attribute e 525
PUDICId @ttribUute.o 525
systemld attribute ... 525
XMIENCOAING attribULE ... oo e 526
XMIVeErsion attribute ... 526

The Ent ity interface is defined in the W3C Document Object Model (DOM)
Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113.)

This interface represents an entity, either parsed or unparsed, in an XML
document. Note that this models the entity itself not the entity declaration.
Entity declaration modeling has been left for a later Level of the DOM
specification.

The nodeName attribute that is inherited from Node contains the name of the
entity.

An XML processor may choose to completely expand entities before the structure
model is passed to the DOM; in this case there will be no EntityReference
nodes in the document tree.

XML does not mandate that a non-validating XML processor read and process
entity declarations made in the external subset or declared in external parameter
entities. This means that parsed entities declared in the external subset need not be
expanded by some classes of applications, and that the replacement value of the
entity may not be available. When the replacement value is available, the
corresponding Ent ity node's child list represents the structure of that
replacement text. Otherwise, the child list is empty.

523

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

The DOM Level 2 does not support editing Ent ity nodes; if a user wants to
make changes to the contents of an Entity, every related EntityReference
node has to be replaced in the structure model by a clone of the Entity's
contents, and then the desired changes must be made to each of those clones
instead. Ent ity nodes and all their descendants are readonly.

An Entity node does not have any parent.

~! Note

If the entity contains an unbound namespace prefix, the namespaceURI of
the corresponding node in the Ent ity node subtree is null. The same is
true for EntityReference nodes that refer to this entity, when they are
created using the createEntityReference method of the Document
interface. The DOM Level 2 does not support any mechanism to resolve
namespace prefixes.

524 Programmer's Reference

inputEncoding attribute

1 Note
This DOM Level 3 attribute is defined, but is currently unimplemented by

Arbortext Editor.

An attribute specifying the encoding used for this entity at the time of parsing,
when it is an external parsed entity. This is nul1l if it an entity from the internal

subset or if it is not known.

inputEncoding
Access read-only
Returns String

notationName attribute

For unparsed entities, the name of the notation for the entity. For parsed entities,
thisis null.

notationName
Access read-only
Returns String

publicld attribute

The public identifier associated with the entity, if specified. If the public identifier
was not specified, this is null.

publicId
Access read-only
Returns String

systemld attribute

The system identifier associated with the entity, if specified. If the system
identifier was not specified, this is null.

systemId
Access read-only
Returns String

W3C Entity interface 525

xmlEncoding attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

An attribute specifying, as part of the text declaration, the encoding of this entity,
when it is an external parsed entity. This is null otherwise.

xmlEncoding
Access read-only
Returns String

xmlVersion attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

An attribute specifying, as part of the text declaration, the version number of this
entity, when it is an external parsed entity. This is nul1l otherwise.

xmlVersion
Access read-only
Returns String

526 Programmer's Reference

71

W3C EntityReference interface

The EntityReference interface is defined in the W3C Document Object
Model (DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113.)

EntityReference objects may be inserted into the structure model when an
entity reference is in the source document, or when the user wishes to insert an
entity reference. Note that character references and references to predefined
entities are considered to be expanded by the HTML or XML processor so that
characters are represented by their Unicode equivalent rather than by an entity
reference. Moreover, the XML processor may completely expand references to
entities while building the structure model, instead of providing
EntityReference objects. If it does provide such objects, then for a given
EntityReference node, it may be that there is no Ent ity node representing
the referenced entity. If such an Ent ity exists, then the subtree of the
EntityReference node is in general a copy of the Ent ity node subtree.
However, this may not be true when an entity contains an unbound namespace
prefix. In such a case, because the namespace prefix resolution depends on where
the entity reference is, the descendants of the EntityReference node may be
bound to different namespace URIs.

As for Entity nodes, EntityReference nodes and all their descendants are
readonly.

527

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

72

W3C Event interface

PhaseType enumMErationooooiiiiiiiii e 530
bubbles attribute. e 530
cancelable attribute s 530
currentTarget attribute.o 530
eventPhase attribute. e 531
target attribute. ... e 531
timeStamp attribULe 531
tYPE AttriDULE ... e 531
INIEEVENt Methodo e 531
preventDefault method ... 532
stopPropagation Methodcooniiiii s 533

The Event interface is defined in the W3C Document Object Model (DOM)
Level 2 Events Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-
Level-2-Events-20001113.)

The Event interface is used to provide contextual information about an event to
the handler processing the event. An object which implements the Event
interface is generally passed as the first parameter to an event handler. More
specific context information is passed to event handlers by deriving additional
interfaces from Event which contain information directly relating to the type of
event they accompany. These derived interfaces are also implemented by the
object passed to the event listener.

529

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

PhaseType enumeration

An integer indicating which phase of event flow is being processed.

The PhaseType enumeration has the following constants of type unsigned
short.

CAPTURING_PHASE =1
The current event phase is the capturing phase.

AT _TARGET =2
The event is currently being evaluated at the target EventTarget.

BUBBLING_PHASE =3
The current event phase is the bubbling phase.

bubbles attribute

Used to indicate whether or not an event is a bubbling event. If the event can
bubble the value is true, else the value is false.

bubbles
Access read-only
Returns boolean

cancelable attribute

Used to indicate whether or not an event can have its default action prevented. If
the default action can be prevented the value is true, else the value is false.

cancelable
Access read-only
Returns boolean

currentTarget attribute

Used to indicate the Event Target whose EventListeners are currently
being processed. This is particularly useful during capturing and bubbling.

currentTarget
Access read-only
Returns EventTarget

530 Programmer's Reference

eventPhase attribute

Used to indicate which phase of event flow is currently being evaluated.

eventPhase
Access read-only
Returns PhaseType

target attribute

Used to indicate the EventTarget to which the event was originally
dispatched.

target
Access read-only
Returns EventTarget

timeStamp attribute

Used to specify the time (in milliseconds relative to the epoch) at which the event
was created. Due to the fact that some systems may not provide this information
the value of t imeStamp may be not available for all events. When not available,
a value of 0 will be returned. Examples of epoch time are the time of the system
start or 0:0:0 UTC 1st January 1970.

timeStamp
Access read-only
Returns DOMTimeStamp

type attribute

The name of the event (case-insensitive). The name must be an XML name.

type
Access read-only
Returns String

initEvent method

The initEvent method is used to initialize the value of an Event created
through the DocumentEvent interface. This method may only be called before
the Event has been dispatched via the dispatchEvent method, though it may
be called multiple times during that phase if necessary. If called multiple times the

W3C Event interface 531

final invocation takes precedence. If called from a subclass of Event interface
only the values specified in the initEvent method are modified, all other
attributes are left unchanged.

initEvent(eventTypeArg, canBubbleArg, cancelableArg)
Parameters String eventTypeArg

Specifies the event type. This type may be any event type
currently defined in this specification or a new event type..
The string must be an XML name.

Any new event type must not begin with any upper, lower,
or mixed case version of the string "DOM". This prefix is
reserved for future DOM event sets. It is also strongly
recommended that third parties adding their own events
use their own prefix to avoid confusion and lessen the
probability of conflicts with other new events.

boolean canBubbleArg
Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Returns void

preventDefault method

If an event is cancelable, the preventDefault method is used to signify that
the event is to be canceled, meaning any default action normally taken by the
implementation as a result of the event will not occur. If, during any stage of event
flow, the preventDefault method is called the event is canceled. Any default
action associated with the event will not occur. Calling this method for a non-
cancelable event has no effect. Once preventDefault has been called it will
remain in effect throughout the remainder of the event's propagation. This method
may be used during any stage of event flow.

preventDefault()

Parameters None
Returns void

532 Programmer's Reference

stopPropagation method

The stopPropagation method is used prevent further propagation of an event
during event flow. If this method is called by any EventListener the event
will cease propagating through the tree. The event will complete dispatch to all
listeners on the current EventTarget before event flow stops. This method may
be used during any stage of event flow.

stopPropagation()
Parameters None
Returns void

W3C Event interface 533

73

W3C EventException exception

EventExceptionCode enumeration.............cccuiiiiiiiiiiii i 536

The EventException interface is defined in the W3C Document Object
Model (DOM) Level 2 Events Specification. (Refer to http://www.w3.org/TR/
2000/REC-DOM-Level-2-Events-20001113.)

Event operations may throw an EventException as specified in their method
descriptions.

Objects that implement the EventException interface include the following
property:

unsigned short code

535

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

EventExceptionCode enumeration

An integer indicating the type of error generated.

The EventExceptionCode enumeration has the following constants of type

unsigned short.

UNSPECIFIED _EVENT _TYPE_ERR =0
If the Event's type was not specified by initializing the event before the
method was called. Specification of the Event's type as null or an empty
string will also trigger this exception.

Programmer's Reference

536

74

W3C EventListener interface

handIeEvent MEthOd..... ..o e 538

The EventListener interface is defined in the W3C Document Object Model
(DOM) Level 2 Events Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Events-20001113.)

The EventListener interface is the primary method for handling events.
Users implement the EventListener interface and register their listener on an
EventTarget using the AddEventListener method. The users should also
remove their EventListener fromits EventTarget after they have
completed using the listener.

When a Node is copied using the cloneNode method the EventListener s
attached to the source Node are not attached to the copied Node. If the user
wishes the same EventListeners to be added to the newly created copy the
user must add them manually.

537

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

handleEvent method

This method is called whenever an event occurs of the type for which the
EventListener interface was registered.

handleEvent(evt)

Parameters Event evt

The Event contains contextual information about the
event. It also contains the stopPropagation and
preventDefault methods which are used in
determining the event's flow and default action.

Returns void

538 Programmer's Reference

(£

W3C EventTarget interface

addEventListener Method ... 540
dispatCchEvent Method ... s 540
removeEventListener Method....... ... 541

The EventTarget interface is defined in the W3C Document Object Model
(DOM) Level 2 Events Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Events-20001113.)

The EventTarget interface is implemented by all Nodes in an implementation
which supports the DOM Event Model. Therefore, this interface can be obtained
by using binding-specific casting methods on an instance of the Node interface.
The interface allows registration and removal of EventListeners on an
EventTarget and dispatch of events to that EventTarget.

539

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

addEventListener method

This method allows the registration of event listeners on the event target. If an
EventListener is added to an EventTarget while it is processing an event,
it will not be triggered by the current actions but may be triggered during a later
stage of event flow, such as the bubbling phase.

If multiple identical EventListeners are registered on the same
EventTarget with the same parameters the duplicate instances are discarded.
They do not cause the EventListener to be called twice and since they are
discarded they do not need to be removed with the removeEventListener
method.

addEventListener(type, listener, useCapture)

Parameters String type
The event type for which the user is registering
EventListener listener

The 1istener parameter takes an interface implemented
by the user which contains the methods to be called when
the event occurs.

boolean useCapture

If true, useCapture indicates that the user wishes to
initiate capture. After initiating capture, all events of the
specified type will be dispatched to the registered
EventListener before being dispatched to any
EventTargets beneath them in the tree. Events which
are bubbling upward through the tree will not trigger an
EventListener designated to use capture.

Returns void

dispatchEvent method

This method allows the dispatch of events into the implementations event model.
Events dispatched in this manner will have the same capturing and bubbling
behavior as events dispatched directly by the implementation. The target of the
event is the EventTarget on which dispatchEvent is called.

dispatchEvent(evt)

Parameters Event evt

Specifies the event type, behavior, and contextual
information to be used in processing the event.

540 Programmer's Reference

Returns boolean. The return value of dispatchEvent
indicates whether any of the listeners which handled the
event called preventDefault. If preventDefault
was called the value is false, else the value is true.

Throws EventException

UNSPECIFIED EVENT TYPE ERR: Raised if the
Event's type was not specified by initializing the event
before dispatchEvent was called. Specification of the
Event's type as null or an empty string will also trigger
this exception.

removeEventListener method

This method allows the removal of event listeners from the event target. If an
EventListener is removed from an EventTarget while it is processing an
event, it will not be triggered by the current actions. EventListeners can
never be invoked after being removed.

Calling removeEventListener with arguments which do not identify any
currently registered EventListener on the EventTarget has no effect.

removeEventListener(type, listener, useCapture)

Parameters

String fype

Specifies the event type of the EventListener being
removed.

EventListener listener

The EventListener parameter indicates the
EventListener to be removed.
boolean useCapture

Specifies whether the EventListener being removed
was registered as a capturing listener or not. If a listener
was registered twice, one with capture and one without,
each must be removed separately. Removal of a capturing
listener does not affect a non-capturing version of the same
listener, and vice versa.

Returns

void

W3C EventTarget interface

541

76

W3C ExceptionVAL exception

ExceptionVALCOdE ENUMETatioNiiiiiiiii e e 544

The ExceptionVAL interface is defined in the W3C Document Object Model
(DOM) Level 3 Validation Specification. (Refer to http://www.w3.org/TR/DOM-
Level-3-Val.)

Some Validation operations may throw an ExceptionVAL as described in their
descriptions.

Objects that implement the ExceptionVAL interface include the following
property:

unsigned short code

543

http://www.w3.org/TR/DOM-Level-3-Val
http://www.w3.org/TR/DOM-Level-3-Val

ExceptionVALCode enumeration

An integer indicating the type of error generated.
The ExceptionVALCode enumeration has the following constants of type
unsigned short.

NO _SCHEMA AVAILABLE ERR =71
This error occurs when the operation cannot complete due to an unavailable

schema.

Programmer's Reference

544

rr7

MenuBar interface

L8 To I g 1=]{ g To o TP 546

The MenuBar interface represents a menu bar.

545

find method

Finds the menu item associated with the menu path specified by menuPath. A
menu path is a way of indicating the exact location of the menu item in the menu
bar hierarchy. This item can be either an item on a menu or the menu itself.

Menu path syntax is similar to path name syntax, with periods separating the
components instead of slashes. The leading parts of a menu path correspond to a
menu name, the trailing part matches a menu item. For example, . File.New
refers to the item New on the File menu. Menu paths need not specify the trailing
ellipsis on a menu item, for example, .File.Open and .File.Open. . . refer
to the same menu item.

A menu path is considered absolute if it starts with a period (.). The name
following the period must be the name of one of the top-level menus on the menu
bar (for example, .File, .Edit, .Tools). If a menu path does not start with a
period, the entire hierarchy for the menu bar is searched for the first occurrence of
the item. The search starts with the first menu on the left and progresses down
through every item on a menu before moving on to the next menu to the right.

The syntax of a menu path allows specifications of a menu item by position and
also by name. If a component of a menu path begins with # and is followed by
one or more digits, it specifies a numeric position. For example, the menu path
.File. #3 specifies the third item in the File menu. Numeric positions may be
specified in any component. For example, . View. #5. #3 is the same as
.View.Tools.Table (assuming the default menu configuration). Blank or
separator lines within the menu count as items.

Menu item labels may contain ACL variable references. If a menu label contains
any variable references (for example, Modify $tagname), the variable
reference is substituted into the label string each time the menu containing the
item is posted.

The find method recognizes the following special characters when matching a
menu path against the menu hierarchy:

Separates components of menu names. If it is the first
character, it is an absolute path to a menu or item within
the menu bar.

Matches 0 or more characters.

Matches any single character.

[...] Matches any one of the enclosed characters. A range of
characters can be specified by separating the start and end
characters with a hyphen, such as 0-9, a-z, or A-z (for
all letters, uppercase and lowercase).

_ Matches a space or an underscore.

\ Treat the following special character as an ordinary
character. For example, \ . matches a period.

546 Programmer's Reference

find(menuPath)

Parameters String menuPath
The menu path of a menu item.

Returns MenuItem. The MenuItem which is associated with the
menuPath

547

MenuBar interface

78

MenuEvent interface

INIMENUEVENE MELNOA e 550

The MenuEvent interface provides specific contextual information associated
with Menu events.

549

initMenuEvent method

Initializes the value of a MenuEvent created through the Window
createEvent method. This method should only be called before the
MenuEvent has been dispatched with the dispatchEvent method, though it
may be called multiple times during that phase if necessary. If called multiple
times, the final invocation takes precedence.

initMenuEvent(typeArg, canBubbleArg, cancelableArg)

Parameters

String typedrg
Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Returns

void

550

Programmer's Reference

79

Menultem interface

checked attribULeo e 552
enabled attriDULE ... e e e 552

The MenuItem interface represents a menu item.

551

checked attribute

For toggle menu items only. Shows whether the toggle menu item is checked or
not.

checked

Access read-write

Returns boolean

Set throws WindowException
INVALID MODIFICATION ERR: Raised if the object is
not a toggle menu item.

enabled attribute

Shows whether the menu item is active or not.

enabled

Access read-write

Returns boolean

Set throws WindowException
INVALID MODIFICATION_ ERR: Raised if the object is
a top-level menu item which cannot be disabled.

552 Programmer's Reference

80

W3C MouseEvent interface

altKey attributeo 554
button attribUte 554
CHENEX @ttHDULE e 554
CHeNtY attribDULe ... 554
CtrIKey attribDULEo e 554
metaKey attributeo 555
relatedTarget attribute..... ... 555
SCreenX attribUte ... 555
SCreeNY attribULE ..o 555
ShiftKey attributeoo e 556
initMouseEvent method ... 556

The MouseEvent interface is defined in the W3C Document Object Model
(DOM) Level 2 Events Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Events-20001113.)

The MouseEvent interface provides specific contextual information associated
with Mouse events.

The detail attribute inherited from UIEvent indicates the number of times a
mouse button has been pressed and released over the same screen location during
a user action. The attribute value is 1 when the user begins this action and
increments by 1 for each full sequence of pressing and releasing. If the user moves
the mouse between the mousedown and mouseup the value will be set to 0,
indicating that no click is occurring.

In the case of nested elements mouse events are always targeted at the most
deeply nested element. Ancestors of the targeted element may use bubbling to
obtain notification of mouse events which occur within its descendent elements.

553

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

altKey attribute

Used to indicate whether the 'alt' key was depressed during the firing of the event.
On some platforms this key may map to an alternative key name.

altKey
Access read-only
Returns boolean

button attribute

During mouse events caused by the depression or release of a mouse button,
button is used to indicate which mouse button changed state. The values for
button range from zero to indicate the left button of the mouse, one to indicate
the middle button if present, and two to indicate the right button. For mice
configured for left handed use in which the button actions are reversed the values
are instead read from right to left.

button
Access read-only
Returns unsigned short

clientX attribute

The horizontal coordinate at which the event occurred relative to the DOM
implementation's client area.

clientX

Access read-only
Returns long
clientY attribute

The vertical coordinate at which the event occurred relative to the DOM
implementation's client area.

clientY
Access read-only
Returns long

ctriKey attribute

Used to indicate whether the 'ctrl' key was depressed during the firing of the event.

554 Programmer's Reference

ctrlKey
Access read-only
Returns boolean

metaKey attribute

Used to indicate whether the 'meta' key was depressed during the firing of the
event. On some platforms this key may map to an alternative key name.

metaKey
Access read-only
Returns boolean

relatedTarget attribute

Used to identify a secondary EventTarget related to a Ul event. Currently this
attribute is used with the mouseover event to indicate the Event Target which
the pointing device exited and with the mouseout event to indicate the
EventTarget which the pointing device entered.

relatedTarget
Access read-only
Returns EventTarget

screenX attribute

The horizontal coordinate at which the event occurred relative to the origin of the
screen coordinate system.

screenX

Access read-only
Returns long
screenY attribute

The vertical coordinate at which the event occurred relative to the origin of the
screen coordinate system.

screenY
Access read-only
Returns long

W3C MouseEvent interface 555

shiftKey attribute

Used to indicate whether the 'shift' key was depressed during the firing of the
event.

shiftKey
Access read-only
Returns boolean

initMouseEvent method

The initMouseEvent method is used to initialize the value of a
MouseEvent created through the DocumentEvent interface. This method
may only be called before the MouseEvent has been dispatched via the
dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence.

Programmer's Reference

556

initMouseEvent(typeArg, canBubbleArg, cancelableArg, viewArg,
detail Arg, screenXArg, screenYArg, clientXArg, clientYArg, ctrlKeyArg,
altKeyArg, shiftKeyArg, metaKeyArg, buttonArg, relatedTargetArg)

Parameters

String typedrg
Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.
AbstractView viewArg

Specifies the Event's AbstractView.
long detailArg

Specifies the Event's mouse click count.
long screenXArg

Specifies the Event's screen x coordinate
long screenYArg

Specifies the Event's screen y coordinate
long clientXArg

Specifies the Event's client x coordinate
long clientYArg

Specifies the Event's client y coordinate
boolean ctrlKeyArg

Specifies whether or not control key was depressed during
the Event.

boolean altKeyArg

Specifies whether or not alt key was depressed during the
Event.
boolean shifiKeyArg

Specifies whether or not shift key was depressed during the
Event.
boolean metaKeyArg

Specifies whether or not meta key was depressed during
the Event.

unsigned short buttonArg

Specifies the Event's mouse button.
EventTarget relatedTargetArg

Specifies the Event's related EventTarget.

W3C MouseEvent interface

557

| Returns |void

558 Programmer’s Reference

81

W3C MutationEvent interface

AttrChangeType eNUMEratioN............uu it 560
attrChange attribUe.........ooouu e 560
attrName attribute ... 560
newValue attribute. ... 560
prevValue attribute ... e 561
relatedNOde attribULE ... 561
initMutationEvent method............oii 561

The MutationEvent interface is defined in the W3C Document Object Model
(DOM) Level 2 Events Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Events-20001113.)

The MutationEvent interface provides specific contextual information
associated with Mutation events.

559

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

AttrChangeType enumeration

An integer indicating in which way the At tr was changed.

The AttrChangeType enumeration has the following constants of type
unsigned short.

MODIFICATION =1
The Attr was modified in place.

ADDITION =2
The Attr was just added.

REMOVAL =3
The Attr was just removed.

attrChange attribute

attrChange indicates the type of change which triggered the
DOMATttrModified event. The values can be MODIFICATION, ADDITION, or
REMOVAL.

attrChange
Access read-only
Returns AttrChangeType

attrName attribute

attrName indicates the name of the changed At t r node in a DOMAttrModified
event.

attrName
Access read-only
Returns String

newValue attribute

newValue indicates the new value of the At t r node in DOMAttrModified
events, and of the CharacterData node in DOMCharDataModified events.

newValue
Access read-only
Returns String

560 Programmer's Reference

prevValue attribute

prevValue indicates the previous value of the At tr node in
DOMAttrModified events, and of the CharacterData node in
DOMCharDataModified events.

prevValue
Access read-only
Returns String

relatedNode attribute

relatedNode is used to identify a secondary node related to a mutation event.
For example, if a mutation event is dispatched to a node indicating that its parent
has changed, the relatedNode is the changed parent. If an event is instead
dispatched to a subtree indicating a node was changed within it, the
relatedNode is the changed node. In the case of the DOMAttrModified event
it indicates the At t r node which was modified, added, or removed.

relatedNode
Access read-only
Returns Node

initMutationEvent method

The initMutationEvent method is used to initialize the value of a
MutationEvent created through the DocumentEvent interface. This method
may only be called before the MutationEvent has been dispatched via the
dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence.

W3C MutationEvent interface 561

initMutationEvent(typeArg, canBubbleArg, cancelableArg,
relatedNodeArg, prevValueArg, new ValueArg, attrNameArg, attrChangeArg)

Parameters String typedrg
Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.
Node relatedNodeArg

Specifies the Event's related Node.
String prevValueArg

Specifies the Event's prevValue attribute. This value
may be null.
String newlalueArg

Specifies the Event's newValue attribute. This value
may be null.
String attrNameArg

Specifies the Event's att rName attribute. This value
may be null.
AttrChangeType attrChangeArg

Specifies the Event's att rChange attribute

Returns void

562 Programmer's Reference

82

W3C NamedNodeMap interface

[e€Ngth AttriDULE ... e 564
getNamedIitem Method ... e 564
getNameditemNS method...........ooooii e 564
(1 (=Y 0 11 411 € Lo Yo I 564
removeNameditem Method...........o.o i 565
removeNameditemNS Methodc.oovieiii e 565
setNamedltem Method ... 566
setNamedlitemMNS MeEthOd....... ..o e 566

The NamedNodeMap interface is defined in the W3C Document Object Model
(DOM) Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-
DOM-Level-2-Core-20001113.)

Objects implementing the NamedNodeMap interface are used to represent
collections of nodes that can be accessed by name. Note that NamedNodeMap
does not inherit from NodeList; NamedNodeMaps are not maintained in any
particular order. Objects contained in an object implementing NamedNodeMap
may also be accessed by an ordinal index, but this is simply to allow convenient
enumeration of the contents of a NamedNodeMap, and does not imply that the
DOM specifies an order to these Nodes.

NamedNodeMap objects in the DOM are live.

563

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

length attribute

The number of nodes in this map. The range of valid child node indices is 0 to
length-1 inclusive.

length
Access read-only
Returns unsigned long

getNamedIltem method

Retrieves a node specified by name.

getNamedItem(name)

Parameters String name
The nodeName of a node to retrieve.

Returns Node. A Node (of any type) with the specified
nodeName, or null if it does not identify any node in
this map.

getNamediltemNS method

Retrieves a node specified by local name and namespace URI. HTML-only DOM
implementations do not need to implement this method.

getNamedItemNS(namespaceURI, localName)

Parameters String namespaceURI
The namespace URI of the node to retrieve.

String localName

The local name of the node to retrieve.

Returns Node. A Node (of any type) with the specified local name
and namespace URI, or null if they do not identify any
node in this map.

item method

Returns the indexth item in the map. If index is greater than or equal to the
number of nodes in this map, this returns null.

Programmer's Reference

564

item(nodeindex)

Parameters unsigned long nodeindex
Index into this map.

Returns Node. The node at the i ndexth position in the map, or
null if that is not a valid index.

removeNameditem method

Removes a node specified by name. When this map contains the attributes
attached to an element, if the removed attribute is known to have a default value,
an attribute immediately appears containing the default value as well as the
corresponding namespace URI, local name, and prefix when applicable.

removeNamedItem(name)

Parameters String name
The nodeName of the node to remove.

Returns Node. The node removed from this map if a node with
such a name exists.

Throws DOMEzxception

NOT _FOUND ERR: Raised if there is no node named
name in this map.

NO MODIFICATION ALLOWED_ ERR: Raised if this
map is readonly.

removeNamedltemNS method

Removes a node specified by local name and namespace URI. A removed
attribute may be known to have a default value when this map contains the
attributes attached to an element, as returned by the attributes attribute of the
Node interface. If so, an attribute immediately appears containing the default
value as well as the corresponding namespace URI, local name, and prefix when
applicable.

HTML-only DOM implementations do not need to implement this method.

removeNamedItemNS(namespaceURI, localName)

Parameters String namespaceURI
The namespace URI of the node to remove.

String localName

The local name of the node to remove.

W3C NamedNodeMap interface

565

Returns Node. The node removed from this map if a node with
such a local name and namespace URI exists.

Throws DOMException

NOT _FOUND ERR: Raised if there is no node with the
specified namespaceURI and 1ocalName in this map.

NO MODIFICATION ALLOWED_ ERR: Raised if this
map is readonly.

setNamedItem method

Adds a node using its nodeName attribute. If a node with that name is already
present in this map, it is replaced by the new one.

As the nodeName attribute is used to derive the name which the node must be
stored under, multiple nodes of certain types (those that have a "special" string
value) cannot be stored as the names would clash. This is seen as preferable to
allowing nodes to be aliased.

setNamedItem(arg)

Parameters Node arg

A node to store in this map. The node will later be
accessible using the value of its nodeName attribute.

Returns Node. If the new Node replaces an existing node the
replaced Node is returned, otherwise nul1l is returned.
Throws DOMEZxception

WRONG DOCUMENT ERR: Raised if arg was created
from a different document than the one that created this
map.

NO_MODIFICATION ALLOWED_ ERR: Raised if this
map is readonly.

INUSE ATTRIBUTE ERR: Raisedif argisanAttr
that is already an attribute of another Element object.
The DOM user must explicitly clone At tr nodes to re-use
them in other elements.

setNamedltemNS method

Adds a node using its namespaceURI and 1ocalName. If a node with that
namespace URI and that local name is already present in this map, it is replaced
by the new one.

HTML-only DOM implementations do not need to implement this method.

566 Programmer's Reference

setNamedItemNS(arg)

Parameters Node arg

A node to store in this map. The node will later be
accessible using the value of its namespaceURI and
localName attributes.

Returns Node. If the new Node replaces an existing node the
replaced Node is returned, otherwise null is returned.
Throws DOMException

WRONG DOCUMENT ERR: Raised if arg was created
from a different document than the one that created this
map.

NO_MODIFICATION ALLOWED_ ERR: Raised if this
map is readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr
that is already an attribute of another Element object.
The DOM user must explicitly clone At tr nodes to re-use
them in other elements.

W3C NamedNodeMap interface 567

83

W3C Namelist interface

length attribute ... e 570
CONAINS METNOT. ...t e 570
CONtAiNSNS MELNOA ... e 570
getName Method. e 570
getNamespaceURI method e 571

The NameLi st interface is defined in the W3C Document Object Model (DOM)
Level 3 Core Specification. (Refer to http://www.w3.org/TR/DOM-Level-3-Core.)

The NameList interface provides the abstraction of an ordered collection of
parallel pairs of name and namespace values (which could be null values), without
defining or constraining how this collection is implemented. The items in the
NameList are accessible via an integral index, starting from 0.

569

http://www.w3.org/TR/DOM-Level-3-Core

length attribute

The number of pairs (name and namespaceURI) in the list. The range of valid
child node indices is 0 to Length-1 inclusive.

length
Access read-only
Returns unsigned long

contains method

Test if a name is part of this NameList.

contains(str)

Parameters String str
The name to look for.

Returns booleantrue if the name has been found, false
otherwise.

containsNS method

Test if the pair namespaceURI/name is part of this NameList.

containsNS(namespaceURI, name)

Parameters String namespaceURI
The namespace URI to look for.
String name

The name to look for.
Returns booleantrue if the pair namespaceURI/name has been

found, false otherwise.

getName method

Returns the 1 ndexth name item in the collection.

getName(index)

Parameters unsigned long index
Index into the collection.
Returns String. The name at the indexth position in the

NameList, or null if there is no name for the specified
index or if the index is out of range.

Programmer's Reference

570

getNamespaceURI method

Returns the i ndexth namespaceURI item in the collection.

getNamespaceURI(index)

Parameters unsigned long index
Index into the collection.
Returns String. The namespace URI at the 1 ndexth position in

the NameList, or null if there is no name for the
specified index or if the index is out of range.

W3C NameList interface 571

84

W3C Node interface

NOdETYPE ENUMETALIONieiiiiiiiieit e e e eeaaas 576
DocumentPosition enUMEration...............ooiiiiii i 577
attributes attribute ... 578
baseURI attribute ... 578
ChildNOdEs attribULE........ccou e 579
firstChild attribute ... 579
[astChild attributecoouiii e 579
localName attribute ... 579
namespaceURI attribute ... 580
nextSibling attribute 580
nodeName attribUte 580
nodeType attribute.o e 580
nodeValue attribute ... 581
ownerDocument attribute 581
parentNOde attribULE 581
Prefix attribUuLe ... e 582
previousSibling attribue...........coooiii 582
textContent attribute ... 583
appendChild MEethod ... e 584
CloNeNOdE MELNOA oo e 584
compareDocumentPosition Method ... 585
getFeature Methodo 585
getUserData method ... 586
hasAttributes Method.............cooi i 586
hasChildNodes Method. ... 587
insertBefore Method ... 587
isDefaultNamespace method e 587
£ =o [F= 11\ oo L= o= 1 o o 588
isSameNode Method ... 589
iISSUpPOrted Methodo e 589
lookupNamespacePrefix method ... 590

573

lookupNamespaceURI Method............ooouiiii e 590

[0OKUPPIefiX MEthOd e 590
NOrMAliZE MELNOQ.o e 591
remoVeChIld MELNOAcouiei e 591
replaceChild MEthOd...........coouiiii e 591
setlUserData Method. 592

The Node interface is defined in the W3C Document Object Model (DOM) Level
2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-Level-2-
Core-20001113.)

The Node interface is the primary datatype for the entire Document Object
Model. It represents a single node in the document tree. While all objects
implementing the Node interface expose methods for dealing with children, not
all objects implementing the Node interface may have children. For example,
Text nodes may not have children, and adding children to such nodes results in a
DOMException being raised.

The attributes nodeName, nodeValue and attributes are included as a
mechanism to get at node information without casting down to the specific
derived interface. In cases where there is no obvious mapping of these attributes
for a specific nodeType (e.g., nodeValue foran Element or attributes
for a Comment), this returns null. Note that the specialized interfaces may
contain additional and more convenient mechanisms to get and set the relevant
information.

The values of nodeName, nodeValue, and attributes vary according to
the node type as follows:

Interface nodeName nodeValue attributes
Attr name of attribute value of attribute null
CDATASection #cdata-section content of the null
CDATA Section
Comment #comment content of the null
comment
Document #document null null
DocumentFrag- #document- null null
ment fragment
DocumentType document type null null
name
Element tag name null NamedNodeMap
Entity entity name null null
EntityReference ~ name of entity null null
referenced
Notation notation name null null

574 Programmer's Reference

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

Interface nodeName
ProcessingInstruc- target
tion

Text #text

W3C Node interface

nodeValue attributes
entire content null
excluding the

target

content of the text null
node

575

NodeType enumeration

An integer indicating which type of node this is.

~ Note
Numeric codes up to 200 are reserved to W3C for possible future use.

The NodeType enumeration has the following constants of type unsigned
short.

ELEMENT _NODE =1
The node is an Element.

ATTRIBUTE_NODE =2
The node is an Attr.

TEXT _NODE =3
The node is a Text node.

CDATA_SECTION _NODE =4
The node is a CDATASection.

ENTITY_REFERENCE _NODE =5
The node is an EntityReference.

ENTITY_NODE =6
The node is an Entity.

PROCESSING INSTRUCTION_NODE =7
The node isa ProcessingInstruction.

COMMENT _NODE =8
The node is a Comment.

DOCUMENT _NODE =9
The node 1s a Document.

DOCUMENT _TYPE NODE =10
The node is a DocumentType.

DOCUMENT_FRAGMENT NODE =11
The node is a DocumentFragment.

NOTATION_NODE =12
The node is a Notation.

576 Programmer's Reference

DocumentPosition enumeration

A bitmask indicating the relative document position of a node with respect to
another node.

If the two nodes being compared are the same node, then no flags are set on the
return.

Otherwise, the order of two nodes is determined by looking for common
containers — containers which contain both. A node directly contains any child
nodes. A node also directly contains any other nodes attached to it such as
attributes contained in an element or entities and notations contained in a
document type. Nodes contained in contained nodes are also contained, but less-
directly as the number of intervening containers increases.

If there is no common container node, then the order is based upon order between
the root container of each node that is in no container. In this case, the result is
disconnected and implementation-specific. This result is stable as long as these
outer-most containing nodes remain in memory and are not inserted into some
other containing node. This would be the case when the nodes belong to different
documents or fragments, and cloning the document or inserting a fragment might
change the order.

If one of the nodes being compared contains the other node, then the container
precedes the contained node, and reversely the contained node follows the
container. For example, when comparing an element against its own attribute or
child, the element node precedes its attribute node and its child node, which both
follow it.

If neither of the previous cases apply, then there exists a most-direct container
common to both nodes being compared. In this case, the order is determined based
upon the two determining nodes directly contained in this most-direct common
container that either are or contain the corresponding nodes being compared.

If these two determining nodes are both child nodes, then the natural DOM order
of these determining nodes within the containing node is returned as the order of
the corresponding nodes. This would be the case, for example, when comparing
two child elements of the same element.

If one of the two determining nodes is a child node and the other is not, then the
corresponding node of the child node follows the corresponding node of the non-
child node. This would be the case, for example, when comparing an attribute of
an element with a child element of the same element.

If neither of the two determining node is a child node and one determining node
has a greater value of nodeType than the other, then the corresponding node
precedes the other. This would be the case, for example, when comparing an entity
of a document type against a notation of the same document type.

W3C Node interface 577

If neither of the two determining node is a child node and nodeType is the same
for both determining nodes, then an implementation-dependent order between the
determining nodes is returned. This order is stable as long as no nodes of the same
nodeType are inserted into or removed from the direct container. This would be
the case, for example, when comparing two attributes of the same element, and
inserting or removing additional attributes might change the order between
existing attributes.

The DocumentPosition enumeration has the following constants of type
unsigned short.

DOCUMENT_POSITION_DISCONNECTED = 0x01
The two nodes are disconnected. Order between disconnected nodes is always
implementation-specific.

DOCUMENT_POSITION_PRECEDING = 0x02
The node precedes the reference node.

DOCUMENT _POSITION_FOLLOWING = 0x04
The node follows the reference node.

DOCUMENT_POSITION_CONTAINS = 0x08
The node contains the reference node. A node which contains is always
preceding, too.

DOCUMENT_POSITION_CONTAINED BY =0x10
The node is contained by the reference node. A node which is contained is
always following, too.

DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC = 0x20
The determination of preceding versus following is implementation-specific.

attributes attribute

A NamedNodeMap containing the attributes of this node (if it is an Element) or
null otherwise.

attributes
Access read-only
Returns NamedNodeMap

baseURI attribute

The absolute base URI of this node or nul1l if the implementation wasn't able to
obtain an absolute URI. This value is computed as described in . However, when
the Document supports the feature "HTML" [DOM Level 2 HTML], the base

578 Programmer's Reference

http://www.w3.org/TR/DOM-Level-2-HTML

URI is computed using first the value of the href attribute of the HTML BASE
element if any, and the value of the documentURT attribute from the
Document interface otherwise.

baseURI
Access read-only
Returns String

childNodes attribute

A NodeList that contains all children of this node. If there are no children, this
is a NodeList containing no nodes.

childNodes
Access read-only
Returns NodeList

firstChild attribute

The first child of this node. If there is no such node, this returns null.

firstChild
Access read-only
Returns Node

lastChild attribute

The last child of this node. If there is no such node, this returns null.

lastChild
Access read-only
Returns Node

localName attribute

Returns the local part of the qualified name of this node.

For nodes of any type other than ELEMENT NODE and ATTRIBUTE NODE and
nodes created with a DOM Level 1 method, such as createElement from the
Document interface, this is always null.

localName
Access read-only
Returns String

W3C Node interface 579

namespaceURI attribute

The namespace URI of this node, or nul1l if it is unspecified.

This is not a computed value that is the result of a namespace lookup based on an
examination of the namespace declarations in scope. It is merely the namespace
URI given at creation time.

For nodes of any type other than ELEMENT NODE and ATTRIBUTE NODE and

nodes created with a DOM Level 1 method, such as createElement from the
Document interface, this is always null.

~ Note
Per the Namespaces in XML Specification [XML Namespaces] an attribute
does not inherit its namespace from the element it is attached to. If an attribute
is not explicitly given a namespace, it simply has no namespace.

namespaceURT
Access read-only
Returns String

nextSibling attribute

The node immediately following this node. If there is no such node, this returns
null.

nextSibling
Access read-only
Returns Node

nodeName attribute

The name of this node, depending on its type; see the table above.

nodeName
Access read-only
Returns String

nodeType attribute

A code representing the type of the underlying object, as defined above.

580 Programmer's Reference

http://www.w3.org/TR/REC-xml-names/

nodeType
Access read-only
Returns unsigned short

nodeValue attribute

The value of this node, depending on its type; see the table above. When it is
defined to be nul1l, setting it has no effect. including if the node is read-only.

nodeValue

Access read-write

Returns String

Get throws DOMEZxception
DOMSTRING SIZE ERR: Raised when it would return
more characters than fit in a DOMSt ring variable on the
implementation platform.

Set throws DOMException

NO_MODIFICATION ALLOWED_ ERR: Raised when
the node is readonly.

ownerDocument attribute

The Document object associated with this node. This is also the Document
object used to create new nodes. When this node is a Document or a
DocumentType which is not used with any Document yet, this is null.

ownerDocument
Access read-only
Returns Document

parentNode attribute

The parent of this node. All nodes, except Attr, Document,
DocumentFragment, Entity, and Notation may have a parent. However,
if a node has just been created and not yet added to the tree, or if it has been
removed from the tree, this is null.

parentNode
Access read-only
Returns Node

W3C Node interface

581

prefix attribute

The namespace prefix of this node, or null if it is unspecified.

Note that setting this attribute, when permitted, changes the nodeName attribute,
which holds the qualified name, as well as the tagName and name attributes of
the Element and Attr interfaces, when applicable.

Note also that changing the prefix of an attribute that is known to have a default
value, does not make a new attribute with the default value and the original prefix
appear, since the namespaceURI and 1ocalName do not change.

For nodes of any type other than ELEMENT NODE and ATTRIBUTE NODE and
nodes created with a DOM Level 1 method, such as createElement from the
Document interface, this is always null.

prefix

Access read-write

Returns String

Set throws DOMException INVALID CHARACTER ERR: Raised if

the specified prefix contains an illegal character.
NO_MODIFICATION ALLOWED_ERR: Raised if this
node is readonly.

NAMESPACE ERR: Raised if the specified prefix is
malformed, if the namespaceURT of this node is null,
if the specified prefix is "xml" and the namespaceURT of
this node is different from " http://www.w3.org/ XML/
1998/namespace", if this node is an attribute and the
specified prefix is "xmlns" and the namespaceURT of
this node is different from "http://www.w3.0rg/2000/
xmlns/", or if this node is an attribute and the
qualifiedName of this node is "xmlns" [XML
Namespaces].

previousSibling attribute

The node immediately preceding this node. If there is no such node, this returns
null.

previousSibling
Access read-only
Returns Node

582 Programmer's Reference

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

textContent attribute

~! Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

This attribute returns the text content of this node and its descendants. When it is
defined to be nul1l, setting it has no effect. On setting, any possible children this
node may have are removed and, if it the new string is not empty or null,
replaced by a single Text node containing the string this attribute is set to.

On getting, no serialization is performed, the returned string does not contain any
markup. No whitespace normalization is performed and the returned string does
not contain the white spaces in element content (see the attribute
Text.isElementContentWhitespace). Similarly, on setting, no parsing is
performed either, the input string is taken as pure textual content.

The string returned is made of the text content of this node depending on its type,
as defined below:

Node type Content

ELEMENT NODE, ATTRIBUTE concatenation of the textContent
NODE, ENTITY NODE, ENTITY _ attribute value of every child node,
REFERENCE NODE, DOCUMENT |excluding COMMENT NODE and
FRAGMENT NODE PROCESSING INSTRUCTION _
NODE nodes. This is the empty string
if the node has no children.

TEXT NODE, CDATA SECTION |nodeValue

NODE, COMMENT NODE,
PROCESSING INSTRUCTION _
NODE

DOCUMENT NODE, DOCUMENT _ [null
TYPE NODE, NOTATION NODE

textContent
Access read-write
Returns String

W3C Node interface 583

Get throws DOMException

DOMSTRING SIZE ERR: Raised when it would return
more characters than fit in a DOMSt ring variable on the
implementation platform.

Set throws DOMEzxception
NO_MODIFICATION ALLOWED_ ERR: Raised when

the node is readonly.

appendChild method

Adds the node newChild to the end of the list of children of this node. If the
newChild is already in the tree, it is first removed.
appendChild(newChild)

Parameters Node newChild

The node to add.

Ifit is a DocumentFragment object, the entire contents
of the document fragment are moved into the child list of

this node
Returns Node. The node added.
Throws DOMEzxception

HIERARCHY REQUEST ERR: Raised if this node is of
a type that does not allow children of the type of the
newChild node, or if the node to append is one of this
node's ancestors.

WRONG DOCUMENT ERR: Raised if newChild was
created from a different document than the one that created
this node.

NO MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

cloneNode method

Returns a duplicate of this node, i.e., serves as a generic copy constructor for
nodes. The duplicate node has no parent; (parentNode is null.).

Cloning an Element copies all attributes and their values, including those
generated by the XML processor to represent defaulted attributes, but this method
does not copy any text it contains unless it is a deep clone, since the text is
contained in a child Text node. Cloning an Attribute directly, as opposed to

584 Programmer's Reference

be cloned as part of an Element cloning operation, returns a specified attribute
(specifiedis true). Cloning any other type of node simply returns a copy of
this node.

Note that cloning an immutable subtree results in a mutable copy, but the children
of an EntityReference clone are readonly. In addition, clones of unspecified
Attr nodes are specified. And, cloning Document, DocumentType,
Entity, and Notation nodes is implementation dependent.

cloneNode(deep)

Parameters boolean deep

If t rue, recursively clone the subtree under the specified
node; if false, clone only the node itself (and its
attributes, if it is an Element).

Returns Node. The duplicate node.

compareDocumentPosition method

Compares the reference node, i.e. the node on which this method is being called,
with a node, i.e. the one passed as a parameter, with regard to their position in the
document and according to the document order.

compareDocumentPosition(other)

Parameters Node other
The node to compare against the reference node.
Returns unsigned short. Returns how the node is positioned
relatively to the reference node.
Throws DOMException

NOT_SUPPORTED_ ERR: when the compared nodes are
from different DOM implementations that do not
coordinate to return consistent implementation-specific
results.

getFeature method

~ Note

This DOM Level 3 method is defined, but is currently unimplemented by
Arbortext Editor.

W3C Node interface 585

This method returns a specialized object which implements the specialized APIs
of the specified feature and version, as specified in . The specialized object may
also be obtained by using binding-specific casting methods but is not necessarily
expected to, as discussed in . This method also allow the implementation to
provide specialized objects which do not support the Node interface.

getFeature(feature version)

Parameters String feature

The name of the feature requested. Note that any plus sign
"+" prepended to the name of the feature will be ignored
since it is not significant in the context of this method.
String version

This is the version number of the feature to test.

Returns DOMObject. Returns an object which implements the
specialized APIs of the specified feature and version, if
any, or null if there is no object which implements
interfaces associated with that feature. If the DOMObject
returned by this method implements the Node interface, it
must delegate to the primary core Node and not return
results inconsistent with the primary core Node such as
attributes, childNodes, etc.

getUserData method

Retrieves the object associated to a key on a this node. The object must first have
been set to this node by calling setUserData with the same key.

getUserDatal(key)

Parameters String key
The key the object is associated to.

Returns DOMUserData. Returns the DOMUserData associated
to the given key on this node, or nul1l if there was none.

hasAttributes method

Returns whether this node (if it is an element) has any attributes.

hasAttributes()

Parameters None

Returns trueboolean. if this node has any attributes, false
otherwise.

586 Programmer's Reference

hasChildNodes method

Returns whether this node has any children.

hasChildNodes()

Parameters None

Returns booleantrue if this node has any children, false
otherwise.

insertBefore method

Inserts the node newChi 1d before the existing child node refChild. If
refChildis null, insert newChild at the end of the list of children.

If newChildis a DocumentFragment object, all of its children are inserted,
in the same order, before refChild. If the newChild is already in the tree, it is
first removed.

insertBefore(newChild [, refChild])

Parameters Node newChild
The node to insert.
Node refChild

[optional] The reference node, i.e., the node before which
the new node must be inserted.

Returns Node. The node being inserted.

Throws DOMException

HIERARCHY REQUEST ERR: Raised if this node is of
a type that does not allow children of the type of the
newChild node, or if the node to insert is one of this
node's ancestors.

WRONG DOCUMENT ERR: Raised if newChild was

created from a different document than the one that created
this node.

NO_MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly or if the parent of the node being inserted
is readonly.

NOT _FOUND_ ERR: Raised if refChi1ld is not a child
of this node.

isDefaultNamespace method

This method checks if the specified name spaceURT is the default namespace or
not.

W3C Node interface 587

isDefaultNamespace(namespaceURI)

Parameters String namespaceURI
The namespace URI to look for.

Returns booleantrue if the specified namespaceURI is the
default namespace, false otherwise.

isEqualNode method

Tests whether two nodes are equal.

This method tests for equality of nodes, not sameness (i.e., whether the two nodes
are references to the same object) which can be tested with Node . i sSameNode.
All nodes that are the same will also be equal, though the reverse may not be true.

Two nodes are equal if and only if the following conditions are satisfied:

* The two nodes are of the same type.

* The following string attributes are equal: nodeName, 1ocalName,
namespaceURI, prefix, nodeValue, baseURI. This is: they are both
null, or they have the same length and are character for character identical.

* The attributes NamedNodeMaps are equal. This is: they are both null,
or they have the same length and for each node that exists in one map there is
a node that exists in the other map and is equal, although not necessarily at the
same index.

* The childNodes NodeLists are equal. This is: they are both null, or
they have the same length and contain equal nodes at the same index. Note
that normalization can affect equality; to avoid this, nodes should be
normalized before being compared.

For two DocumentType nodes to be equal, the following conditions must also
be satisfied:

* The following string attributes are equal: publicId, systemId,
internalSubset.

* Theentities NamedNodeMaps are equal.

* The notations NamedNodeMaps are equal.

On the other hand, the following do not affect equality: the ownerDocument

attribute, the specified attribute for At tr nodes, the

isWhitespaceInElementContent attribute for Text nodes, as well as any
user data or event listeners registered on the nodes.

588 Programmer's Reference

isEqualNode(arg)

Parameters Node arg
The node to compare equality with.

Returns boolean. Returns t rue if the nodes are equal, false
otherwise.

isSameNode method

Returns whether this node is the same node as the given one.

This method provides

a way to determine whether two Node references returned

by the implementation reference the same object. When two Node references are

references to the same

object, even if through a proxy, the references may be used

completely interchangeably, such that all attributes have the same values and
calling the same DOM method on either reference always has exactly the same

effect.
isSameNode(other)
Parameters Node other
The node to test against.
Returns boolean. Returns true if the nodes are the same,
false otherwise.

isSupported method

Tests whether the DOM implementation implements a specific feature and that
feature is supported by this node.

isSupported(feature, version)

Parameters

String feature

The name of the feature to test. This is the same name
which can be passed to the method hasFeature on
DOMImplementation.

String version

This is the version number of the feature to test. In Level 2,
version 1, this is the string "2.0". If the version is not
specified, supporting any version of the feature will cause
the method to return true.

Returns

boolean. Returns true if the specified feature is

supported on this node, false otherwise.

W3C Node interface

589

lookupNamespacePrefix method

Look up the prefix associated to the given namespace URI, starting from this

node.

lookupNamespacePrefix(namespaceURI, useDefault)

Parameters

String namespaceURI
The namespace URI to look for.
boolean useDefault

Indicates if the lookup mechanism should take into account
the default namespace or not.

Returns

String. Returns an associated namespace prefix if found,
null if none is found and useDefault is false, or
null if not found or it is the default namespace and
useDefault is true. If more than one prefix are
associated to the namespace prefix, the returned namespace
prefix is implementation dependent.

lookupNamespaceURI method

Look up the namespace URI associated to the given prefix, starting from this

node.

lookupNamespaceURI(prefix)

Parameters String prefix
The prefix to look for. If this parameter is nul1l, the
method will return the default namespace URI if any.
Returns String. Returns the associated namespace URI or null

if none is found.

lookupPrefix method

Look up the prefix associated to the given namespace URI, starting from this

node.

lookupPrefix(namespaceURI)

Parameters String namespaceURI
The namespace URI to look for.
Returns String. Returns an associated namespace prefix if found

or null if none is found. If more than one prefix are
associated to the namespace URI, the returned namespace

prefix is implementation dependent.

590

Programmer's Reference

normalize method

Puts all Text nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only structure (e.g.,
elements, comments, processing instructions, CDATA sections, and entity
references) separates Text nodes, i.e., there are neither adjacent Text nodes nor
empty Text nodes. This can be used to ensure that the DOM view of a document
is the same as if it were saved and re-loaded, and is useful when operations (such
as XPointer [XPointer] lookups) that depend on a particular document tree
structure are to be used.

1 Note
In cases where the document contains CDATASections, the normalize
operation alone may not be sufficient, since XPointers do not differentiate
between Text nodes and CDATASection nodes.

normalize()

Parameters None
Returns void

removeChild method

Removes the child node indicated by 01dChi1d from the list of children, and
returns it.
removeChild(oldChild)

Parameters Node oldChild
The node being removed.

Returns Node. The node removed.
Throws DOMException
NO_MODIFICATION ALLOWED_ ERR: Raised if this

node is readonly.

NOT _FOUND_ERR: Raised if o1dChi1d is not a child
of this node.

replaceChild method

Replaces the child node 01dChild with newChild in the list of children, and
returns the 01dChi1ld node.

W3C Node interface 591

http://www.w3.org/TR/xptr-framework/

If newChildis a DocumentFragment object, o1dChild is replaced by all
of the DocumentFragment children, which are inserted in the same order. If
the newChild is already in the tree, it is first removed.

replaceChild(newChild, oldChild)

Parameters Node newChild
The new node to put in the child list.
Node oldChild

The node being replaced in the list.

Returns Node. The node replaced.

Throws DOMException

HIERARCHY REQUEST ERR: Raised if this node is of
a type that does not allow children of the type of the
newChild node, or if the node to put in is one of this
node's ancestors.

WRONG DOCUMENT ERR: Raised if newChild was
created from a different document than the one that created
this node.

NO _MODIFICATION ALLOWED_ ERR: Raised if this
node or the parent of the new node is readonly.

NOT _FOUND_ ERR: Raised if o1dChild is not a child
of this node.

setUserData method

Associate an object to a key on this node. The object can later be retrieved from
this node by calling getUserData with the same key.

setUserDatal(key, data, handler)

Parameters String key

The key to associate the object to.
DOMUserData data

The object to associate to the given key, or null to
remove any existing association to that key.
UserDataHandler handler

The handler to associate to that key, or null.

Returns DOMUserData. Returns the DOMUserData previously
associated to the given key on this node, or null if there
was none.

592 Programmer's Reference

85

W3C NodeEditVAL interface

validationState enUMErationo 594
validationType enuMEration ..o 594
defaultValue attribULeo 594
enumeratedValues attributeccoooiiiiii 595
canAppendChild Method. e 595
caninsertBefore Method............cooiiiii 595
canRemoVveChild Method...........oovniii e 596
canReplaceChild Method ... 596
nodeValidity Method ... 596

The NodeEdi t VAL interface is defined in the W3C Document Object Model
(DOM) Level 3 Validation Specification. (Refer to http://www.w3.org/TR/DOM-
Level-3-Val.)

This interface is similar to the [DOM Level 3 Core] Node interface, with methods
for guided document editing.

593

http://www.w3.org/TR/DOM-Level-3-Val
http://www.w3.org/TR/DOM-Level-3-Val
http://www.w3.org/TR/DOM-Level-3-Core

validationState enumeration

An integer indicating the validation state, or whether the operation can or cannot
be done.

The validationState enumeration has the following constants of type
unsigned short.

VAL_TRUE =5
True if the node is valid with regards to the operation, or if the operation can
be done.

VAL_FALSE =6
False if the node is invalid with regards to the operation, or if the operation
cannot be done.

VAL_UNKNOWN =7
The validity of the node is unknown.

validationType enumeration

An integer indicating the validation type. Other specifications can define stricter
validation types/constants by extending the NodeEdi t VAL interface.

The validationType enumeration has the following constants of type
unsigned short.
VAL _WF =1
Check if the node is well-formed.
VAL _NS WF=2
Check if the node is namespace well-formed.
VAL _INCOMPLETE =3
Check if the node's immediate children are those expected by the content

model. This node's trailing required children could be missing. It includes
VAL NS_WF.

VAL_SCHEMA = 4
Check if the node's entire subtree are those expected by the content model. It
includes VAL, NS WF.

defaultValue attribute

The default value specified in an attribute or an element declaration or nul1l if
unspecified. If the schema is a W3C XML schema, this is the canonical lexical
representation of the default value.

594 Programmer's Reference

defaultValue
Access read-only

Returns String

enumeratedValues attribute

A DOMStringList, as described in [DOM Level 3 Core], of distinct values for
an attribute or an element declaration or nul1l if unspecified. If the schema is a
W3C XML schema, this is a list of strings which are lexical representations
corresponding to the values in the [value] property of the enumeration component
for the type of the attribute or element. It is recommended that the canonical
lexical representations of the values be used.

enumeratedValues
Access read-only
Returns DOMStringList

canAppendChild method

Determines whether the Node . appendChi1d operation would make this
document not compliant with the VAL INCOMPLETE validity type.

canAppendChild(newChild)
Parameters Node newChild
Node to be appended.
Returns unsigned short. A validation state constant.

caninsertBefore method

Determines whether the Node . insertBefore operation would make this
document not compliant with the VAL INCOMPLETE validity type.

canInsertBefore(newChild [, refChild])

Parameters Node newChild
Node to be inserted.
Node refChild

[optional] Reference Node.

Returns unsigned short. A validation state constant.

W3C NodeEditVAL interface 595

http://www.w3.org/TR/DOM-Level-3-Core

canRemoveChild method

Determines whether the Node . removeChi 1d operation would make this
document not compliant with the VAL INCOMPLETE validity type.

canRemoveChild(oldChild)
Parameters Node oldChild
Node to be removed.
Returns unsigned short. A validation state constant.

canReplaceChild method

Determines whether the Node . replaceChild operation would make this
document not compliant with the VAL INCOMPLETE validity type.

canReplaceChild(newChild, oldChild)

Parameters Node newChild
New Node.
Node oldChild

Node to be replaced.
Returns unsigned short. A validation state constant.

nodeValidity method

Determines if the node is valid relative to the validation type specified in
valType. This operation doesn't normalize before checking if it is valid. To do
s0, one would need to explicitly call a normalize method. The difference between
this method and the DocumentEditVAL.validateDocument method is that the
latter method only checks to determine whether the entire document is valid.

nodeValidity(valType)
Parameters unsigned short vallype

Flag to indicate the validation type checking to be done.
Returns unsigned short. A validation state constant.

Programmer's Reference

596

86

W3C Nodelist interface

(10T 0l 1 4151 (o Lo PR 598

The NodeList interface is defined in the W3C Document Object Model (DOM)

Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113.)

The NodeList interface provides the abstraction of an ordered collection of
nodes, without defining or constraining how this collection is implemented.
NodeList objects in the DOM are live.

The items in the NodeList are accessible via an integral index, starting from 0.

597

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

length attribute

The number of nodes in the list. The range of valid child node indices is 0 to
length-1 inclusive.

length
Access read-only
Returns unsigned long

item method

Returns the i ndexth item in the collection. If index is greater than or equal to
the number of nodes in the list, this returns null.

item(nodeindex)

Parameters unsigned long nodeindex
Index into the collection.

Returns Node. The node at the i ndexth position in the
NodeList, or null if that is not a valid index.

598 Programmer's Reference

87

W3C Notation interface

PUBlICId @ttrIDULE e 600
systemld attribute ... 600

The Notation interface is defined in the W3C Document Object Model (DOM)
Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113.)

This interface represents a notation declared in the DTD. A notation either
declares, by name, the format of an unparsed entity (see section 4.7 of the XML
1.0 specification [XML 1.0]), or is used for formal declaration of processing
instruction targets (see section 2.6 of the XML 1.0 specification [XML 1.0]). The
nodeName attribute inherited from Node is set to the declared name of the
notation.

The DOM Level 1 does not support editing Notation nodes; they are therefore
readonly.

A Notation node does not have any parent.

599

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

publicld attribute

The public identifier of this notation. If the public identifier was not specified, this

isnull.

publicId

Access read-only
Returns String

systemlid attribute

The system identifier of this notation. If the system identifier was not specified,

thisis null.

systemId
Access read-only
Returns String

600

Programmer's Reference

88

W3C Processinglnstruction
interface

data attribULE ... s 602
target attribute

The ProcessingInstruction interface is defined in the W3C Document
Object Model (DOM) Level 2 Core Specification. (Refer to http://www.w3.org/
TR/2000/REC-DOM-Level-2-Core-20001113.)

The ProcessingInstruction interface represents a " processing

instruction", used in XML as a way to keep processor-specific information in the
text of the document.

601

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

data attribute

The content of this processing instruction. This is from the first non white space
character after the target to the character immediately preceding the ?>.

data

Access read-write
Returns String

Set throws DOMException

NO_MODIFICATION ALLOWED_ERR: Raised when
the node is readonly.

target attribute

The target of this processing instruction. XML defines this as being the first token
following the markup that begins the processing instruction.

target
Access read-only
Returns String

602 Programmer's Reference

89

PropertyMap interface

DataType enUMErationc..oooiuiiii et 604
keys attribDUute e 604
Modified attribDULE... ... e 604
containSKeY MEthOd e 604
getDataType MethOd e 605
getNUMDber Method....... ... e 605
GetStriNG MELNOd....... oo e 605
getStringList MEthOd........coo s 606
PUINUMDEr MEthOd.o e e ees 606
PULSTING MELNOTo e e e e 606
PUESTHNGLISt MELNOQ.coe e 606
remMOVE METNOA e e e e e ean 607

The PropertyMap interface provides the abstraction of a collection of typed
objects associated with string keys.

The items in the PropertyMap are accessible by a string key. The keys
attribute is provided to iterate over all entries in the map.

A PropertyMap object can be created using the
Application.createPropertyMap factory method. Some AOM methods
return PropertyMap objects.

603

DataType enumeration

DataType is the return type from the getDataType method which identifies
the type of data stored in the PropertyMap.

The DataType enumeration has the following constants of type unsigned
short.

TYPE_UNKNOWN =0
No data associated with the key.

TYPE NUMBER =1
The data value is a number.

TYPE_STRINGLIST =2
The data value is a StringList object.

TYPE_STRING =3
The data value is a DOMString.

keys attribute

Returns a StringList of all keys in the collection, which may be used to
iterate over the PropertyMap.

keys
Access read-only
Returns StringList

modified attribute

A boolean indicating whether the property map object has been modified in the
current session.

modified
Access read-write
Returns boolean

containsKey method

Tests whether the specified key is contained in the PropertyMap.

604 Programmer's Reference

containsKey(key)

Parameters String key
The key to check.

Returns trueboolean. if the PropertyMap contains a value
for key. false otherwise.

getDataType method

Returns the type of data associated with the specified key in the PropertyMap.

getDataType(key)

Parameters String key
The key to examine.

Returns unsigned short. The type associated with the key. If
key is not contained in the PropertyMap, returns
TYPE UNKNOWN.

getNumber method

Returns the integer value data associated with the specified key in the
PropertyMap.

getNumber(key)

Parameters String key
The key to examine.

Returns long. The numeric value associated with the key. If key
is not contained in the PropertyMap or the map entry is
not a number, returns —1.

getString method

Returns the string value data associated with the specified key in the
PropertyMap.

getString(key)

Parameters String key
The key to examine.

Returns String. The DOMString value associated with the key.
If key is not contained in the PropertyMap or the map
entry is not a string, returns null.

PropertyMap interface 605

getStringList method

Returns the StringList associated with the specified key in the
PropertyMap.

getStringList(key)

Parameters String key
The key to examine.

Returns StringList. The StringList value associated with
the key. If key is not contained in the PropertyMap or
the map entry isnota StringList, returns null.

putNumber method

Associates a numeric value with a particular key.

putNumbe r(key, value)

Parameters String key
Identifies the value to be replaced.
long value

The new value to be stored.
Returns void

putString method

Associates a DOMSt ring with a particular key.

putString(key, value)

Parameters String key
Identifies the value to be replaced.
String value

The new value to be stored. If the value is null, the
previous value, if any, is deleted from the map.

Returns void

putStringList method

Associates a StringList with a particular key.

606 Programmer's Reference

putStringList(key, value)

Parameters

String key

Identifies the value to be replaced.

StringList value

The new value to be stored. If the value is null, the
previous value, if any, is deleted from the map.

Returns

void

remove method

Deletes an entry from the PropertyMap.

remove(key)

Parameters String key
Identifies the item to remove. If the key is not contained in
the map, does nothing.

Returns void

PropertyMap interface

607

90

W3C Range interface

CompareHOW enuUMErationiiiiiiiiii e 610
collapsed attribute ..o 610
commonAncestorContainer attribute..............coovveiiiiiii e 610
endContainer attributeoooviiii 611
endOffset attribULE ..o 611
startContainer attributeoiii 611
sStartOffset attribDULE 611
ClonNeContents MELhOM...........iiiii e 612
cloneRanNge MEthOdiin i 612
COllAPSE MELNOM ... ettt 612
compareBoundaryPoints method............cooiiiiii i 613
deleteContents MEthOd.........ceeiii e 613
AetaCh METNOAo e e 614
extractContents MethOd............oviii e 614
INSETNOAE MELNOAo e e eeaas 614
SEIECINOAE MELNOMceeeee e e e 615
selectNodeContents Methodc.uiiiiiiiii e 616
SEIENA METhOQ e 616
SEtENAATEr MEthO.o 617
SEtENABEfOre MEthOdoeeieee e 618
SetStart MEthOd.o e 618
setStartAfter Method..........oove e 619
setStartBefore Method...... ... 620
surroundContents MEthOd........ ... 620
tOSHING MELNOQ.o e 621

The Range interface is defined in the W3C Document Object Model (DOM)
Level 2 Traversal and Range Specification. (Refer to http://www.w3.org/TR/2000/
REC-DOM-Level-2-Traversal-Range-20001113.)

609

http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113

CompareHow enumeration

Passed as a parameter to the compareBoundaryPoints method.

The CompareHow enumeration has the following constants of type unsigned
short.

START _TO _START =0
Compare start boundary-point of sourceRange to start boundary-point of
Range on which compareBoundaryPoints is invoked.

START _TO END =1
Compare start boundary-point of sourceRange to end boundary-point of
Range on which compareBoundaryPoints is invoked.

END_TO _END =2
Compare end boundary-point of sourceRange to end boundary-point of
Range on which compareBoundaryPoints is invoked.

END _TO _START =3
Compare end boundary-point of sourceRange to start boundary-point of
Range on which compareBoundaryPoints is invoked.

collapsed attribute
TRUE if the Range is collapsed

collapsed

Access read-only

Returns boolean

Get throws DOMException
INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

commonAncestorContainer attribute

The deepest common ancestor container of the Range's two boundary-points.

commonAncestorContainer

Access read-only
Returns Node
Get throws DOMEzxception

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

610 Programmer's Reference

endContainer attribute

Node within which the Range ends

endContainer

Access read-only
Returns Node

Get throws DOMException

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

endOffset attribute

Offset within the ending node of the Range.

endOffset

Access read-only
Returns long

Get throws DOMException

INVALID STATE ERR: Raised if detach () has

already been invoked on this object.

startContainer attribute
Node within which the Range begins

startContainer

Access read-only
Returns Node

Get throws DOMException

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

startOffset attribute

Offset within the starting node of the Range.

startOffset

Access read-only

Returns long

Get throws DOMEZxception
INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

W3C Range interface

611

cloneContents method

Duplicates the contents of a Range

cloneContents()

Parameters None

Returns DocumentFragment. A DocumentFragment that
contains content equivalent to this Range.

Throws DOMEzxception

HIERARCHY REQUEST ERR: Raised if a
DocumentType node would be extracted into the new
DocumentFragment.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

cloneRange method

Produces a new Range whose boundary-points are equal to the boundary-points of
the Range.

cloneRange()

Parameters None
Returns Range. The duplicated Range.
Throws DOMException

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

collapse method

Collapse a Range onto one of its boundary-points

collapse(toStart)

Parameters boolean toStart
If TRUE, collapses the Range onto its start; if FALSE,
collapses it onto its end.

Returns void

Throws DOMException

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

612 Programmer's Reference

compareBoundaryPoints method

Compare the boundary-points of two Ranges in a document.

compareBoundaryPoints(how, sourceRange)

Parameters

CompareHow how

A code representing the type of comparison, as defined
above.

Range sourceRange

The Range on which this current Range is compared to.

Returns

short. -1, 0 or 1 depending on whether the corresponding
boundary-point of the Range is respectively before, equal
to, or after the corresponding boundary-point of
sourceRange.

Throws

DOMEzxception
WRONG DOCUMENT ERR: Raised if the two Ranges
are not in the same Document or DocumentFragment.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

deleteContents method

Removes the contents of a Range from the containing document or document
fragment without returning a reference to the removed content.

deleteContents()

Parameters None
Returns void
Throws DOMEzxception

NO_MODIFICATION ALLOWED_ERR: Raised if any
portion of the content of the Range is read-only or any of
the nodes that contain any of the content of the Range are
read-only.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

W3C Range interface

613

detach method

Called to indicate that the Range is no longer in use and that the implementation
may relinquish any resources associated with this Range. Subsequent calls to any
methods or attribute getters on this Range will result in a DOMException being
thrown with an error code of INVALID STATE ERR.

detach()

Parameters None

Returns void

Throws DOMEZxception

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

extractContents method

Moves the contents of a Range from the containing document or document
fragment to a new DocumentFragment.

extractContents()

Parameters None

Returns DocumentFragment. A DocumentFragment containing
the extracted contents.

Throws DOMEZxception

NO_MODIFICATION ALLOWED_ERR: Raised if any
portion of the content of the Range is read-only or any of
the nodes which contain any of the content of the Range
are read-only.

HIERARCHY REQUEST ERR: Raised if a
DocumentType node would be extracted into the new
DocumentFragment.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

insertNode method

Inserts a node into the Document or DocumentFragment at the start of the Range.
If the container is a Text node, this will be split at the start of the Range (as if the
Text node's splitText method was performed at the insertion point) and the
insertion will occur between the two resulting Text nodes. Adjacent Text nodes
will not be automatically merged. If the node to be inserted is a
DocumentFragment node, the children will be inserted rather than the
DocumentFragment node itself.

614 Programmer's Reference

insertNode(newNode)

Parameters Node newNode

The node to insert at the start of the Range
Returns void
Throws DOMEzxception

NO_MODIFICATION ALLOWED_ ERR: Raised if an
ancestor container of the start of the Range is read-only.

WRONG DOCUMENT_ ERR: Raised if newNode and
the container of the start of the Range were not created
from the same document.

HIERARCHY REQUEST ERR: Raised if the container
of the start of the Range is of a type that does not allow
children of the type of newNode or if newNode is an
ancestor of the container.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.
RangeException

INVALID NODE TYPE ERR: Raised if newNode is an
Attr, Entity, Notation, or Document node.

selectNode method

Select a node and its contents

selectNode(refNode)

Parameters Node refNode
The node to select.

Returns void

Throws RangeException

INVALID NODE TYPE ERR: Raised if an ancestor of
refNode is an Entity, Notation or DocumentType node or
if refNode is a Document, DocumentFragment, Attr,
Entity, or Notation node.

DOMEZxception

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

WRONG DOCUMENT ERR: Raised if refNode was
created from a different document than the one that created
this range.

W3C Range interface

615

selectNodeContents method

Select the contents within a node

selectNodeContents(refNode)

Parameters Node refNode
Node to select from

Returns void

Throws RangeException

INVALID NODE TYPE ERR: Raised if refNode or an
ancestor of refNode is an Entity, Notation or

DocumentType node.
DOMEzxception

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

WRONG DOCUMENT ERR: Raised if refNode was
created from a different document than the one that created
this range.

setEnd method

Sets the attributes describing the end of a Range.

setEnd(refNode, offset)

Parameters Node refNode
The refNode value. This parameter must be different
from null.
long offset
The endOf fset value.
616 Programmer's Reference

Returns

void

Throws

RangeException

INVALID NODE TYPE ERR: Raised if refNode or an
ancestor of refNode is an Entity, Notation, or
DocumentType node.

DOMEzxception

INDEX SIZE ERR: Raised if of fset is negative or
greater than the number of child units in refNode. Child
units are 16-bit units if refNode is a type of
CharacterData node (e.g., a Text or Comment node) or a
Processinglnstruction node. Child units are Nodes in all
other cases.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

WRONG DOCUMENT ERR: Raised if refNode was
created from a different document than the one that created
this range.

setEndAfter method

Sets the end of a Range to be after a node

setEndAfter(refNode)

Parameters Node refNode

Range ends after refNode.
Returns void
Throws RangeException

INVALID NODE TYPE ERR: Raised if the root
container of refNode is not an Attr, Document or
DocumentFragment node or if re fNode is a Document,

DocumentFragment, Attr, Entity, or Notation node.
DOMEZxception

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

WRONG DOCUMENT ERR: Raised if refNode was
created from a different document than the one that created
this range.

W3C Range interface

617

setEndBefore method

Sets the end position to be before a node.

setEndBefore(refNode)

Parameters Node refNode

Range ends before refNode
Returns void
Throws RangeException

INVALID NODE TYPE ERR: Raised if the root
container of refNode is not an Attr, Document, or
DocumentFragment node or if refNode is a Document,
DocumentFragment, Attr, Entity, or Notation node.
DOMEZxception

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

WRONG DOCUMENT ERR: Raised if refNode was
created from a different document than the one that created
this range.

setStart method

Sets the attributes describing the start of the Range.

setStart(refNode, offset)

Parameters Node refNode
The re fNode value. This parameter must be different
from null.
long offset
The startOffset value.
618 Programmer's Reference

Returns

void

Throws

RangeException

INVALID NODE TYPE ERR: Raised if refNode or an
ancestor of refNode is an Entity, Notation, or
DocumentType node.

DOMEzxception

INDEX SIZE ERR: Raised if of fset is negative or
greater than the number of child units in refNode. Child
units are 16-bit units if refNode is a type of
CharacterData node (e.g., a Text or Comment node) or a
Processinglnstruction node. Child units are Nodes in all
other cases.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

WRONG DOCUMENT ERR: Raised if refNode was
created from a different document than the one that created
this range.

setStartAfter method

Sets the start position to be after a node

setStartAfter(refNode)

Parameters Node refNode

Range starts after refNode
Returns void
Throws RangeException

INVALID NODE TYPE ERR: Raised if the root
container of refNode is not an Attr, Document, or
DocumentFragment node or if re fNode is a Document,

DocumentFragment, Attr, Entity, or Notation node.
DOMEzxception

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

WRONG DOCUMENT ERR: Raised if refNode was
created from a different document than the one that created
this range.

W3C Range interface

619

setStartBefore method

Sets the start position to be before a node

setStartBefore(refNode)

Parameters Node refNode
Range starts before refNode

Returns void

Throws RangeException

INVALID NODE TYPE ERR: Raised if the root
container of refNode is not an Attr, Document, or
DocumentFragment node or if refNode is a Document,
DocumentFragment, Attr, Entity, or Notation node.
DOMEZxception

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

WRONG DOCUMENT ERR: Raised if refNode was
created from a different document than the one that created
this range.

surroundContents method

Reparents the contents of the Range to the given node and inserts the node at the
position of the start of the Range.

surroundContents(newParent)

Parameters Node newParent
The node to surround the contents with.

620 Programmer's Reference

Returns void

Throws DOMEzxception

NO MODIFICATION ALLOWED_ ERR: Raised if an
ancestor container of either boundary-point of the Range is
read-only.

WRONG DOCUMENT ERR: Raised if newParent and
the container of the start of the Range were not created
from the same document.

HIERARCHY REQUEST ERR: Raised if the container
of the start of the Range is of a type that does not allow
children of the type of newParent or if newParent is
an ancestor of the container or if node would end up with
a child node of a type not allowed by the type of node.

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.
RangeException

BAD BOUNDARYPOINTS ERR: Raised if the Range
partially selects a non-text node.

INVALID NODE TYPE ERR: Raised if node is an Attr,
Entity, DocumentType, Notation, Document, or
DocumentFragment node.

toString method

Returns the contents of a Range as a string. This string contains only the data
characters, not any markup.

toString()

Parameters None

Returns String. The contents of the Range.
Throws DOMException

INVALID STATE ERR: Raised if detach () has
already been invoked on this object.

W3C Range interface 621

91

W3C RangeException exception

RangeExceptionCode enUMErationoooeuuiiiiiiiii i 624

The RangeException interface is defined in the W3C Document Object
Model (DOM) Level 2 Traversal and Range Specification. (Refer to http://www.
w3.0rg/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113.)

Range operations may throw a RangeException as specified in their method
descriptions.

Objects that implement the RangeException interface include the following
property:

unsigned short code

623

http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113

RangeExceptionCode enumeration

An integer indicating the type of error generated.
The RangeExceptionCode enumeration has the following constants of type
unsigned short.

BAD_BOUNDARYPOINTS ERR=1
If the boundary-points of a Range do not meet specific requirements.

INVALID NODE_TYPE_ERR =2
If the container of an boundary-point of a Range is being set to either a node
of an invalid type or a node with an ancestor of an invalid type.

624 Programmer's Reference

92

ScriptContext interface

SCHPLTYPE ENUMEIALION. ... it e e e e e e anas 626
addTypeLibFlags enumerationo 626
addNameditem Method ... 626
addTypeLib Method 627
[0adScriptFile MEthOG i e 627
loadScriptText MEthOdoui e 627
terminate MEethOd e 628

The ScriptContext interface provides methods to load and run scripts using
the Microsoft Windows Scripting engine in separate contexts.

This interface is only available in the COM binding of the AOM.

625

scriptType enumeration

Passed as the value of the scriptType parameter to loadScriptText.

The scriptType enumeration has the following constants of type unsigned
short.

SCRIPT_GLOBAL_EXPRESSION =0
An expression in global scope

SCRIPT_PRIVATE_EXPRESSION =1
An expression in private scope

SCRIPT _GLOBAL_STATEMENT =2
A statement in global scope

SCRIPT_PRIVATE_STATEMENT =3
A statement in private scope

addTypeLibFlags enumeration

Bits defined in the f1ags parameter to AddTypeLib.

The addTypeLibFlags enumeration has the following constants of type
unsigned short.

TYPELIB_ACTIVEX CONTROL =1
The type library is for an ActiveX control.

addNamedltem method

Adds a script object or COM object to the script context's variable namespace.
This method makes a given script's methods available to other script instances.
Such availability is important when binding events to child controls in an ActiveX
component, such as to buttons residing on an HTML form launched within the
Microsoft WebBrowser control. Because event binding is name-based, this
method gives much greater flexibility than would normally be available from the
script host.

addNamedItem(script, name)

Parameters IDispatch script
The script object to define.
String name

The name to be defined for the object in this script context.

Returns void

626 Programmer's Reference

addTypeLib method

Adds a type library to the script context. This makes the constants defined in the
library available to scripts in the context.

addTypeLib(progld [, version [, flags]])

Parameters String progld

A string containing the program ID or CLSID of the object
whose type library is to be added to the script context.
String version

[optional] The version of the type library desired. If this is
not specified, the version registered for the object given in
the progId parameter is used. If no version is registered

for it, version 1.0 is assumed. The version must be a string
in the form "n[.m]".

unsigned short flags

[optional] Flags that affect the way the type library is

added to the scripting environment. Can be the sum of zero
or more values from addTypeLibFlags.

Returns void

loadScriptFile method

Loads, compiles, and runs the specified script file.

loadScriptFile(filename)

Parameters String filename
The file name containing the script to load.

Returns IDispatch. An object representing the compiled script.
This object name can be used in the addNamedItem
method to expose the script's methods to other script
instances.

loadScriptText method

Compiles and evaluates the script expression and returns the result as a string.

ScriptContext interface 627

loadScriptText(script [, scriptType])

Parameters

String script
The string containing the script.
unsigned short scriptIype

[optional] A value from the scriptType definition
indicating how to interpret the script text. The script can be
either a statement or an expression (not all script engines
make this distinction). It can also be evaluated in either
private or global scope. If it is evaluated in private scope
names in the script text will be discarded on return from
this method. If it is evaluated in global scope top-level
objects and names will persist after the call. If not provided
the default is to evaluate the script as an expression in
global scope.

Returns

String. The result value as a string if scriptType is
an expression.

terminate method

Terminates and unloads the Microsoft Windows Script engine instance associated
with this object. It gives the user the means to close a given script engine instance.

terminate([immediate])

Parameters boolean immediate
[optional] If true the script context is deleted immediately,
if false it is not deleted until the next message cycle, giving
running scripts a chance to finish

Returns void

628 Programmer's Reference

93

StringL.ist interface

length attribute ... e 630
b=] o] o= o [0 0 T=Y 1 o o 630
IEEM MELNOA ... et 630
SetltemM MEthOdo e 630

The StringList interface provides the abstraction of an ordered collection of
DOMStrings, without defining or constraining how this collection is
implemented.

The items in the StringList are accessible by an integral index, starting from
0.

Some AOM methods return StringList objects. A StringList object can
be created using the Application.createStringList factory method.
For example,

var list = Application.createStringList (10);

creates a new StringList object with 10 elements, all null. The 1ength
attribute will return 10 in this case. To create an array where 1ength returns the
number of non-null entries, create the St ringList with size 0 and add elements
using the append method. For example,

var list = Application.createStringList (0);

list.append("one");

list.append("two");

list.append("three");

The 1ength attribute would return 3 in this case.

629

length attribute

The current size of the list. If set to a value greater than the current size, the list is
expanded with null values in the new space. If set to a smaller size, the list is
truncated with the excess storage deallocated.

length
Access read-write
Returns unsigned long

append method

Adds a string to the end of the current collection.

append(value)

Parameters String value
New value to store into the collection, which may be
null.

Returns void

item method

Returns the i ndexth item in the collection. If index is greater than or equal to
the number of strings in the list, this returns null.

item(nodeindex)

Parameters unsigned long nodeindex
Index into the collection.

Returns String. The string at the i ndexth position in the
StringList, or null if that is not a valid index.

setltem method

Replaces the i ndexth item in the collection with a new value. If index is
greater than or equal to the number of strings in the list, this expands the list
filling with nul1l values.

630 Programmer's Reference

setItem(nodeindex, value)

Parameters unsigned long nodeindex
Index into the collection.
String value

New value to store into the collection, which may be
null.

Returns void

StringList interface 631

94

TableCell interface

CellADOVE AttriDULE ... e e 635
CellBeloW attribUute e 635
CellLeft attribUte.o s 635
cellRight attribute ... e 635
column attribULe ... s 635
contents attribute..........cooo i 636
MuUlticell attributeo 636
onBottomMulticellEdge attributeo 636
onLeftMulticellEdge attributeoooiiiii e 636
onRightMulticellEdge attribute e 636
onTopMulticellEdge attributeoiieiii e 637
FOW attriDULE ... o e 637
FUIEADOVE attriDULE ..o 637
FUleBElOW attribULE.ee e 637
FUlELeft attriDULE ... e 637
ruleRight attribute ... e 637
spanned attribULe ..o s 638
SPANNING ANDULE ... e 638
deleteFontPIMethod ... 638
LT Lo T oY i = Il 4= 1 To T N 638
iNSaMeColuMN METNOAo e 639
INSAMEROW MELNOM ... e e 639
instantiate Method ... e 639
ISAJaceNnt METhOd. e 640
nextGalleyCell MEthOd.uu e 640
previousGalleyCell Methodiiiiiiiii e 640
rectangle MEthOd i e 640
£ 0= 1 1 1071 1. Lo o S 641
UNSPaN MEthod ... e e 641

633

Represents a single cell in a table. May be part of a spanned TableMulticell,
but represents a single cell in that multicell if so.

634 Programmer's Reference

cellAbove attribute
The cell above this cell.

cellAbove
Access read-only
Returns TableCell

cellBelow attribute
The cell below this cell.

cellBelow
Access read-only
Returns TableCell
cellLeft attribute
The cell to the left of this cell.
cellleft
Access read-only
Returns TableCell
cellRight attribute
The cell to the right of this cell.
cellRight
Access read-only
Returns TableCell

column attribute

The column that the cell is part of.

column
Access read-only
Returns TableColumn

TableCell interface

635

contents attribute

The contents of the cell. The Range returned contains the cell's contents. If the
cell has no contents, a collapsed Range is returned. The contents of the cell can
be changed by changing the contents of the Range.

contents
Access read-only
Returns Range

multicell attribute

The TableMulticell that this cell is part of. Will be null if not part of a
multicell.

multicell
Access read-only
Returns TableMulticell

onBottomMulticellEdge attribute

True if the cell is on the bottom edge of a multicell.

onBottomMulticellEdge
Access read-only

Returns boolean

onlLeftMulticellEdge attribute

True if the cell is on the left edge of a multicell.

onLeftMulticellEdge
Access read-only
Returns boolean

onRightMulticellEdge attribute

True if the cell is on the right edge of a multicell.

onRightMulticellEdge
Access read-only
Returns boolean

636 Programmer's Reference

onTopMulticellEdge attribute

True if the cell in on the top edge of a multicell.

onTopMulticellEdge
Access read-only
Returns boolean

row attribute

The row that the cell is part of.

row
Access read-only
Returns TableRow

ruleAbove attribute

The TableRule on the top edge of the cell.

ruleAbove
Access read-only
Returns TableRule

ruleBelow attribute

The TableRule on the bottom edge of the cell.

ruleBelow
Access read-only
Returns TableRule

ruleLeft attribute

The TableRule on the left edge of the cell.

ruleleft

Access read-only
Returns TableRule
ruleRight attribute

The TableRule on the right edge of the cell.

TableCell interface

637

ruleRight
Access read-only
Returns TableRule

spanned attribute

True if this cell is in a multicell and is not the spanning cell in the multicell

spanned
Access read-only
Returns boolean

spanning attribute

True if this cell is the spanning cell in a multicell

spanning
Access read-only
Returns boolean

deleteFontPl method

Deletes the font PI from the table cell if it has one. Otherwise does nothing.

deleteFontPI()

Parameters None
Returns void
Throws TableException

be deleted.

OPERATION_FAILED ERR: Raised if the font PI can't

findFontPl method

Returns an E1lement node for the font PI in the cell, creating it if asked to.

findFontPI(create)

Parameters boolean create

the table model allows the creation.

If t rue, then the font PI is created if it doesn't exist and

638

Programmer's Reference

Returns Element. The font PI. Null if none and create not
specified.
Throws TableException

OPERATION_ FAILED ERR: Raised if an attempt to
create font PI fails.

inSameColumn method

Returns true if this cell is in the same column in the same grid as the indicated
cell.

inSameColumn(otherCell)
Parameters TableCell otherCell
The other cell that may be in the same column.
Returns Trueboolean. if the two cells are in the same column.

inSameRow method

Returns true if this cell is in the same row in the same grid as the indicated cell.

inSameRow(otherCell)
Parameters TableCell otherCell
The other cell that may be in the same row.
Returns Trueboolean. if the two cells are in the same row.

instantiate method

Marks the cell as being non-sparse. Some table models allow sparse markup,
where some cells of a table are not explicitly described in markup. Arbortext
Editor and Arbortext Editor add generated cell markup to the document when
reading a sparse table so that there is markup underlying every table cell. When a
document containing a table is saved, this generated markup is deleted, unless the
cell has acquired content, attributes, or some other reason for existence. This
function allows the user to require that the markup corresponding to a cell NOT be
discarded, even if it is generated markup.

instantiate()

Parameters None
Returns void

TableCell interface 639

isAdjacent method

Returns t rue if the indicated cell is a neighbor.

isAdjacent(otherCell)
Parameters TableCell otherCell
The cell that might be a neighbor.

Trueboolean. if the other cell is a neighbor.

Returns

nextGalleyCell method

Returns the next cell in galley order, wrapping around from the last to the first if
requested.

nextGalleyCell(wrap)

Parameters boolean wrap
If t rue, wrap around from the last cell to the first.

TableCell. The next cell in galley order, if any.

Returns

previousGalleyCell method

Returns the previous cell in galley order, wrapping around from the first to the last
if requested.

previousGalleyCell(wrap)

Parameters boolean wrap
If true, wrap around from the first cell to the last.

TableCell. The previous cell in galley order, if any.

Returns

rectangle method

Returns a TableRectangle with this cell on one corner and the cell given as
the parameter on the other corner. Either cell may be the upper left cell. Both must

be in the same grid.

rectangle(otherCorner)

Parameters TableCell otherCorner
The TableCell that defines the other corner of the
rectangle.

Programmer's Reference

640

Returns TableRectangle. A rectangle with the specified corner
cells.
Throws TableException

INVALID PARAMETER ERR: Raised if the two cells are
not in the same grid.

span method

Creates a span of a rectangle of cells. This cell is on one corner and the cell given
as a parameter is on the other corner.

span(otherCorner)

Parameters TableCell otherCorner
The cell on the other corner. Either cell may be the upper
left or lower right.

Returns TableMulticell. The multicell created to represent the
span.

Throws TableException

INVALID SPAN ERR: Raised if a span can't be created
from the two corner cells

unspan method

Unspans the cell, which must be in a multicell.

unspan()

Parameters None

Returns void

Throws TableException
INVALID SPAN ERR: Raised if the cell isnotin a
multicell.

TableCell interface

641

95

TableColumn interface

bottomCell attriDULE ... 644
CellCOUNt AtEHDULEoeieiee e 644
CEIIS AtIHDULE.ee e 644
columnLeft attribUecooii 644
columnRight attribute.... ... 644
first AtriDULE ... 645
INAEX AtIHDULE ..o 645
JaSt AtIIDULE ... 645
rUleAbove attribUte ... 645
ruleBelow attribUute. ... 645
FUIESLEft @trIDULEcevieeiie e 646
rulesRight attribute ... 646
SUPPresSed attribDULEe i 646
tOPCEll @IDULEo 646
Cel METNOA ... e 646

Represents either a column of cells. Every cell is part of exactly one
TableColumn.

643

bottomCell attribute

The bottom cell in the column.

bottomCell
Access read-only
Returns TableCell

cellCount attribute

The number of cells in the column.

cellCount
Access read-only
Returns unsigned long

cells attribute

A TableObjectStore containing all the cells in the column.

cells
Access read-only
Returns TableObjectStore

columnlLeft attribute

A TableColumn representing the column to the left of this one. If this is the
left-most column it is a null pointer.

columnLeft
Access read-only
Returns TableColumn

columnRight attribute

A TableColumn representing the column to the right of this one. If this is the
right-most column it is a null pointer.

columnRight
Access read-only
Returns TableColumn

644

Programmer's Reference

first attribute

True if this column is the first column in the TableGrid.

first
Access read-only
Returns boolean

index attribute

The column number of this column in its grid. The left most column in the grid is
column 1.

index
Access read-only
Returns unsigned long

last attribute

True if this column is the last column in the TableGrid.

last
Access read-only
Returns boolean

ruleAbove attribute

A TableRule for the rule at the top end of the column.

ruleAbove
Access read-only
Returns TableRule

ruleBelow attribute

A TableRule for the rule at the bottom end of the column.

ruleBelow
Access read-only
Returns TableRule

TableColumn interface 645

ruleslLeft attribute

A TableObjectStore containing a TableRule for each rule on the left

edge of this column.

rulesLeft
Access read-only
Returns TableObjectStore

rulesRight attribute

A TableObjectStore containing a TableRule for each rule on the right

edge of this column.

rulesRight
Access read-only
Returns TableObjectStore

suppressed attribute

True if the entire column is suppressed because all of its cells are spanned and
none of them is a spanning cell.

suppressed
Access read-only
Returns boolean

topCell attribute

The top cell in the column.

topCell
Access read-only
Returns TableCell

cell method

Returns a TableCell representing the cell at the given position in the column or

a null pointer if that cell doesn't exist. The first cell is cell 1.

cell(cellindex)

Parameters

unsigned long cellindex

The index of the cell desired. The first cell is cell 1.

646

Programmer's Reference

Returns

TableCell. The cell.

Throws

TableException
INVALID INDEX ERR: Raised if index is less than one
or greater than the number cells in the column.

TableColumn interface

647

96

TableException exception

TableExceptionCode enUMErationoooiuiiiiiiiiiie e 650

Defines the exceptions used by the Table AOM methods.

Objects that implement the TableException interface include the following
property:

unsigned short code

649

TableExceptionCode enumeration
An integer defining the errors generated by the Table AOM methods

The TableExceptionCode enumeration has the following constants of type
unsigned short.

OPERATION_FAILED ERR=1
The operation failed because the table model did not allow it.

INVALID INDEX ERR =2
An invalid row or column index, less than 1 or greater than the number of
rows or columns.

INVALID DIRECTION _ERR =3
A direction must be 0 (right), 1 (below), 2 (left), or 3 (above).

INVALID ORIENTATION_ERR =4
An orientation must be 0 (vertical) or 1 (horizontal)

INVALID SPAN ERR =5
Attempt to create or use an invalid cell or rule span.

INVALID PARAMETER_ERR =6
An invalid parameter was passed to a table method.

INVALID ATTRIBUTE_ERR =7
An invalid table attribute name was passed to a table attribute method.

650 Programmer's Reference

97

TableGrid interface

CEIIS AtIHIDULE. ... 652
columnCount attribULE.........oeei 652
COIUMNS AtHDULE ... oo e 652
firstGalleyCell attribute. oo e 652
gridAbove attributeo 652
gridBelow attribute. e 653
INAEX AtIHDULE ..o 653
lastGalleyCell attribute..... ... e 653
FOWCOUNL AttIDULEce e 653
FTOWS AtIHDULE ..o e 653
TUIES AtFIDULE ... 654
P=To (o {070 (W1 oo I 2'01=]1 o Lo [N 654
AddROW METNOA ... e e 654
Rl METNOA ... 655
COlUMN MELNOA .. oo e 655
deleteColumn MEthOd. e 655
deleteROW MEthOd ..o s 656
hliNERUIELISEMELNOAo 656
iNSertColumns MEthOdoiiiiii e 656
INSETROWS METNOQ. e 657
(0)TV 1 01 1 U To 1 657
TUIE MEINOA. ... e e e e e e e ens 658
SPIIEMETNOM ... e 658
VIINERUIEBLISt MELNOA .. .o eaas 659

Represents a table grid which is a rectangular array of cells. All rows and all
columns are the same length.

651

cells attribute

A TableObjectStore containing all the cells in the grid. This is a static store;
if cells are added to or removed from the grid (by adding or deleting rows or

columns) it is not updated.

cells
Access read-only
Returns TableObjectStore

columnCount attribute

The number of columns in the grid

columnCount
Access read-only
Returns unsigned long

columns attribute

A TableObjectStore containing all the columns in the grid. This is a static
store; if columns are added or removed it is not updated.

columns
Access read-only
Returns TableObjectStore

firstGalleyCell attribute

The first cell in the grid in galley order.

firstGalleyCell
Access read-only
Returns TableCell

gridAbove attribute

The grid above this one in the table set, if any.

gridAbove
Access read-only
Returns TableGrid

Programmer's Reference

652

gridBelow attribute

The grid below this one in the table set, if any.

gridBelow
Access read-only
Returns TableGrid

index attribute

The index of this table in the TableSet it is part of.

index
Access read-only
Returns unsigned long

lastGalleyCell attribute

The last cell in the grid in galley order.

lastGalleyCell
Access read-only
Returns TableCell

rowCount attribute

The number of rows in the grid

rowCount
Access read-only
Returns unsigned long

rows attribute

A TableObjectStore containing all the rows in the grid. This is a static store;
if rows are added or removed it is not updated.

rows
Access read-only
Returns TableObjectStore

TableGrid interface 653

rules attribute

A TableObjectStore containing all the rules in the grid sorted in row major

order.

rules

Access read-only

Returns TableObjectStore

addColumn method

Add an empty column to the grid.

addColumn([refColumn [, addBefore]])

Parameters

TableColumn refColumn

[optional] The column before or after which the new
column is to be inserted. If null the new column is
inserted as the last column in the grid. Some attributes of
the new column are set from refColumn.

boolean addBefore

[optional] If omitted or false, the new column is added
after refColumn, if true it is added before it.

Returns

TableColumn. The TableColumn that was inserted.

Throws

TableException

INVALID PARAMETER ERR: Raised if the
refColumn is not in this grid or if the table model doesn't
allow columns to be inserted.

addRow method

Add an empty row to the grid.

addRow([refRow [, addBefore]])

Parameters TableRow refRow
[optional] The row before or after which the new row is to
be inserted. If null the new row is inserted as the last row
in the grid. Some attributes of the new row are set from
refRow.
boolean addBefore
[optional] If omitted or false, the new row is added after
refRow, if true it is added before it.

654 Programmer's Reference

Returns TableRow. The TableRow that was inserted.
Throws TableException

INVALID PARAMETER ERR: Raised if the re fRow is
not in this grid or if the table model doesn't allow rows to

be inserted.

cell method

Returns the cell at the specified coordinates. The upper left cell is (1,1).

cell(collndex, rowlndex)

Parameters unsigned long collndex

The column of the cell.

unsigned long rowlndex

The row of the cell.
Returns TableCell. The cell or null if no such sell exists.
Throws TableException

INVALID INDEX ERR: Raised if colIndex and

rowIndex do not specify a cell in this grid.

column method

Returns the column given its index. The first column is column 1.

column(columnIndex)

Parameters unsigned long columnindex

The index of the column.
Returns TableColumn. The indicated TableColumn.
Throws TableException

INVALID INDEX ERR: Raised if columnIndex does
not specify a column in this grid.

deleteColumn method

Delete a column from the grid.

deleteColumn(column)

Parameters

TableColumn column
The column to be deleted.

TableGrid interface

655

Returns void

Throws TableException

INVALID PARAMETER _ERR: Raised if the column is
not in this grid or if the table model does not allow it to be

deleted.

deleteRow method

Delete a row from the grid.

deleteRow(row)

Parameters TableRow row

The row to be deleted.
Returns void
Throws TableException

INVALID PARAMETER_ ERR: Raised if the row is not
in this grid or if the table model does not allow it to be
deleted.

hlineRuleList method

Returns a table object store containing all the TableRules in a specified
horizontal line.

hlineRuleList(y, startX, endX)

Parameters unsigned longy
The vertical coordinate of the horizontal line to be returned

unsigned long startX

The horizontal coordinate of the left end of the rules to be
returned.
unsigned long endX

The horizontal coordinate of the right end of the rules to be
returned

Returns TableObjectStore. A store containing all the rules at
vertical coordinate x between startX and endX.

insertColumns method

Insert one or more columns into the grid.

insertColumns(contents [, refColumn])
Parameters | TableRectangle contents

656 Programmer's Reference

The contents of this rectangle is copied into the new
columns. This rectangle must be as high as the grid. Its
width determines the number of columns inserted.
TableColumn refColumn

[optional] The column before which the new columns are
to be inserted. If nul1l the new columns are inserted as the
last columns in the grid.

Returns

void

Throws

TableException

INVALID PARAMETER ERR: Raised if the
refColumn is not in this grid or if the table model doesn't
allow a column to be inserted.

insertRows method

Insert one or more rows into the grid.

insertRows(contents [, refRow])

Parameters TableRectangle contents
The contents of this rectangle is copied into the new rows.
This rectangle must be as wide as the grid. Its height
determines the number of rows inserted.
TableRow refRow
[optional] The row before which the new rows are to be
inserted. If null the new rows are inserted as the last rows
in the grid.

Returns void

Throws TableException
INVALID PARAMETER ERR: Raised if the re fRow is
not in this grid or if the table model doesn't allow rows to
be inserted.

row method

Returns a row given its index. The first row is row 1.

row(rowlndex)

Parameters

unsigned long rowlndex
The index of the row.

TableGrid interface

657

Returns TableRow. The indicated TableRow

Throws TableException
INVALID INDEX ERR: Raised if rowIndex does not

specify a row in this grid.

rule method

Returns the rule at a specified location in the grid. Rules are addressed using cell
coordinates (with (1,1) being the upper left cell). For cell (m,n), (m,n) is actually
the cell's upper left corner.

rule(startCol, startRow, endCol, endRow)
Parameters unsigned long startCol
The starting column of the rule.
unsigned long startRow

The ending column of the rule. It must be startCol (for
a vertical rule) or startCol + 1 (for a horizontal rule).

unsigned long endCol

The starting row of the rule.

unsigned long endRow

The ending row of the rule. It must be startRow (for a
horizontal rule) or starRow + 1 (for a vertical rule).
Returns TableRule. The rule at the indicated location.

Throws TableException
INVALID INDEX ERR: Raised if the indexes given do

not specify a rule in this grid.

split method

Splits the grid at the row indicated. That row will be the top row in a new grid
inserted after this one.

split(topRow)

Parameters TableRow fopRow
The row that should be the top row in the new grid.

Returns TableGrid. The new grid that was inserted after this
grid.

Throws TableException
OPERATION_FAILED ERR: Raised if the grid can not be
split because the table model does not allow multiple grids
or one of the resulting grids would be invalid in some way.

658 Programmer's Reference

vlineRuleList method

Returns a table object store containing all the TableRules in a specified vertical
line.
vlineRuleList(x, startY, endY)

Parameters unsigned longx
The horizontal coordinate of the vertical line to be returned

unsigned long startY

The vertical coordinate of the top end of the rules to be
returned.
unsigned long endY

The vertical coordinate of the bottom end of the rules to be
returned

Returns TableObjectStore. A store containing all the rules at
horizontal coordinate x between starty and endy.

TableGrid interface 659

98

TableMulticell interface

spanningCell attributeo 662

Represents a rectangular array of spanned cells in a table. The majority of the
behavior of a TableMulticell is inherited from TableRectangle.

661

spanningCell attribute

The spanning cell for this multicell. This is the controlling cell for the multicell
which contains all the contents of the multicell. The table model determines which

cell is the spanning cell; it may be any cell in the multicell.

spanningCell

Access read-only

Returns TableCell

662 Programmer's Reference

99

TableObject interface

TYPE €NUMETATION ...t e e e et e e e e e e e e 664
Direction €NUMEIAtioN.........couiiii e 664
ExamineWhatColspec enumerationcooovuiiiiiiiiiii e 665
Orientation enNUMEratioNnoouniiinii e 665
document attribULe. s 665
element attribute ... 665
[o Lo J= 1441 o 10 (= TSP 666
Modifiable attribULecooei 666
St AU ... 666
tableModel attribDULE ... 666
10Id AUIIDULE ... 666
BYPE AtIIDULE ... 667
clearAttributes MEethOd..........oviii e 667
deleteAttribute Method.o 667
deletePrivateColspecs Methodcoouiiiiiiiiii e 667
deleteSpanspecs MEthod. 668
getAttribute method ... 668
MINIMIZEAHDULES MEOd e 668
renameColSPeC MENOMo e 669
renameColumns MELNOA.c.iii e 669
renameSpansPeC MEthOd oo e 670
SEtAHDUIE MELNOA e 670

Base class for all table objects.

663

Type enumeration
An integer indicating which type of talble object this is.

The Type enumeration has the following constants of type short.

INVALID TYPE =-1
An invalid table object type.

TABLE _SET =0
A table set.

TABLE_GRID =1
A table grid.

TABLE_COLUMN =2
A column of cells.

TABLE_ROW =3
A row of cells.

TABLE_CELL =4
A cell.

TABLE_ RULE =5
A rule (line) between cells.

TABLE_OBJECT_STORE =6
A collection of table objects.

TABLE_TILEPLEX =7
A table selection consisting of zero or more rectangles of cells and zero or
more table rules.

Direction enumeration

A direction.

The Direction enumeration has the following constants of type unsigned
short.

RIGHT =0
To the right.

BELOW =1
Below.

LEFT =2
To the left.

ABOVE =3
Above.

664 Programmer's Reference

ExamineWhatColspec enumeration

Parameter to renameColspec indicating what col spec tags are to be
examined.

The ExamineWhatColspec enumeration has the following constants of type
unsigned short.

EXAMINE_ALL_COLSPECS =0
Examine all colspec tags.

EXAMINE_THEAD COLSPECS=1
Examine colspec tagsina thead.

EXAMINE_TFOOT_COLSPECS =2
Examine colspectagsina tfoot.

EXAMINE_TGROUP_COLSPECS =3
Examine colspec tags at the top level in a tgroup.

Orientation enumeration

The orientation of a rule or row/column.

The Orientation enumeration has the following constants of type unsigned
short.

VERTICAL =0
Vertical orientation. A column or vertical rule.

HORIZONTAL =1
Horizontal orientation. A row or horizontal rule.

document attribute

The document containing this table object.

document
Access read-only
Returns Document

element attribute

The Element for the markup associated with this table object.

element
Access read-only
Returns Element

TableObject interface 665

grid attribute

The TableGrid containing this table object.

grid
Access read-only
Returns TableGrid

modifiable attribute

True if this table object is not read only.

modifiable
Access read-only
Returns boolean

set attribute

The TableSet containing this table object.

set
Access read-only
Returns TableSet

tableModel attribute

The name of the table model that manages this object. In some cases, for example
if the object is a TableObjectStore, the table model can not be determined
and unknown will be returned.

tableModel
Access read-only
Returns String

toid attribute

The TOID of this table object, which is mainly useful for calling ACL routines.

toid
Access read-only
Returns unsigned long

666 Programmer's Reference

type attribute

The TableObject. Type (set, grid, row, column, cell, rule, and so on) of this
table object.

type
Access read-only
Returns short

clearAttributes method

Resets all of the attributes for this object to their default values and clears the
corresponding table markup.

clearAttributes()

Parameters None
Returns void
Throws TableException

OPERATION FAILED ERR: Raised if the attributes
cannot be cleared.

deleteAttribute method

Delete an attribute.
deleteAttribute(attributeName)

Parameters String attributeName

The DOMString giving the name of the attribute to be
deleted.

Returns void

Throws TableException

INVALID ATTRIBUTE ERR: Raised if the
attributeName is not valid for this object.

deletePrivateColspecs method

All colspec tags within thead or t foot tags are deleted, and every entry tag
in the table is adjusted to refer to the colspec tags that are children of the
tgroup element. Applied to the TableGrid containing the table object or all
TableGridsinthe TableSet or TableTilePlex as appropriate.

deletePrivateColspecs()
Parameters |None

TableObject interface 667

Returns void

Throws TableException

OPERATION_ FAILED ERR: Raised if the table model
doesn't support this operation or if the operation fails for
some other reason.

deleteSpanspecs method

Deletes spanspec tags and updates entry tags to refer to colspec tags. If the
document type does not allow namest or nameend attributes on entry elements,
deleteSpanSpecs does nothing. This is applied to the TableGrid
containing the table object or all TableGrids inthe TableSet or
TableTilePlex as appropriate.

deleteSpanspecs()

Parameters None
Returns void
Throws TableException

OPERATION_FAILED ERR: Raised if the table model
doesn't support this operation or if the operation fails for
some other reason.

getAttribute method

Returns the value of an attribute given the ID of the attribute.

getAttribute(attributeName)

Parameters String attributeName

The DOMString giving the name of the attribute.
Returns String. Returns a DOMString representing the value
for the indicated attribute.

Throws TableException
INVALID ATTRIBUTE_ ERR: Raised if the
attributeName is not valid for this object.

minimizeAttributes method

Scans the TableSet containing the object and reorganizes the attributes of the
various table tags to minimize the number of attributes required to describe the

table.
minimizeAttributes()
Parameters |None

668 Programmer's Reference

Returns void
Throws TableException

OPERATION_ FAILED ERR: Raised if the table model
doesn't support this operation or if the operation fails for
some other reason.

renameColspec method

Renames a single colspec tag by updating the tag's colname attribute and
adjusting all spanspec and entry tags to refer to the colspec tag by its the
new value for the colname attribute. This is applied to the TableGrid
containing the table object or all TableGrids inthe TableSet or
TableTilePlex as appropriate.

renameColspec(colexam, oldSpecname, newSpecname)

Parameters

unsigned short colexam

An ExamineWhatColspec value that specifies which
columns to examine while looking for this colspec tag.
String oldSpecname

A string specifying the colspec tag to be renamed. (That
is, the colspec tag with colname=o0ldSpecname.)
String newSpecname

The new name for the colspec tag.

Returns

void

Throws

TableException

OPERATION_FAILED ERR: Raised if the table model
doesn't support this operation or if the operation fails for
some other reason.

renameColumns method

Updates the colname attribute of every colspec tag in a table. This is applied
to the TableGrid containing the table object or all TableGrids in the
TableSet or TableTilePlex as appropriate.

renameColumns(pattern, leftColspec, increment)

Parameters

String pattern

A string containing the characters $d specifying the root
column name. (For example, "column%d".) $d is
replaced with O for the left-most column, 1 for the next
left-most, and so on.

unsigned long leftColspec

TableObject interface

669

The number to be used for the left-most colspec tagin
the table.
unsigned long increment

The increment to be used during the renaming process.

Returns void

Throws TableException

OPERATION_FAILED ERR: Raised if the table model
doesn't support this operation or if the operation fails for
some other reason.

renameSpanspec method

Renames a single spanspec tag by adjusting the tag's spanname attribute and
modifying every entry tag that refers to it. This is applied to the TableGrid
containing the table object or all TableGrids in the TableSet or
TableTilePlex as appropriate.

renameSpanspec(oldSpanName, newSpanName)

Parameters String oldSpanName

The name of the spanspec that is to be renamed.
String newSpanName

The new name for the spanspec.

Returns void

setAttribute method

Set an attribute.

setAttribute(attributeName value)

Parameters String attributeName The DOMString giving the name
of the attribute. String value

The new value for the attribute.

Returns void

Throws TableException

INVALID ATTRIBUTE ERR: Raised if the
attributeName is not valid for this object or the
value is invalid for the attribute.

670 Programmer's Reference

100

TableObjectStore interface

length attribute ... e 672
addODbject Methodo e 672
deleteObject MELhOdcoounii e 672
fINAODJECt MELNOAot e e e 672
IEEM MELNOA ... et e 672
MulticellFilter Method...... ... e 673

A TableObjectStore contains a collection of TableObjects all from the
same document. Elements can be added in any order (objects are sorted into row-
major order as they are added) and retrieved through iteration.

671

length attribute

The number of items in the store. The valid indices are from 0 to length - 1.

length
Access read-only
Returns unsigned long

addObject method

Adds a table object to the store.

addObject(item)

Parameters TableObject item
The table object to be added to the store. If the object is

already in the store, the request is ignored.

Returns void

deleteObject method

Deletes a table object from the store.

deleteObject(item)

Parameters TableObject item
The object to be removed from the store. The operation is

ignored if the object is not in the store.

Returns void

findObject method

Returns t rue if the object is in the store. False otherwise.

findObject(item)
Parameters TableObject item
The object to look for in the store

Trueboolean. if the object is in the store.

Returns

item method

Returns an item from the store given its index (or null if the index is not valid).

Programmer's Reference

672

item(itemindex)

Parameters unsigned long ifemindex
The index of the item to be returned. The first item is item
0.

Returns TableObject. The requested item from the table
object store, if any.

multicellFilter method

Create a new table object store from this one which contains only unspanned or
spanning cells. All non-cell entries are deleted and all spanned cells are replaced
by the spanning cell in the multicell (with duplicates deleted).

multicellFilter()

Parameters None
Returns TableObjectStore. A new table object store

containing only spanning and unspanned cells

TableObjectStore interface 673

101

TableRectangle interface

Cells AtIIDULE. ... e 676
CellSADOVE attriDULE ... e 676
cellsSBelow attribUutec.. i 676
cellsLeft attribULeceee s 676
cellsOnBottomEdge attribute.............ooiiiiiii e 676
cellsONLeftEdge attribute.........coovueiiii e 677
cellsONRIghtEdge attribUute...........oiiiniii e 677
cellsOnTopEdge attribute.............ooiiiiii e 677
cellsRight attribute. ... e 677
height attribute ... e 677
lowerLeft attribute.u i 678
lowerRight attributeco.ii e 678
rulesSAbOVE attribUuLe. 678
rulesBelow attribute ... e 678
rulesLeft attribute 678
rulesRight attribute ... e 679
uppPerLeft attribDULeu e 679
upperRight attribute ..o 679
Valid @ttribULE ... e 679
WIdth @tFDULE ... e 679
copyRectangle Method ... 680
£ 0= 1 1 1211 1. Lo o S 680

Represents a rectangle of cells.

675

cells attribute

A TableObjectStore containing all the cells in the rectangle. This is static. If
the TableRectangle changes, the contents of the TableObjectStore
remain unchanged.

cells
Access read-only
Returns TableObjectStore

cellsAbove attribute

A table object store containing the cells just above the rectangle.

cellsAbove
Access read-only
Returns TableObjectStore

cellsBelow attribute

A table object store containing the cells just below the rectangle.

cellsBelow
Access read-only
Returns TableObjectStore

cellsLeft attribute

A table object store containing the cells just to the left of the rectangle.

cellsleft
Access read-only
Returns TableObjectStore

cellsOnBottomEdge attribute

A table object store containing all the cells on the bottom edge of the rectangle.

cellsOnBottomEdge
Access read-only
Returns TableObjectStore

676 Programmer's Reference

cellsOnLeftEdge attribute

A table object store containing all the cells on the left edge of the rectangle.

cellsOnLeftEdge
Access read-only
Returns TableObjectStore

cellsOnRightEdge attribute

A table object store containing all the cells on the right edge of the rectangle.

cellsOnRightEdge
Access read-only
Returns TableObjectStore

cellsOnTopEdge attribute

A table object store containing all the cells on the top edge of the rectangle.

cellsOnTopEdge
Access read-only
Returns TableObjectStore

cellsRight attribute

A table object store containing the cells just to the right of the rectangle.

cellsRight
Access read-only

Returns TableObjectStore
height attribute
The height of the rectangle in rows.

height

Access read-only

Returns unsigned long

TableRectangle interface 677

lowerLeft attribute

The lower left TableCell in the rectangle.

lowerLeft
Access read-only
Returns TableCell

lowerRight attribute

The lower right TableCell in the rectangle.

lowerRight
Access read-only
Returns TableCell

rulesAbove attribute

A table object store containing the rules on the top edge of the rectangle

rulesAbove
Access read-only
Returns TableObjectStore

rulesBelow attribute

A table object store containing the rules on the bottom edge of the rectangle

rulesBelow
Access read-only
Returns TableObjectStore

rulesLeft attribute

A table object store containing the rules on the left edge of the rectangle

rulesleft
Access read-only
Returns TableObjectStore

Programmer's Reference

678

rulesRight attribute

A table object store containing the rules on the right edge of the rectangle

rulesRight
Access read-only
Returns TableObjectStore

upperLeft attribute

The upper left TableCell in the rectangle.

upperlLeft
Access read-only
Returns TableCell

upperRight attribute

The upper right TableCell in the rectangle.

upperRight
Access read-only
Returns TableCell

valid attribute

True if the rectangle is valid. A rectangle may become invalid if, for example,
one of its corner cells is deleted from the grid.

valid
Access read-only
Returns boolean

width attribute

The width of the rectangle in columns.

width
Access read-only
Returns unsigned long

TableRectangle interface

679

copyRectangle method

Copies the contents and attributes from one rectangle to another rectangle. The
two rectangles must be the same size. They do not have to be in the same
document or managed by the same table model.

copyRectangle(sourceRectangle)

Parameters TableRectangle sourceRectangle
The rectangle to be copied into this rectangle. It may be in
a different document and it may managed by a different
table model.

Returns void

Throws TableException

INVALID PARAMETER_ ERR: Raised if the source
rectangle is not the same size as this rectangle.

OPERATION_FAILED ERR: Raised if the copy can not
be done for a reason other than the source rectangle being a
different size than this rectangle.

span method

Converts the cells in the rectangle to a spanned cell and returns the new multicell.

span()

Parameters None

Returns TableMulticell. The new multicell created.

Throws TableException
INVALID SPAN ERR: Raised if a span can't be created
from the two corner cells

680 Programmer's Reference

102

TableRow interface

(o711 (@7 oTUTq) =1 15| o101 (= 682
CelIS AttHDULE. ... 682
first AtriDULE ... 682
INAEX AtIHDULE ... 682
JaSt AtIIDULE ... 682
[eftCell attriDULE 683
FGtCell attriDULEo e 683
FOWADOVE AttriDULEeeo e 683
FOWBEIOW attribULE ... 683
ruleLeft attribUte ... 683
ruleRight attribute 684
FUIESADOVE attribULE... ..o 684
rulesBelow attribUte 684
SUPPreSSEd attribDULEoee i 684
Cel METNOA ... 684

Represents a row of cells. Every cell is part of exactly one TableRow.

681

cellCount attribute

The number of cells in the row.

cellCount
Access read-only
Returns unsigned long

cells attribute

A TableObjectStore containing all the cells in the row.

cells
Access read-only
Returns TableObjectStore

first attribute

True if this row is the first row in the TableSet. A row that is first in the
TableSet will also be first in its TableGrid. (However, a row that is first in
its TableGrid will not necessarily also be first in the TableSet.)

first
Access read-only
Returns boolean

index attribute

The row number of this row in its grid. The top row in the grid is row 1.

index
Access read-only
Returns unsigned long

last attribute

True if this row is the last row in the TableSet. A row that is last in the
TableSet will also be last in its TableGrid. (However, a row that is last in its
TableGrid will not necessarily also be last in the TableSet.)

last
Access read-only
Returns boolean

682 Programmer's Reference

leftCell attribute

The left-most cell in the row.

leftCell
Access read-only
Returns TableCell

rightCell attribute

The right-most cell in the row.

rightCell
Access read-only
Returns TableCell

rowAbove attribute

A TableRow representing the row above this one. If this is the top row, it is a
null pointer.

rowAbove
Access read-only
Returns TableRow

rowBelow attribute

A TableRow representing the row below this one. If this is the bottom row, it is a

null pointer.

rowBelow
Access read-only
Returns TableRow

ruleLeft attribute

A TableRule for the rule at the left end of the row.

ruleLeft
Access read-only
Returns TableRule

TableRow interface

683

ruleRight attribute

A TableRule for the rule at the right end of the row.

ruleRight
Access read-only
Returns TableRule

rulesAbove attribute

A TableObjectStore containing a TableRule for each rule on the top edge

of this row.
rulesAbove
Access read-only
Returns TableObjectStore

rulesBelow attribute

A TableObjectStore containing a TableRule for each rule on the bottom
edge of this row.

rulesBelow
Access read-only
Returns TableObjectStore

suppressed attribute

True if the entire row is suppressed because all of its cells are spanned and none

of them is a spanning cell.

suppressed
Access read-only
Returns boolean

cell method

Returns a TableCell representing the cell at the given position in the row or a
null pointer if that cell does not exist. The first cell is cell 1.

cell(cellindex)
Parameters

unsigned long cellindex
The index of the cell desired. The first cell is cell 1.

684 Programmer's Reference

Returns

TableCell. The cell.

Throws

TableException
INVALID INDEX ERR: Raised if index is less than one
or greater than the number cells in the row.

TableRow interface

685

103

TableRule interface

CEIIADOVE AttriDULE i 688
CelIBEIOW attribULE ... e 688
CellLeft attriDULE. . ..o 688
cellRight attribute ... e 688
endColumnindex attribute ..., 688
endRowlIndex attribUute ... 689
orientation attribULe.. ... e 689
rUlEADOVE attribDULE ... 689
rUleBelow attribUute. 689
rUuleLeft attribULe ... 689
ruleRight attribute 690
startColumnindex attributeoovniiiii s 690
startRoWINdeX attribUle ... 690
SUPPreSSed attribDULEoe i 690

Represents a rule. A rule is the line between two cells.

687

cellAbove attribute

The cell above the rule if the rule is horizontal.

cellAbove
Access read-only
Returns TableCell

cellBelow attribute

The cell below the rule if the rule is horizontal

cellBelow
Access read-only
Returns TableCell

cellLeft attribute

The cell to the left of the rule if the rule is vertical

cellleft
Access read-only
Returns TableCell

cellRight attribute

The cell to the right of the rule if the rule is vertical.

cellRight
Access read-only
Returns TableCell

endColumnindex attribute

The index of the ending column of the rule. This will be the number of columns
plus 1 for vertical rules on the right edge of the grid.

endColumnIndex
Access read-only
Returns unsigned long

Programmer's Reference

688

endRowlindex attribute

The index of the ending row of the rule. This will be the number of rows plus 1
for horizontal rules on the bottom edge of the grid.

endRowIndex
Access read-only
Returns unsigned long

orientation attribute

The orientation of the rule, that is, VERTICAL or HORIZONTAL.

orientation
Access read-only
Returns Orientation

ruleAbove attribute

The rule above this rule. It will be parallel to this rule if it is a horizontal rule and
join it end to end if it is a vertical rule

ruleAbove
Access read-only
Returns TableRule

ruleBelow attribute

The rule below this rule. It will be parallel to this rule if it is a horizontal rule and
join it end to end if it is a vertical rule

ruleBelow
Access read-only
Returns TableRule

ruleLeft attribute

The rule to the left of this rule. It will be parallel to this rule if it is a vertical rule
and join it end to end if it is a horizontal rule

ruleleft
Access read-only
Returns TableRule

TableRule interface 689

ruleRight attribute

The rule to the right of this rule. It will be parallel to this rule if it is a vertical rule
and join it end to end if it is a horizontal rule

ruleRight
Access read-only
Returns TableRule

startColumnindex attribute

The index of the starting column of the rule. This will be 1 for horizontal rules
that start at the left edge of the grid or for vertical rules on the left edge of the grid.

startColumnIndex
Access read-only
Returns unsigned long

startRowlindex attribute

The index of the starting row of the rule. This will be 1 for vertical rules that start
at the top edge of the grid or for horizontal rules on the top edge of the grid.

startRowIndex
Access read-only
Returns unsigned long

suppressed attribute

True if the rule is suppressed because it is inside a multicell (representing a
spanned set of cells).

suppressed
Access read-only
Returns boolean

690 Programmer's Reference

104

TableSet interface

gridCount @ttribULEo 692
Grids attriDULE ... 692
markupRange attribute ... 692
e AtriDULE ... e 692
E=To (o L€y To I o 4 1= 1 o T P 692
deleteGrid MEthOd.o e 693
deleteTitle MEthOdo e 693
(oo I ¢ 1= 1 o o PPt 694
INSErtGrid MEthOd. oo et 694

A TableSet is a collection of one or more TableGrids, each of which is a
rectangular array of TableCells

691

gridCount attribute

The number of grids in the set.

gridCount
Access read-only
Returns unsigned long

grids attribute

A list of all the TableGrids in the TableSet.

grids
Access read-only
Returns TableObjectStore

markupRange attribute

Returns a Range that selects all of the markup in the table.

markupRange
Access read-only
Returns Range

title attribute

The table's title (or caption) for table models that define one.

title

Access read-write
Returns String

Set throws TableException

OPERATION FAILED ERR: Raised if the insertion
failed, or if the table model does not a title to be added to a

set.

addGrid method

Adds an empty grid to the set.

addGrid(columns, rows [, refGrid [, addBefore]])

Parameters unsigned long columns
The number of columns in the new grid.

Programmer's Reference

692

unsigned long rows

The number of rows in the new grid.
TableGrid refGrid

[optional] The TableGrid before or after which the new
one should be inserted. If this is null, the new grid is
inserted at the end of the TableSet.

boolean addBefore

[optional] If omitted or false, the new grid is inserted
after refGrid. Ifitis true, the new grid is added before
refGrid.

Returns

TableGrid. The new TableGrid.

Throws

TableException

INVALID PARAMETER ERR: Raised if the refGrid
is not in this set, or if the table model does not allow grids
to be added to a set.

deleteGrid method

deleteGrid(grid)
Parameters TableGrid grid
The TableGrid to be deleted from the set.
Returns void
Throws TableException

INVALID PARAMETER ERR: Raised if the grid is not
in this set, or if the grid cannot be deleted because it is the
last grid in the set, or because the table model does not
allow grids to be deleted.

deleteTitle method

Delete the title for this table set.

deleteTitle()

Parameters None

Returns void

Throws TableException

OPERATION_ FAILED ERR: Raised if deletion failed, or
if there is no table title to be deleted.

TableSet interface

693

grid method

Returns a grid given its index. The first grid in the set is grid number 1. If no grid
with this index exists, a null pointer is returned.

grid(gridindex)

Parameters unsigned long gridindex
The index of the grid to be returned. The first grid has
index 1.

Returns TableGrid

insertGrid method

Inserts a new TableGrid into the TableSet.

insertGrid(contents [, refGrid])

Parameters

TableRectangle contents

The contents of this rectangle is copied into the new grid.
TableGrid refGrid

[optional] The TableGrid before which the new one

should be inserted. If this is nul1l, the new grid is inserted
at the end of the TableSet.

Returns

TableGrid. The TableGrid added to the set.

Throws

TableException

INVALID PARAMETER ERR: Raised if the refGrid
is not in this set, or if the table model does not allow grids
to be added to a set.

694

Programmer's Reference

105

TableTilePlex interface

eMPLY QHIDULE ... 696
pasteRectangle attribute ... 696
Valid @tFIDULE ... e 696
addODbject Methodo e 696
addRectangle method. ... 697
Lol o= 3T 1 Lo o Pt 697
ClONEPIEX MELNOM.e i et 697
deleteFromDocument Methodooii i e 697
getODJECIS MELNOM ... e 698
isSelected Method....... .o e 699
pasteType MEthOd. e 700
rectangle MEthOd ... e e e e e e een 700

A TableTilePlex is used to represent a table selection. It may contain either a
collection of TableRectangle objects or a collection of TableRule objects
or both. All of the contents of any one tileplex must be in the same document and
must be managed by the same table model.

695

empty attribute

True if the tileplex is empty.

empty
Access read-only
Returns boolean

pasteRectangle attribute

If the tileplex consists of a single rectangle and no rules, this rectangle is returned.
Otherwise, a null pointer is returned. A tileplex that contains only a single
rectangle is suitable for pasting somewhere using the

TableRectangle.

copyRectangle method.

pasteRectangle

Access

read-only

Returns

TableRectangle

valid attribute

True if the tileplex is valid. It is valid if all the rectangles in the tileplex are valid.

valid
Access read-only
Returns boolean

addObject method

Adds a table object to the tileplex.

addObject(theObject)

Parameters

TableObject theObject

The object to be added to the tileplex. It may be a set, grid,
row, column, cell, or rule. If possible, the object will be
added to an existing rectangle in the tileplex. If not
possible, a new rectangle will be added to the tileplex.
(Unless a rule is being added.)

Returns void

Throws TableException
INVALID PARAMETER ERR: Raised if the object can
not be added to the tileplex because it is inconsistent with
the existing contents of the tileplex.

696 Programmer's Reference

addRectangle method

Adds a rectangle to the tileplex. It will be consolidated with an existing rectangle
if possible.

addRectangle(theRectangle)

Parameters TableRectangle theRectangle
The rectangle to be added to the tileplex.

Returns void

Throws TableException

INVALID PARAMETER ERR: Raised if the rectangle
can not be added to the tileplex because it is inconsistent
with the existing contents of the tileplex.

clear method

Clears the tileplex by removing all rectangles and rules that the tileplex contains.

clear()
Parameters None
Returns void

clonePlex method

Makes a copy of the specified tileplex. The tileplex and all of the rectangles it
contains are duplicated, but the underlying table objects are not duplicated.

clonePlex()

Parameters None
Returns TableTilePlex. The new tileplex created by the

cloning operation.

deleteFromDocument method

Deletes the contents of this tileplex from the document if possible.

deleteFromDocument()

Parameters None
Returns void
Throws TableException

OPERATION_FAILED ERR: Raised if the contents of the
tileplex can not be deleted from the document

TableTilePlex interface 697

getObjects method

Returns a table object store containing the contents of the tileplex interpreted
according to the parameters. A given tileplex can often be interpreted in many
ways. For example, as a set of grids, a set of rows, a set of columns, or a set of
cells. The parameters to getObjects control which interpretation is desired. If
it is not possible to interpret the tileplex this way, no table object store is
returned. If several wantxxx parameters are true, the largest possible unit (sets,
grids, rows or columns, or cells) will be returned. If wantRules is true, rules
will be returned if the tileplex contains any, regardless of what else is returned. If
wantRules is false and the tileplex contains rules, nothing will be returned.

698 Programmer's Reference

getObjects(wantSets, wantGrids, wantColumns, wantRows, wantCells,
wantRules, contiguous, preferColumns)

Parameters boolean wantSets

True if the caller will accept sets in the table object
store returned.

boolean wantGrids

True if the caller will accept grids in the talble object
store returned.
boolean wantColumns

True if the caller will accept columns in the table
object store returned.
boolean wantRows

True if the caller will accept rows in the table object
store returned.
boolean wantCells

True if the caller will accept cells in the table object
store returned.
boolean wantRules

True if the caller will accept rules in the table object
store returned.
boolean contiguous

If true, the tileplex must cover one contiguous area in the
table if anything is to be returned.
boolean preferColumns

When both wantColumns and wantRows are true,
and the tileplex could be interpreted either way, return
columns if preferColumns is true. Otherwise, return
TOWS.

Returns TableObjectStore. A TableObjectStore
containing the contents of the TableTilePlex
interpreted according to the parameters to getObjects.

isSelected method

Returns t rue if the tileplex selects the specified table object (that is, if one of
the rectangles in the tileplex contains the entire rectangle defined by the table
object).

TableTilePlex interface 699

isSelected(theObject)

Parameters TableObject theObject
The set, grid, row, column, or cell that may or may not be
selected by this tileplex

Returns Trueboolean. if the TableTilePlex selects the

specified table object.

pasteType method

Content that would be replaced if the tileplex were pasted to the specified

location.

pasteType(targetObject)

Parameters TableObject targetObject
The proposed target of the paste operation. It may be any
table object so long as it is within a grid.

Returns short. A TableObject.Type value indicating the

content that would be replaced if this tileplex were pasted
to the table object indicated by targetObject. If the
tileplex does not contain a single rectangle, then
INVALID TYPE is returned. Otherwise TABLE GRID,
TABLE ROW, TABLE COLUMN, or TABLE CELL is
returned if pasting the rectangle to the indicated location
would replace a grid, one or more rows, one or more
columns, or a collection of cells respectively.

rectangle method

Returns the rectangle from the tileplex corresponding to the index given. The
rectangles are indexed in no particular order.

rectangle(rectindex)

Parameters unsigned long rectindex
The index of the rectangle to return

Returns TableRectangle. The indicated rectangle. If no such
rectangle exists, a null pointer is returned

700 Programmer's Reference

106

W3C Text interface

isElementContentWhitespace attribute ... 702
wholeText attribute e 702
replaceWholeText MethOd.........ooe i 702
SPIItTEXt MEthOd ... e 703

The Text interface is defined in the W3C Document Object Model (DOM) Level
2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-Level-2-
Core-20001113.)

The Text interface inherits from CharacterData and represents the textual
content (termed character data in XML) of an Element or Attr. If there is no
markup inside an element's content, the text is contained in a single object
implementing the Text interface that is the only child of the element. If there is
markup, it is parsed into the information items (elements, comments, etc.) and
Text nodes that form the list of children of the element.

When a document is first made available via the DOM, there is only one Text
node for each block of text. Users may create adjacent Text nodes that represent
the contents of a given element without any intervening markup, but should be
aware that there is no way to represent the separations between these nodes in
XML or HTML, so they will not (in general) persist between DOM editing
sessions. The normalize () method on Node merges any such adjacent Text
objects into a single node for each block of text.

701

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

isElementContentWhitespace attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

Returns whether this text node contains element content whitespace, often
abusively called "ignorable whitespace". The text node is determined to contain
whitespace in element content during the load of the document or if validation
occurs while using Document .normalizeDocument ().

isElementContentWhitespace

Access read-only

Returns boolean

wholeText attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

Returns all text of Text nodes logically-adjacent text nodes to this node,
concatenated in document order.

wholeText
Access read-only
Returns String

replaceWholeText method

~ Note

This DOM Level 3 method is defined, but is currently unimplemented by
Arbortext Editor.

702 Programmer's Reference

Replaces the text of the current node and all logically-adjacent text nodes with the
specified text. All logically-adjacent text nodes are removed including the current
node unless it was the recipient of the replacement text.

This method returns the node which received the replacement text. The returned
node is:

* null, when the replacement text is the empty string;
» the current node, except when the current node is read-only;

* anew Text node of the same type (Text or CDATASection) as the current
node inserted at the location of the replacement.

replaceWholeText(content)

Parameters String content
The content of the replacing Text node.
Returns Text. The Text node created with the specified content.
Throws DOMEzxception
NO_MODIFICATION ALLOWED_ ERR: Raised if one
of the Text nodes being replaced is readonly.

splitText method

Breaks this node into two nodes at the specified of fset , keeping both in the
tree as siblings. After being split, this node will contain all the content up to the
of fset point. A new node of the same type, which contains all the content at
and after the of fset point, is returned. If the original node had a parent node,
the new node is inserted as the next sibling of the original node. When the

of fset is equal to the length of this node, the new node has no data.

splitText(offset)
Parameters unsigned long offset

The 16-bit unit offset at which to split, starting from 0.
Returns Text. The new node, of the same type as this node.
Throws DOMEzxception

INDEX SIZE ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in
data.

NO MODIFICATION ALLOWED_ ERR: Raised if this
node is readonly.

W3C Text interface 703

107

ToolBarEvent interface

INItTOOIBarEvent MEethOdo e 706

The ToolBarEvent interface provides specific contextual information
associated with ToolBar events.

705

initToolBarEvent method

Initializes the value of a ToolBarEvent created through the Window
createEvent method. This method should only be called before the
ToolBarEvent has been dispatched with the dispatchEvent method,
though it may be called multiple times during that phase if necessary. If called
multiple times, the final invocation takes precedence.

initToolBarEvent(typeArg, canBubbleArg, cancelableArg)

Parameters

String typedrg
Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Returns

void

706

Programmer's Reference

108

W3C Typelnfo interface

DerivationMethods enumerationcoooioiiiiiiiii e 709
typeName attribute ... 710
typeNamespace attribute ... 710
isDerivedFrom method ..o 711

The TypeInfo interface is defined in the W3C Document Object Model (DOM)
Level 2 Core Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113.)

The TypeInfo interface represent a type referenced from Element or Attr
nodes, specified in the schemas associated with the document. The type is a pair
of a namespace URI and name properties, and depends on the document's schema.

If the document's schema is an XML DTD [XML 1.0], the values are computed as
follows:

» Ifthis type is referenced from an At tr node, t ypeNamespace is null and
typeName represents the [attribute type] property in the [XML Information
Set]. If there is no declaration for the attribute, t ypeName is null.

» Ifthis type is referenced from an Element node, the t ypeNamespace and
typeName are null.

If the document's schema is an XML Schema [XML Schema Part 1], the values
are computed as follows using the post-schema-validation infoset contributions
(also called PSVI contributions):

« If the [validity] property exists AND is "invalid" or "notKnown": the {target
namespace} and {name} properties of the declared type if available, otherwise
null.

707

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xmlschema-1/

~ Note

At the time of writing, the XML Schema specification does not require
exposing the declared type. Thus, DOM implementations might choose not
to provide type information if validity is not valid.

» Ifthe [validity] property exists and is "valid":

If [member type definition] exists, then expose the {target namespace} and
{name} properties of the [member type definition] property;

If the [member type definition namespace] and the [member type definition
name] exist, then expose these properties.

If the [type definition] property exists, then expose the {target namespace} and
{name} properties of the [type definition] property;

If the [type definition namespace] and the [type definition name] exist, then
expose these properties.

~ Note

At the time of writing, the XML Schema specification does not define how to
expose anonymous types. If future specifications define how to expose
anonymous types, DOM implementations can expose anonymous types via
typeName and typeNamespace parameters.

~ Note

Other schema languages are outside the scope of the W3C and therefore
should define how to represent their type systems using TypeInfo.

708 Programmer's Reference

DerivationMethods enumeration

These are the available values for the derivationMethod parameter used by
the method TypeInfo.isDerivedFrom (). Itis a set of possible types of
derivation, and the values represent bit positions. If a bit in the
derivationMethod parameter is set to 1, the corresponding type of derivation
will be taken into account when evaluating the derivation between the reference
type definition and the other type definition. When using the i sDerivedFrom
method, combining all of them in the derivationMethod parameter is
equivalent to invoking the method for each of them separately and combining the
results with the OR boolean function. This specification only defines the type of
derivation for XML Schema.

In addition to the types of derivation listed below, please note that:

* any type derives from xsd:anyType.
« any simple type derives from xsd:anySimpleType by restriction.

* any complex type does not derive from xsd:anySimpleType by
restriction.

The DerivationMethods enumeration has the following constants of type
unsigned short.

DERIVATION_EXTENSION =1
If the document's schema is an XML Schema [XML Schema Part 1], this
constant represents the derivation by extension.

The reference type definition is derived by extension from the other type
definition if the other type definition can be reached recursively following the
{base type definition} property from the reference type definition, and at least
one of the derivation methods involved is an extension.

DERIVATION_LIST =2
If the document's schema is an XML Schema [XML Schema Part 1], this
constant represents the list.

The reference type definition is derived by list from the other type definition if
there exists two type definitions T1 and T2 such as the reference type
definition is derived from T1 by DERIVATION RESTRICTION or
DERIVATION EXTENSION, T2 is derived from the other type definition by
DERIVATION_ RESTRICTION, T1 has {variety} list, and T2 is the {item
type definition}. Note that T1 could be the same as the reference type
definition, and T2 could be the same as the other type definition.

DERIVATION_RESTRICTION =3
If the document's schema is an XML Schema [XML Schema Part 1], this
constant represents the derivation by restriction if complex types are involved,
or a restriction if simple types are involved.

W3C Typelnfo interface 709

The reference type definition is derived by restriction from the other type
definition if the other type definition is the same as the reference type
definition, or if the other type definition can be reached recursively following
the {base type definition} property from the reference type definition, and all
the derivation methods involved are restriction.

DERIVATION_UNION =4
If the document's schema is an XML Schema [XML Schema Part 1], this
constant represents the union if simple types are involved.

The reference type definition is derived by union from the other type
definition if there exists two type definitions T1 and T2 such as the reference
type definition is derived from T1 by DERIVATION RESTRICTION or
DERIVATION EXTENSION, T2 is derived from the other type definition by
DERIVATION RESTRICTION, T1 has {variety} union, and one of the
{member type definitions} is T2. Note that T1 could be the same as the
reference type definition, and T2 could be the same as the other type
definition.

typeName attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

The name of a type declared for the associated element or attribute, or null if
unknown. Implementations may also use null to represent XML Schema
anonymous types.

typeName
Access read-only
Returns String

typeNamespace attribute

~ Note

This DOM Level 3 attribute is defined, but is currently unimplemented by
Arbortext Editor.

710 Programmer's Reference

The namespace of the type declared for the associated element or attribute or
null if the element does not have declaration or if no namespace information is
available. Implementations may also use nul1l to represent XML Schema

anonymous types.

typeNamespace
Access read-only
Returns String

isDerivedFrom method

~ Note

This DOM Level 3 method is defined, but is currently unimplemented by

Arbortext Editor.

This method returns if there is a derivation between the reference type definition,
i.e. the Typelnfo on which the method is being called, and the other type
definition, i.e. the one passed as parameters.

isDerivedFrom(typeNamespaceArg, typeNameArg, derivationMethod)

Parameters

String typeNamespaceArg
Specifies the namespace of the other type definition.
String typeNameArg

Specifies the name of the other type definition.
unsigned long derivationMethod

Specifies the type of derivation and conditions applied
between two types, as described in the list of constants
provided in this interface.

Returns

boolean. If the document's schema is a DTD or no
schema is associated with the document, this method will
always return false. If the document's schema is an
XML Schema, the method will return t rue if the
reference type definition is derived from the other type
definition according to the derivation parameter. If the
value of the parameter is 0 (no bit is set to 1 for the
derivationMethod parameter), the method will return
true if the other type definition can be reached by
recursing any combination of {base type definition}, {item
type definition}, or {member type definitions} from the
reference type definition.

W3C Typelnfo interface

711

109

W3C UlEvent interface

detail attriDULE ... e 714
VIBW @t DULE. ..o e 714
INIEUIBVENE MELNOA ... e e e e aas 714

The UIEvent interface is defined in the W3C Document Object Model (DOM)
Level 2 Events Specification. (Refer to http://www.w3.org/TR/2000/REC-DOM-
Level-2-Events-20001113.)

The UTIEvent interface provides specific contextual information associated with
User Interface events.

713

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

detail attribute

Specifies some detail information about the Event, depending on the type of
event.

detail
Access read-only
Returns long

view attribute

The view attribute identifies the AbstractView from which the event was
generated.

view
Access read-only
Returns AbstractView

initUIEvent method

The initUIEvent method is used to initialize the value of a UTEvent created
through the DocumentEvent interface. This method may only be called before
the UTEvent has been dispatched via the di spatchEvent method, though it
may be called multiple times during that phase if necessary. If called multiple
times, the final invocation takes precedence.

initUIEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg)

Parameters String typedrg

Specifies the event type.

boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

AbstractView viewArg

Specifies the Event's AbstractView.
long detailArg

Specifies the Event's detail.

Returns void

714 Programmer's Reference

110

View interface

ACHd AttrIDULE ... e 716
backgroundColor attributecoouuiiiii 716
foregroundColor attribute 716
optionNames attribute............oii i 716
suspendUpdate attribute ... 717
WINAOW attribULe ... e 717
getOPtON MELNOA. e e s 717
SEtOPtON MELNOM e 717

The View interface is a subclass of AbstractView, representing a view of an
associated Document. (An edit view of a document is represented as a View
object.) An Editor frame Window can contain two Views. Ifa UIEvent is
raised for a window, an event listener can use the view attribute of the UIEvent
to obtain an object that implements the View interface (not just the
AbstractView).

715

aclld attribute

An integer constant uniquely identifying the view. This is the value that is
returned by the ACL function current window if the view is active.

aclId
Access read-only
Returns long

backgroundColor attribute

The background color of the View.

backgroundColor

Access read-write

Returns String

Set throws WindowException
INVALID COLOR_ERR: Raised if the DOMString is an
unsupported color name or an invalid RGB specification.

foregroundColor attribute

The foreground color of the View.

foregroundColor

Access read-write

Returns String

Set throws WindowException
INVALID COLOR_ERR: Raised if the DOMString is an
unsupported color name or an invalid RGB specification.

optionNames attribute

A StringList containing the names of all view-scope Arbortext set options.

optionNames
Access read-only
Returns StringList

Programmer's Reference

716

suspendUpdate attribute

A boolean value showing whether the view should be updated when the document
is modified. Typically used when an application programmer needs to modify a
large portion of the document and does not want the view to be updated until all
changes have been made.

If the value is set to t rue, the view is not updated when the document is
modified. If the value is set to false, normal updates are restored, and all
changes to the document will be immediately reflected in the corresponding view.
If the view is an edit view, this value only affects the modifications happened
within the same script this value is set, and all edit views of the same document
are affected. When the script finishes executing, the views will be updated. If the
view is a dialog view, the value only affects the view it is set to, and the value
affects the view until it is set to a different value .

suspendUpdate
Access read-write
Returns boolean

window attribute

The Window in which this view resides.

window
Access read-only
Returns Window

getOption method

This method returns the value of the Arbortext set option, scoped to this view.

getOption(name)

Parameters String name
Specifies the option name, which must be a view-scope
option.

Returns String. The string value of the option, or null if name is
not a valid option name. Boolean values return on or of f.

setOption method

Sets the value of the Arbortext set option, scoped to this view.

setOption(name, value)
Parameters | String name

View interface 717

Specifies the option name, which must be a view-scope
option.
String value

Specifies the new value of the option. Boolean values are
specified using the strings on or of f.

Returns void

Throws AOMException
Raised if the method detects an error (for example, if
name is not a valid view-scope option).

718 Programmer's Reference

111

Window interface

DockEnabled enUMErationoouieiii e 721
DockState enUMEration 722
ACHA AHIIDULE ... 722
activeView attribUte 722
backgroundColor attribute......... ... 723
AOCK @ttFIDULE «.cece e 723
dockable attribute..........oooi s 723
embedded attribUute ... 724
foregroundColor attribute ... 724
height attribute ... e 724
longNativeHandle attribute.............ooooiii i 724
menuBar attribute. ... 724
MOdal AtHDULE ... 725
nativeHandle attribute.............ooii s 725
optioNNames attribUte...........oo i 725
ownerNode attribDULe ... 725
Parent attribDULE 726
propertyMap attribUte ... 726
SCrEeeNX attribULE .. ce e 726
SCreenY attribULe ... 726
(VAT o1 L= R= 5] o T | = 726
WIAEth @HIDULE ..o e 727
ACHVAtE MELNOA. e 727
bringTOFront MEthodcooii e 727
(o1 (o 1T 4 1 =11 1 (o Yo 727
CreateEVeNt MELNOAoeieee e 727
createMenultem MeEthod ... 728
o [0 T3 19 o 311 411 £ T T 728
enableDocking MeEthOd i e 729
getOptioN METhOU. e 729
getScriptContext method ... 730

719

e MELNOG e e 730
loadComponentFile Method e 730
MOVETO METNOM ..o e 730
SeNdTOBaCKk MethOd e 731
SEtOPLON MELNOAo e 731
SEtSIZE MEBTNOA . .e e e 731
£ 0NV 3 1 =11 1 (o Yo 732

The Window interface represents a top level window frame which is created by
Editor.

720 Programmer's Reference

DockEnabled enumeration

The DockEnabled enumeration is an integer specifying the edges of the main
window this window is allowed to dock to.

The DockEnabled enumeration has the following constants of type unsigned
short.

ENABLE_NONE =0
The window is not allowed to dock.

ENABLE _TOP=1
The window is allowed to dock at the top edge of the main window.

ENABLE BOTTOM =2
The window is allowed to dock at the bottom edge of the main window.

ENABLE LEFT =3
The window is allowed to dock at the left edge of the main window.

ENABLE_RIGHT =4
The window is allowed to dock at the right edge of the main window.

ENABLE_TOP_BOTTOM =5
The window is allowed to dock at the top and bottom edges of the main
window.

ENABLE_TOP_LEFT =6
The window is allowed to dock at the top and left edges of the main window.

ENABLE_TOP_RIGHT =7
The window is allowed to dock at the top and right edges of the main window.

ENABLE_BOTTOM_LEFT =8
The window is allowed to dock at the bottom and left edges of the main
window.

ENABLE BOTTOM_RIGHT =9
The window is allowed to dock at the bottom and right edges of the main
window.

ENABLE_LEFT RIGHT =10
The window is allowed to dock at the left and right edges of the main window.

ENABLE TOP BOTTOM_ LEFT =11
The window is allowed to dock at the top, bottom, and left edges of the main
window.

ENABLE_TOP_BOTTOM_RIGHT =12
The window is allowed to dock at the top, bottom, and right edges of the main
window.

Window interface 721

ENABLE_TOP_LEFT RIGHT =13
The window is allowed to dock at the top, left, and right edges of the main
window.

ENABLE_BOTTOM_LEFT_RIGHT = 14
The window is allowed to dock at the bottom, left, and right edges of the main
window.

ENABLE_ANY =15
The window is allowed to dock at any edge of the main window.

DockState enumeration

The DockState enumeration is an integer showing the docking states of the
window.

The DockState enumeration has the following constants of type unsigned
short.

DOCK_NONE =0
The window is floating.

DOCK_TOP =1
The window is docked at the top of the main window.

DOCK_BOTTOM =2
The window is docked at the bottom of the main window.

DOCK LEFT =3
The window is docked at the left of the main window.

DOCK_RIGHT =4
The window is docked at the right of the main window.

aclld attribute

An integer constant uniquely identifying the window. This is the value that would
be returned by the ACL function current window if the window was active.

aclId
Access read-only
Returns long

activeView attribute

A View object that represents the window's active view.

722 Programmer's Reference

activeView
Access read-only
Returns View

backgroundColor attribute

The background color of the window. For dialogs, you can both set and get the
foreground and background colors of a window. For edit windows, you can only
get the foreground and background colors of a window. You cannot set the
foreground and background colors of an edit window.

backgroundColor

Access read-write

Returns String

Set throws WindowException
INVALID COLOR_ERR: Raised if the DOMString is an
unsupported color name or an invalid RGB specification.

dock attribute

Indicates the docking state of the window. The value can only be changed before
the window is displayed or when the window is hidden, but it can be read any
time. If the value is DOCK_NONE, the window is floating.

dock

Access read-write

Returns DockState

Set throws WindowException NO DOCKING ALLOWED ERR:

Raised if the window is not dockablg.
INVALID DOCKING ERR: Raised if dock location is not

enabled.

dockable attribute

A boolean value indicating if the window can dock to a main window.

dockable
Access read-only
Returns boolean

Window interface 723

embedded attribute

A boolean value indicating if the window frame is embedded via ActiveX into a
containing parent window.

embedded
Access read-only
Returns boolean

foregroundColor attribute

The foreground color of the window. For dialogs, you can both set and get the
foreground and background colors of a window. For edit windows, you can only
get the foreground and background colors of a window. You cannot set the
foreground and background colors of an edit window.

foregroundColor

Access read-write

Returns String

Set throws WindowException
INVALID COLOR_ERR: Raised if the DOMString is an
unsupported color name or an invalid RGB specification.

height attribute

The height of the window frame in pixels.

height
Access read-only
Returns int

longNativeHandle attribute

The native window system handle associated with the window. On a Galaxy
window system, this is a vwindow pointer.

longNativeHandle
Access read-only
Returns long long

menuBar attribute

The menu bar of the window.

724

Programmer's Reference

menuBar
Access read-only
Returns MenuBar

modal attribute

A boolean value indicating if the window is modal. Modal windows grab all
mouse and key events when open. The modal attribute can only be set before the

window is displayed.

modal
Access read-write
Returns boolean

nativeHandle attribute

The native window system handle associated with the window. On a Galaxy
window system, this is a vwindow pointer.
This is a 32-bit value. On a 64-bit system, call getLongNativeHandle().

nativeHandle
Access read-only
Returns long

optionNames attribute

A StringList containing the names of all window-scoped Arbortext set

options.
optionNames

Access read-only
Returns StringList

ownerNode attribute

The document Node that this window is associated with. This attribute will be
non-null only if the window is a dialog that was created as a result of a DCF file

entry that associates a dialog with a document element.

ownerNode
Access read-only
Returns Node

Window interface 725

parent attribute

The parent Window of this frame if it is a child window. If the window object is
a top level window, this value is nul1. The parent attribute can only be set before
the window is displayed.

parent
Access read-write
Returns Window

propertyMap attribute

The PropertyMap associated with the window, or null if not set.

propertyMap
Access read-only
Returns PropertyMap

screenX attribute

The X coordinate of the window frame's left edge in pixels. If the window is
docked to a main window, this value is relative to the upper left corner of the dock
bar.

screenX

Access read-only
Returns int
screenY attribute

The Y coordinate of the window frame's top edge in pixels. If the window is
docked to a main window, this value is relative to the upper left corner of the dock
bar.

screenY¥Y
Access read-only
Returns int

visible attribute

A boolean value indicating if the window frame is visible.

726 Programmer's Reference

visible
Access read-only
Returns boolean

width attribute

The width of the window frame in pixels.

width
Access read-only
Returns int

activate method

Gives the Window focus.

activate()
Parameters None
Returns void

bringToFront method

Places the Window on top of all other windows (at the top of the z-order).

bringToFront()
Parameters None
Returns void

close method

Closes this Window and releases all the native system resources it uses.

close()
Parameters None
Returns void

createEvent method

Creates an event of type WindowEvent.

createEvent(eventType)

Parameters

‘ String eventType

Window interface

727

Specifies the type of Event interface to be created. The
only event module supported by this method is
"WindowEvents".

If the Event is to be dispatched with the
dispatchEvent method, the appropriate event init
method must be called after creation in order to initialize
the Event's values. As an example, a user wishing to
synthesize a WindowEvent would call createEvent
with the parameter "WindowEvents". The
initWindowEvent method could then be called on the
newly created WindowEvent to set the specific type of
WindowEvent to be dispatched and to set its context

information.
Returns Event. The newly created Event.
Throws WindowException

NOT _SUPPORTED_ ERR: Raised if the implementation
does not support the type of Event interface requested.

createMenultem method

Creates a menu item.

createMenultem(label)

Parameters String label

Specifies the label of the menu item. If this value is a dash
(-), the method returns a menu separator (a horizontal
line) that distinguishes groups of items on a submenu.
Specify an access key in the label by placing an ampersand
(&) before the character to be used as the key. For example,
to specify the F as the access key for "File", specify the
label as &File. The character that follows the ampersand
in a label is also known as the mnemonic of the menu
item.

Returns Menultem. The newly created MenuItem.

dockTo method

Docks the window to the specified location.

dockTo(dockState, x, y)

Parameters DockState dockState
The manner in which the window is about to dock.

728 Programmer's Reference

intx

The X coordinate to dock to. If the window is set to float,
this value is in screen coordinates. If the window is set to
dock, this value is related to the upper left corner of the
dock bar to which the window docks.

inty

The Y coordinate to dock to. If the window is set to float,
this value is in screen coordinates. If the window is set to
dock, this value is related to the upper left corner of the
dock bar to which the window docks.

Returns void

Throws WindowException

NO DOCKING ALLOWED ERR: Raised if the window
is not dockable.

INVALID DOCKING_ERR: Raised if dock location is not
enabled.

enableDocking method

Specifies the edges of the main window this window is allowed to dock to.

enableDocking(dockEnabled)

Parameters DockEnabled dockEnabled

The edges of the main window this window is allowed to
dock to.

Returns void

Throws WindowException

NO _DOCKING _ALLOWED ERR: Raised if the window
is not dockable.

getOption method

Returns the value of the Arbortext set option, scoped to this window.

getOption(name)

Parameters String name

Specifies the option name, which must be a window-scope
option.

Returns String. The string value of the option, or null if name
is not a valid option name. Boolean values return on or
off.

Window interface 729

getScriptContext method

Returns the ScriptContext for the given language in this window. Returns
null if there is no context for the language.

getScriptContext(language)

Parameters String language
The name of the language. (For example, "VBScript" or
"JScript".)

Returns ScriptContext. The ScriptContext for the given
language.

hide method

Causes the Window to no longer be displayed.

hide()
Parameters None
Returns void

loadComponentFile method

Reads the XML file specified by filename and creates window components
such as tool bars, menu bars, and so on according to the content of the XML File.

loadComponentFile(filename)

Parameters String filename
The XML file containing the window component
description. This must conform to the XML User Interface

(XUI) document type.

Returns View. The View of the new window components created
by this method by using filename.

Throws AOMException

Raised if the method detects an error. (For example, if
filename doesn't exist.)

moveTo method

Moves the window to the specified location.

730 Programmer's Reference

moveTo(X, y)

Parameters int x The X coordinate to move to.

A negative X value gives the X coordinate relative to the
top left corner of the screen.

inty

The Y coordinate to move to.

A negative Y value gives the Y coordinate relative to the
top left corner of the screen.

Returns void

sendToBack method

Places the Window behind all other windows (at the bottom of the z-order).

sendToBack()

Parameters None
Returns void

setOption method

Sets the value of the Arbortext set option, scoped to this window.

setOption(name, value)

Parameters String name

Specifies the option name, which must be a window-scope
option.

String value

Specifies the new value of the option. Boolean values are
specified using the strings on and of f.

Returns void

Throws AOMException

Raised if the method detects an error. (For example, if
name is not a valid window-scope option.)

setSize method

Changes the size of the window so it has width width and height height.

Window interface 731

setSize(width, height)

Parameters int width

The new width of the window.
int height

The new height of the window.

Returns void

show method

Makes the Window visible and brings it to the front of other windows.

show()
Parameters None
Returns void

732 Programmer's Reference

112

WindowEvent interface

INIEWINAOWEVENt MEthOdo e 734

The WindowEvent interface provides specific contextual information associated
with Window events.

733

initWindowEvent method

Used to initialize the value of a WindowEvent created through the Window
createEvent method. This method should only be called before the
WindowEvent has been dispatched with the dispatchEvent method, though
it may be called multiple times during that phase if necessary. If called multiple
times, the final invocation takes precedence.

initWindowEvent(typeArg, canBubbleArg, cancelableArg)

Parameters

String typedrg
Specifies the event type.
boolean canBubbleArg

Specifies whether or not the event can bubble.
boolean cancelableArg

Specifies whether or not the event's default action can be
prevented.

Returns

void

734

Programmer's Reference

113

WindowEXxception exception

WindowExceptionCode enUMErationoviiiiiiiiiiiiiiiiie e 736

Window operations may throw a WindowException as specified in their
method descriptions.

Objects that implement the WindowException interface include the following
property:

unsigned short code

735

WindowExceptionCode enumeration

An integer indicating the type of error generated.

The WindowExceptionCode enumeration has the following constants of type
unsigned short.

NOT _SUPPORTED ERR=1
The implementation does not support the requested type of object or operation.

HIERARCHY_REQUEST_ERR =2
An attempt to insert a component in an invalid location.

WRONG_WINDOW_ERR =3
A component is used in a window other than the one that created it (and
doesn't support the component).

NOT_FOUND_ERR =4
An attempt to reference a component or window in a context where it does not
exist.

INVALID COLOR_ERR =5
An attempt to set color with an unsupported color name or invalid RGB
specification.

INVALID MODIFICATION_ERR =6
An attempt to modify the type of the underlying object.

NO_MODIFICATION_ALLOWED_ERR =7
An attempt to modify a read-only text.

NO_DOCKING_ALLOWED ERR =8
An attempt to dock a window which is not dockable.

INVALID DOCKING_ERR =9
An attempt to dock a dockable window to a main window edge which is not
enabled for the dockable window.

736 Programmer's Reference

AOM set Options Overview

This appendix describes the options that can be passedas the name parameter to
the getOption and setOption methods of the followinginterfaces:

* Application
* ADocument
* View

* Window

The entire set of options that can be passed is listed in the Arbortext Command
Language Reference.The Arbortext Command Language Reference is available in
the Arbortext Editor Help Center. Search the HelpCenter for any option by name,
or refer to the Help Center index forall options beginning with the term “ set”.

Options must be of the proper scope for the interface to bepassed with a method.
That is, only document scope option names canbe passed with ADocument.
setOption,only window scope option names can be passed with Window.setOption,
and so on. The scope of each option is stated at the beginningof each option's
description.

Following each option name, the allowed values are listed.
» [talics represent variable values. For example,

browserpath path

» Curley braces represent a fixed set of possible values.For example,

allowinvalidmarkup { on | off}

737

Option values are returned as strings by the getOption () methods.

Refer to the Arbortext Command Language Reference for a complete list of
options.

738 Programmer's Reference

ACL
calling from Acl interface, 62
calling Java interface, 64
calling JavaScript interface from, 76
calling JScript interface from, 96
calling VBScript interface from, 102
using from the AOM, 61
ACL scripts
loading automatically, 48
ADocumentEntityEvent module, 140
ADocumentEvent module, 138
AEditEvent module, 135
AOM, 35
Arbortext Publishing Engine
interface overview, 190
arrays, passing with ACL, 66, 77, 97
calling ACL from, 62
calling from ACL, 64, 76, 96, 102
calling Java from, 84
code sample files, 74, 86, 100, 104
COM interface, 88
compiling for Java program, 68
compiling Java programs, 70
debugging java applications, 73
defined, 30
DOM support, 37
error handling, 85
exceptions, 71
extensions to the DOM, 71, 185
features, 99, 103
global objects, 82, 99, 103
interface overview, 185
Java interface, 64, 66, 71, 74
Java packages, 68

Index

JavaScript interface, 76-77, 79-80,
82, 84-86

JScript interface, 96-100

language extensions, 80

limitations, 79, 98, 102

overview, 36

using IDE, 70

VBScript interface, 102-104
aom.jar file, 71
AOMCopy event type, 136
AOMCut event type, 136
AOMDeleteRegion event type, 136
AOMPaste event type, 136
AOMUndo event type, 137
application directory

structure, 52
application directory overview, 40
application files

error reporting at startup, 50

implementing custom, 51

overview of application directory,

52

overview of custom directory, 41
ApplicationClosing event type, 137
ApplicationEvent module, 137
ApplicationLoad event type, 137
Applications

line numbering, 172
Arbortext Import/Export

custom directory, 45
Arbortext Object Model, 35, See AOM
Arbortext Publishing Engine interfaces

overview, 190
Arbortext Styler

modules, 48
Arrays

739

passing between Java interface and
ACL, 66

passing between JavaScript interface
and ACL, 77

passing between JScript interface
and ACL, 97

atipl

layout markup, 174

attributes

AbstractView interface, 194

acl, 274

aclld, 207, 328, 355, 387, 716, 722

activeDocument, 274

activeSession, 275

activeView, 722

activeWindow, 275

adapter, 387

adapterQNames, 275

ADocument interface, 207-210

ADocumentEntityEvent interface,
222

ADocumentEvent interface, 226

ADocumentType interface, 230

AEditEvent interface, 236

AElement interface, 240-241

AEvent interface, 247-248

allowedAttributes, 517

allowedChildren, 518

allowedFirstChildren, 518

allowedInsertElements, 303

allowedNextSiblings, 518

allowedParents, 518

allowedPreviousSiblings, 519

allowedSurroundElements, 304

allReferences, 355

altKey, 554

ANode interface, 250-252, 255, 258

AOMObject interface, 267

Application interface, 274-278

ApplicationEvent interface, 300

applyOverlay, 339

ARange interface, 303-305

740

Attr interface, 311-313

attrChange, 560

attributes, 578

attrName, 560

backgroundColor, 716, 723

baseURI, 578

bottomCell, 644

bubbles, 530

bufferName, 236

burstPolicy, 388

burstUserOverride, 388

button, 554

cancelable, 530

canOverride, 410

cellAbove, 635, 688

cellBelow, 635, 688

cellCount, 644, 682

cellLeft, 635, 688

cellRight, 635, 688

cells, 644, 652, 676, 682

cellsAbove, 676

cellsBelow, 676

cellsLeft, 676

cellsOnBottomEdge, 676

cellsOnLeftEdge, 677

cellsOnRightEdge, 677

cellsOnTopEdge, 677

cellsRight, 677

CharacterData interface, 318

checked, 552

childNodes, 579

clientX, 554

clientY, 554

CMSAdapter interface, 328

CMSAdapterDisconnectEvent
interface, 336

CMSBrowseltem interface, 339-340

CMSObject, 250

CMSObject interface, 355-366

CMSObjectEvent interface, 378-379

CMSObjectList interface, 382

CMSObjects, 207

Programmer's Reference

cmsObjectType, 355

cmsPathName, 356

CMSSession interface, 387-390

CMSSessionBurstDocumentEvent
interface, 410-411

CMSSessionConstructEvent
interface, 414

CMSSessionCreateEvent interface,
418-419

CMSSessionDisconnectEvent
interface, 424

CMSSessionFileEvent interface,
426-427

collapsed, 610

column, 635

columnCount, 652

columnLeft, 644

columnRight, 644

columns, 652

comment, 356

commonAncestorContainer, 610

Component interface, 432-433

componentType, 432

connected, 388

contentModel, 250

contents, 636

contentType, 356, 519

contextString, 304

continuous ValidityChecking, 466

creationDate, 357

ctriKey, 554

currentTarget, 530

currentUser, 336, 389, 424

customProperties, 275

data, 318, 602

defaultFolder, 389

defaultValue, 594

defaultView, 480

defined, 30

detail, 226, 236, 300, 714

dialog, 251

Dialog interface, 444

Index

dialogView, 444

directory, 207

displaylcon, 339

dock, 723

dockable, 723

doctype, 447

doctypeName, 230
doctypeURI, 230

document, 194, 410, 665
Document interface, 447-450
DocumentEditVAL interface, 466
documentElement, 447
documents, 276
DocumentType interface, 476-477
documentURI, 447
DocumentView interface, 480
domain, 247

domConfig, 448
domImplementation, 276
DOMStringList interface, 502
element, 665

Element interface, 505
ElementEditVAL interface, 517-519
embedded, 724

empty, 696

enabled, 552

enclosingCell, 251
enclosingCMSObject, 251
enclosingObject, 357
encoding, 357

end, 358, 378, 418
endColumnlndex, 688
endContainer, 611

endOffset, 611

endOID, 304

endPos, 304

endRowlIndex, 689

entities, 476

Entity interface, 525-526
enumerated Values, 595
errorCode, 378, 410, 414, 418, 426

741

errorMessage, 378, 410, 414, 418,
426

event, 276

Event interface, 530-531

eventPhase, 531

first, 645, 682

firstChild, 432, 579

firstGalleyCell, 652

firstOID, 251

flags, 378, 411, 418

folderLogicalld, 411, 418, 426

foregroundColor, 716, 724

fullPath, 339

fullTextIndexed, 358

fullTextSearch, 389

grid, 666

gridAbove, 652

gridBelow, 653

gridCount, 692

grids, 692

hasChildRefs, 359

haveWindows, 276

height, 677, 724

icon, 252

icon2, 255

implementation, 448

index, 645, 653, 682

initDone, 276

inputEncoding, 448, 525

insertionPoint, 208

instanceDoctypeName, 359

internalSubset, 476

isE3, 277

isElementContentWhitespace, 702

isFolder, 359

isld, 311

isLatestVersion, 360

isVirtualDocContainer, 360

itemType, 340

keys, 604

last, 645, 682

lastChild, 432, 579

742

lastErrorDetail, 277

lastGalleyCell, 653

lastOID, 258

leftCell, 683

length, 318, 382, 502, 564, 570, 598,
630, 672

localName, 579

localPath, 426

lockable, 360

lockOwner, 361

lockStatus, 340, 361

lockStatusDisplay, 361

logicalld, 340, 362, 426

longNativeHandle, 724

lowerLeft, 678

lowerRight, 678

markupRange, 692

markupType, 208

menuBar, 724

Menultem interface, 552

metaKey, 555

modal, 725

modifiable, 666

modificationDate, 362

modified, 208, 362, 604

moduleType, 248

MouseEvent interface, 554-556

multicell, 636

MutationEvent interface, 560-561

name, 208, 277, 312, 328, 340, 362,
419, 476

NamedNodeMap interface, 564

NamelList interface, 570

namespaceURI, 580

nativeHandle, 725

new Value, 560

nextSibling, 433, 580

Node interface, 578-583

NodeEditVAL interface, 594-595

NodeList interface, 598

nodeName, 580

nodeType, 580

Programmer's Reference

nodeValue, 581 relatedTarget, 555

notation, 427 relatedWindow, 226
Notation interface, 600 requiredAttributes, 519
notationName, 525 result, 222, 378, 414, 419, 427
notations, 477 revision, 340

object, 222 rightCell, 683
objectClass, 363 row, 637

objectName, 427 rowAbove, 683
objectReuse, 390 rowBelow, 683
objectType, 267 rowCount, 653

objType, 419 rows, 653
onBottomMulticellEdge, 636 ruleAbove, 637, 645, 689
onLeftMulticellEdge, 636 ruleBelow, 637, 645, 689
onRightMulticellEdge, 636 ruleLeft, 637, 683, 689
onTopMulticellEdge, 637 ruleRight, 637, 684, 690
optionNames, 209, 277, 716, 725 rules, 654

orientation, 689 rulesAbove, 678, 684
ownerDocument, 581 rulesBelow, 678, 684
ownerElement, 312 rulesLeft, 646, 678
ownerNode, 725 rulesRight, 646, 679
ownerWindow, 433 schemaTypelnfo, 312, 505
parent, 726 screenX, 555, 726
parentComponent, 433 screenY, 555, 726
parentNode, 581 selectionType, 209
pasteRectangle, 696 session, 364

path, 278 sessionToken, 390
permission, 363 set, 666

poid, 363 shiftKey, 556

prefix, 582 size, 365
previousSibling, 433, 582 spanned, 638

prevValue, 561 spanning, 638
Processinglnstruction interface, 602 spanningCell, 662
properties, 209 specified, 312
propertyMap, 726 start, 365, 379, 419
PropertyMap interface, 604 startColumnIndex, 690
publicld, 364, 477, 525, 600 startContainer, 611
qualifiedName, 328 startOffset, 611

Range interface, 610-611 startOID, 305

readOnly, 364 startRowIndex, 690
relatedDocument, 222, 226 strictErrorChecking, 449
relatedNode, 222, 561 StringList interface, 630
relatedRange, 236 suppressed, 646, 684, 690

Index 743

suspendUpdate, 717
systemld, 365, 477, 525, 600
tableCell, 240

TableCell interface, 635-638
tableColumn, 240
TableColumn interface, 644-646
tableGrid, 241

TableGrid interface, 652-654
tableModel, 666
tableModels, 230
TableMulticell interface, 662
tableNoDelete, 258
tableObject, 258
TableObject interface, 665-667
TableObjectStore interface, 672
TableRectangle interface, 676-679
tableRow, 241

TableRow interface, 682-684
tableRule, 241

TableRule interface, 688-690
tables, 209

tableSelection, 209

tableSet, 241

TableSet interface, 692
TableTilePlex interface, 696
tagContentType, 241
tagName, 366, 505

target, 531, 602
targetEncoding, 226
targetURI, 226

text, 433

Text interface, 702
textContent, 583
textSelection, 210
timeStamp, 531

title, 692

toid, 666

topCell, 646

topLevelName, 411

type, 531, 667

Typelnfo interface, 710
typeName, 710

744

typeNamespace, 710
UlEvent interface, 714
upperLeft, 679
upperRight, 679
userDataKeys, 258
userProperties, 278
valid, 328, 366, 679, 696
value, 313

version, 366, 419

view, 714

View interface, 716-717
visible, 726

wholeText, 702

width, 679, 727
window, 717

Window interface, 722-727
xmlEncoding, 449, 526
xmlStandalone, 449
xmlVersion, 450, 526

C

click event type, 132
closing documents, 110
CMSAdapterConnectEvent module,
154
CMSAdapterDisconnectEvent module,
154
CMSAdapterPostDisconnecttype, 154
CMSAdapterPreConnect type, 154
CMSObjectCancelCheckout type, 145
CMSObjectCheckin type, 144
CMSObjectCheckout type, 145
CMSObjectEvent module, 143
CMSObjectPostCancelCheckout type,
146
CMSObjectPostCheckin type, 144
CMSObjectPostCheckout type, 145
CMSObjectPostSave type, 147
CMSObjectPreCheckinevent type, 143
CMSObjectSave type, 146
CMSSessionBurstDocument type, 152

Programmer's Reference

CMSSessionBurstEvent module, 152
CMSSessionConstructEvent module,
147
CMSSessionConstructObject type, 147
CMSSessionCreateEvent module, 148
CMSSessionCreateNewObject type,
148
CMSSessionDisconnectEvent module,
153
CMSSessionFileEvent module, 150
CMSSessionGetFile type, 150
CMSSessionPostBurstDocument type,
153
CMSSessionPostConstructObject type,
148
CMSSessionPostCreateNewObject
type, 149
CMSSessionPostGetFile type, 150
CMSSessionPostPutFile type, 151
CMSSessionPreDisconnect, 153
CMSSessionPutFile type, 151
code sample files
COM interface, 93
Java interface, 74
JavaScript interface, 86
JScript interface, 100
VBScript interface, 104
COM C++
event handling, 130
COM interface, 88
code sample files, 93
error handling, 91
COM objects
calling from ACL, 90
COM server
registering, 89
unregistering, 89
configuration
application.xml, 53
conventions used in the
documentation, 29
copying document content, 116

Index

custom applications
application directory, 52
application.xml startup file, 53
approach, 55
custom directory, 41
deploying as zip file, 57
Enterprise Publishing Packs, 52
error reporting at startup, 50
custom directory
custom.xml file, 41
deploying as zip file, 57
structure, 41
custom directory overview, 40
custom.xml file, 41
customizations
deploying as zip file, 57
cutting document content, 116

D

degubbing Java applications, 73
deleting document content, 114
Dialog boxes

creating custom, 42

where to place files, 42
Dictionaries

custom, 43
directories

application, 52

custom, 41
DITA support

custom DITA reference path, 43
Document types

custom, 43
documentation conventions, 29
DocumentClosed event type, 138
DocumentCreated event type, 138
DocumentLoad event type, 138
DocumentSaving event type, 139
DocumentUnload event type, 139
DOM

AOM extensions, 185

745

introduction, 36
limitations, 38
programming considerations, 37
using with SGML documents, 38
DOMACctivate event type, 126, 132
DOMAttrModified event type, 135
DOMCharacterDataModified event
type, 135
DOMFocusln event type, 125, 131
DOMFocusOut event type, 125, 132
DOMNodelnserted event type, 134
DOMNodelnsertedIntoDocument
event type, 135
DOMNodeRemoved event type, 134
DOMNodeRemovedFromDocument
event type, 134
DOMSubtreeModified event type, 126,
134

E

Enterprise Publishing Packs
implementing, 52
Entities
loading automatically, 44
setting paths, 44
EntityDeclConflictevent type, 140
enumerations
addTypeLibFlags, 626
ADocument interface, 203, 205-206
AElement interface, 240
AEvent interface, 246
ANode interface, 250
AOMObject interface, 266
Application interface, 271, 273-274
ARange interface, 303
ATIContentType, 240
ATIElementAttributeSelector, 250
ATlISelectionType, 203
AttrChangeType, 560
CloneFlags, 205
CMSBrowseltem interface, 338

746

CMSBurstBoundaryType, 385
CMSBurstFlags, 354
CMSBurstPolicy, 385
CMSCreateFlags, 385
CMSException interface, 346
CMSExceptionCode, 346
CMSItemType, 338
CMSLockFlags, 353
CMSLockStatus, 338
CMSObject interface, 353-354
CMSObjectClassType, 353
CMSObjectLockStatusType, 354
CMSOperationEnabledType, 386
CMSSaveFlags, 353
CMSSessBurstFlags, 386
CMSSession interface, 385-386
CompareHow, 610
Component interface, 432
ComponentType, 432
ContentTypeVAL, 517
DataType, 604
DerivationMethods, 709
Direction, 664

DockEnabled, 721

DockState, 722
DocumentPosition, 577
DOMEZxception interface, 492
ElementEditVAL interface, 517
Event interface, 530
EventDomain, 246
EventException interface, 536
EventExceptionCode, 536
EventModule, 246
ExamineWhatColspec, 665
ExceptionCode, 492
ExceptionVAL interface, 544
ExceptionVALCode, 544
LoadFlags, 271

MarkupFlags, 303
MarkupType, 203
MessageBoxFlags, 273
ModifyRefFlags, 206

Programmer's Reference

MutationEvent interface, 560
Node interface, 576-577
NodeEditVAL interface, 594
NodeType, 576
ObjectType, 266
OptionScope, 274
Orientation, 665
PhaseType, 530
PropertyMap interface, 604
Range interface, 610
RangeException interface, 624
RangeExceptionCode, 624
SaveFlags, 203
ScriptContext interface, 626
scriptType, 626
TableException interface, 650
TableExceptionCode, 650
TableObject interface, 664-665
Type, 664
Typelnfo interface, 709
validationState, 594
validationType, 594
Window interface, 721-722
WindowException interface, 736
WindowExceptionCode, 736
error handling
COM interface, 91
Java interface, 71
JavaScript interface, 85
JScript interface, 99
VBScript interface, 103
error reporting
at startup, 50
event types
AOMCopy, 136
AOMCut, 136
AOMDeleteRegion, 136
AOMPaste, 136
AOMUndo, 137
ApplicationClosing, 137
ApplicationLoad, 137
click, 132

Index

CMSAdapterPostDisconnect, 154
CMSAdapterPreConnect, 154
CMSObjectCancelCheckout, 145
CMSObjectCheckin, 144
CMSObjectCheckout, 145
CMSObjectPostCancelCheckout,
146
CMSObjectPostCheckin, 144
CMSObjectPostCheckout, 145
CMSObjectPostSave, 147
CMSObjectPreCheckin, 143
CMSObjectSave, 146
CMSSessionBurstDocument, 152
CMSSessionConstructObject, 147
CMSSessionCreateNewObject, 148
CMSSessionGetFile, 150
CMSSessionPostBurstDocument,
153
CMSSessionPostConstructObject,
148
CMSSessionPostCreateNewObject,
149
CMSSessionPostGetFile, 150
CMSSessionPostPutFile, 151
CMSSessionPreDisconnect, 153
CMSSessionPutFile, 151
DocumentClosed, 138
DocumentCreated, 138
DocumentLoad, 138
DocumentSaving, 139
DocumentUnload, 139
DOMACctivate, 126, 132
DOMAttrModified, 135
DOMCharacterDataModified, 135
DOMFocusln, 125, 131
DOMFocusOut, 125, 132
DOMNodelnserted, 134
DOMNodelnsertedIntoDocument,
135
DOMNodeRemoved, 134
DOMNodeRemovedFromDocu-
ment, 134

747

DOMSubtreeModified, 126, 134

EntityDeclConflict, 140

MenuPost, 143

MenuSelected, 143

mousedown, 132

mousemove, 133

mouseout, 133

mouseover, 133

mouseup, 133

WindowActivated, 142

WindowClosed, 141

WindowClosing, 141

WindowCreated, 141

WindowDeactivated, 142

WindowLoad, 141

WindowMinimized, 142

WindowRestored, 142

events

ADocumentEntityEvent module,
140

ADocumentEvent module, 138

AEditEvent module, 135

AEVENT interface attributes, 123

AOM interfaces, 120

ApplicationEvent module, 137

CMSAdapterConnectEvent module,
154

CMSAdapterDisconnectEvent
module, 154

CMSObjectEvent module, 143

CMSSessionBurstEvent module,
152

CMSSessionConstructEvent
module, 147

CMSSessionCreateEvent module,
148

CMSSessionDisconnectEvent
module, 153

CMSSessionFileEvent module, 150

COM C++, 130

Document domain, 122

domains, 122

748

event handlers, 126

event modules, 123

Java, 127

JavaScript, 127

JScript, 128

limitations, 126
MenuEvent module, 142
modules, 122

MouseEvent module, 132
MutationEvent module, 134
overview, 120

UIEvent module, 131
VBScript, 128

Visual Basic, 129

W3C interfaces, 120
Window domain, 122
WindowEvent module, 141

F

Fonts
custom, 45

Framesets
loading automatically, 45
setting paths, 45

G

Graphics
loading automatically, 45
setting paths, 45

H

Hyphenation
loading custom files automatically,
45

Index
customized, 47

Programmer's Reference

loading custom files automatically,
47
information resources, 30
initialization
custom files, 48
editing, 49
inserting text in documents, 113
interfaces
AbstractView, 193
Acl, 195
ActivexEvent, 199
ADocument, 202
ADocumentEntityEvent, 221
ADocumentEvent, 225
ADocumentType, 229
AEditEvent, 235
AElement, 239
AEvent, 245
ANode, 249
AOMException, 263
AOMObject, 265
Application, 270
ApplicationEvent, 299
ARange, 301
Attr, 309
CDATASection, 315
CharacterData, 317
CharacterDataEditVAL, 323
CMSAdapter, 327
CMSAdapterConnectEvent, 333
CMSAdapterDisconnectEvent, 335
CMSBrowseltem, 337
CMSBrowselterator, 343
CMSException, 345
CMSObject, 352
CMSObjectEvent, 377
CMSObjectList, 381
CMSSession, 384
CMSSessionBurstDocumentEvent,
409
CMSSessionConstructEvent, 413
CMSSessionCreateEvent, 417

Index

CMSSessionDisconnectEvent, 423
CMSSessionFileEvent, 425
Comment, 429
Component, 431
Composer, 437
ControlEvent, 441
defined, 30

Dialog, 443

Document, 446
DocumentEditVAL, 465
DocumentEvent, 469
DocumentFragment, 471
DocumentRange, 473
DocumentType, 475
DocumentView, 479
DOMConfiguration, 481
DOMException, 491
DOMImplementation, 495
DOMStringList, 501
Element, 503
ElementEditVAL, 515
Entity, 523
EntityReference, 527
Event, 529
EventException, 535
EventListener, 537
EventTarget, 539
ExceptionVAL, 543
MenuBar, 545
MenuEvent, 549
Menultem, 551
MouseEvent, 553
MutationEvent, 559
NamedNodeMap, 563
NamelList, 569

Node, 574
NodeEditVAL, 593
NodeList, 597

Notation, 599

overview, 185
Processinglnstruction, 601
PropertyMap, 603

749

Range, 609
RangeException, 623
ScriptContext, 625
StringList, 629
TableCell, 634
TableColumn, 643
TableException, 649
TableGrid, 651
TableMulticell, 661
TableObject, 663
TableObjectStore, 671
TableRectangle, 675
TableRow, 681
TableRule, 687
TableSet, 691
TableTilePlex, 695
Text, 701
ToolBarEvent, 705
Typelnfo, 707
UlEvent, 713

View, 715

Window, 720
WindowEvent, 733
WindowException, 735

J

Java
calling from JavaScript interface, 84
debugging applications, 73
event handling, 127

Java classes
loading automatically, 42
locating, 67, 71

Java Console, 68, 72

Java interface
arrays, passing with ACL, 66
calling from ACL, 64
code sample files, 74
Java packages, 68
platform requirements, 64
to AOM, 64

750

Java Virtual Machine, 67
Javadoc
for the AOM and W3C DOM, 70
JavaScript
event handling, 127
JavaScript interface, 76
arrays, passing with ACL, 77
calling from ACL, 76
calling Java from, 84
code sample files, 86
exception handling, 85
global objects, 82
language extensions, 80
limitations, 79
platform requirements, 76
JavaScript interpreter, 58
for JScript files, 100
JavaScript interpreter for JavaScript
files, 86
JDB, 73
JScript
accessing COM using, 90
event handling, 128
JScript interface, 96
arrays, passing with ACL, 97
calling from ACL, 96
code sample files, 100
exception handling, 99
features, 99
global objects, 99
limitations, 98
platform requirements, 96
JVM, See Java Virtual Machine

L

Layout markup
atipl, 174
line numbering, 174
Limitations
application related, 171
line numbering, 171

Programmer's Reference

Line numbering, 170
application, 172
conventions, 174
limitations, 171
namespace, 171, 174
overview, 170
sample application, 170
Line numbers
in a document, 170
list of terms, 29
loading custom applications
using application directory, 52
using custom directory, 41
Locales
custom font and formatting files, 47

Macro files

loading automatically, 45
manipulating documents

using the AOM, 110
MenuEvent module, 142
MenuPost event type, 143
MenuSelected event type, 143
Merging data

where to place files, 42
methods

Acl interface, 196-198

activate, 727

ActivexEvent interface, 200

addColumn, 654

addEventListener, 540

addGrid, 692

addNamedItem, 626

addObject, 672, 696

addRectangle, 697

addRow, 654

addTypeLib, 627

ADocument interface, 210-215, 217,

219-220
ADocumentEntityEvent interface,
222

Index

ADocumentEvent interface, 227
ADocumentType interface, 230-233
adoptNode, 451
AEditEvent interface, 236
AElement interface, 242-244
alert, 278
ANode interface, 259-262
append, 630
appendChild, 434, 584
appendData, 318
Application interface, 278-283, 288-
292,294-297
ApplicationEvent interface, 300
ARange interface, 305-307
bringToFront, 727
burst, 367
burstDocument, 390
canAppendChild, 595
canAppendData, 324
cancelCheckout, 367
canDeleteData, 324
canlnsertBefore, 595
canlnsertData, 324
canlnsertNode, 305
canlnsertNodeWithFixup, 305
canRemoveAttribute, 519
canRemoveAttributeNode, 520
canRemoveAttributeNS, 519
canRemoveChild, 596
canRenameNode, 210
canReplaceChild, 596
canReplaceData, 325
canSetAttribute, 520
canSetAttributeNode, 521
canSetAttributeNS, 520
canSetData, 325
canSetParameter, 488
canSetTextContent, 521
cell, 646, 655, 684
CharacterData interface, 318-320
CharacterDataEditVAL interface,
324-325

751

checkin, 367

checkout, 368

clear, 697

clearAttributes, 667

clearBurstConfig, 392

cloneContents, 612

cloneDocument, 210

cloneNode, 584

clonePlex, 697

cloneRange, 612

close, 211, 727

CMSAdapter interface, 328-331

CMSAdapterConnectEvent
interface, 334

CMSAdapterDisconnectEvent
interface, 336

CMSBrowselterator interface, 344

CMSObject interface, 367-375

CMSObjectEvent interface, 379

CMSObjectList interface, 382

CMSSession interface, 390, 392-407

CMSSessionBurstDocumentEvent
interface, 411

CMSSessionConstructEvent
interface, 414

CMSSessionCreateEvent interface,
420

CMSSessionDisconnectEvent
interface, 424

CMSSessionFileEvent interface, 427

collapse, 259, 612

column, 655

compareBoundaryPoints, 613

compareDocumentPosition, 585

Component interface, 434-436

Composer interface, 438-439

confirm, 278

connect, 328

constructObject, 279

contains, 502, 570

containsKey, 604

containsNS, 570

752

contextPath, 259
ControlEvent interface, 442
copyRectangle, 680
createAttribute, 453
createAttributeNS, 453
createCDATASection, 454
createComment, 454
createComposer, 279
createDialogFromDocument, 280
createDialogFromFile, 280
createDocument, 496
createDocumentFragment, 455
createDocumentType, 496
createElement, 455
createElementNS, 456
createEntityReference, 456
createEvent, 280, 329, 368, 392,
470, 727
createFolder, 393
createMenultem, 728
createNewObject, 393
createObjectFromSubtree, 394
createProcessinglnstruction, 457
createPropertyMap, 281
createRange, 474
createScriptContext, 281
createStringList, 282
createTableObjectStore, 282
createTableTilePlex, 282
createTextNode, 458
createWindow, 283
defined, 30
deleteAttribute, 667
deleteColumn, 655
deleteContents, 613
deleteData, 319
deleteFontPI, 638
deleteFromDocument, 697
deleteGrid, 693
deleteObject, 369, 672
deletePrivateColspecs, 667
deleteRow, 656

Programmer's Reference

deleteSpanspecs, 668

deleteTitle, 693

detach, 614

disconnect, 395

dispatchEvent, 540

distanceTo, 259

dockTo, 728

Document interface, 451, 453-459,
461-462

DocumentEditVAL interface, 466

DocumentEvent interface, 470

DocumentRange interface, 474

DOMConfiguration interface, 488-
489

DOMDocument, 196

DOMImplementation interface, 496-
498

DOMOID, 196

DOMStringList interface, 502

editBegin, 212

editEnd, 213

Element interface, 505-513

ElementEditVAL interface, 519-522

enableDocking, 729

error, 288

Eval, 196

Event interface, 531-533

EventListener interface, 538

EventTarget interface, 540-541

Execute, 197

expand, 260

extractContents, 614

find, 546

findFontPI, 638

findObject, 672

generateEntityName, 213

getAdapter, 288

getAttribute, 369, 395, 505, 668

getAttributeNode, 506

getAttributeNodeNS, 506

getAttributeNS, 506

getAttributes, 370

Index

getBurstBoundaryType, 396
getChildren, 370
GetCMSObject, 197
GetCMSSession, 197
getCustomDirectory, 288
getDataType, 605
getDefaultCreatelnfo, 396
getDefaultParameters, 438
getDefinedElements, 466
getElementByld, 458
getElementsByAttribute, 214, 242
getElementsByAttributeNS, 214,
242
getElementsByTagName, 458, 507
getElementsByTagNameNS, 459,
507
getFeature, 497, 585
getFile, 397
getFileMappingEntry, 398
getGraphicCreatelnfo, 398
getGraphicPath, 260
getInternal Attribute, 243
getInternal Attributes, 243
getLocale, 289
getLocalizedMessage, 290
getName, 570
getNamedlItem, 564
getNamedItemNS, 564
getNamespaceURI, 571
getNext, 344
getNumber, 605
getObjects, 698
getOption, 215, 291, 717, 729
getOptionScope, 291
getParamDocumentation, 438
getParamEnumerationValues, 438
getParameter, 488
getParamLabel, 438
getParamType, 439
getParents, 370
getRangeCreatelnfo, 399
getScriptContext, 291, 730

753

getString, 605 inSameRow, 639

getStringList, 606 insertBefore, 434, 587
getUserData, 330, 371, 400, 586 insertColumns, 656
GetVar, 198 insertData, 319
getVersions, 371 insertGrid, 694
GetWindow, 198 insertNode, 614
grid, 694 insertNodeWithFixup, 306
handleEvent, 538 insertParsedString, 306
hasAttribute, 507 insertRows, 657
hasAttributeNS, 508 insertTable, 261
hasAttributes, 586 instantiate, 639
hasChildNodes, 587 invokeExtension, 371, 401
hasFeature, 330, 498 isAdjacent, 640
hasNext, 344 isDefaultNamespace, 587
hide, 730 isDerivedFrom, 711
hlineRuleList, 656 isElementDefined, 521
importNode, 459 isElementDefinedNS, 522
initActivexEvent, 200 isEqualNode, 588
initADocumentEntityEvent, 222 isParamRequired, 439
initADocumentEvent, 227 1sSameComponent, 435
initAEditEvent, 236 isSameNode, 589
initApplicationEvent, 300 isSelected, 699
initCMSAdapterConnectEvent, 334 isSupported, 589
initCMSAdapterDisconnectEvent, isTableMarkup, 243

336 isWhitespaceOnly, 325
initCMSObjectEvent, 379 item, 382, 502, 564, 598, 630, 672
initCMSSessionBurstDocumentE- loadComponentFile, 730

vent, 411 loadScriptFile, 627
initCMSSessionConstructEvent, 414 loadScriptText, 627
initCMSSessionCreateEvent, 420 logicalldExists, 292
initCMSSessionDisconnectEvent, logicalldToPoid, 401

424 logicalldToSession, 292
initCMSSessionFileEvent, 427 lookupNamespacePrefix, 590
initControlEvent, 442 lookupNamespaceURI, 590
initEvent, 531 lookupPrefix, 590
initMenuEvent, 550 MenuBar interface, 546
initMouseEvent, 556 MenuEvent interface, 550
initMutationEvent, 561 messageBox, 292
initToolBarEvent, 706 minimizeAttributes, 668
initUIEvent, 714 modifyReferences, 215
initWindowEvent, 734 MouseEvent interface, 556
inSameColumn, 639 move, 372

754 Programmer's Reference

moveTo, 730

multicellFilter, 673
MutationEvent interface, 561
NamedNodeMap interface, 564-566
NameList interface, 570-571
nextGalleyCell, 640

Node interface, 584-592
NodeEditVAL interface, 595-596
NodelList interface, 598
nodeValidity, 596

normalize, 591
normalizeDocument, 461
objectExists, 402
openDocument, 294
pasteType, 700
poidToLogicalld, 402
preventDefault, 532
previousGalleyCell, 640
print, 295

prompt, 296

PropertyMap interface, 604-607
putFile, 402

putNumber, 606

putString, 606

putStringList, 606

quit, 296

Range interface, 612-621
rectangle, 640, 700

redo, 217
refreshObjectStatus, 403
registerlOAdapter, 297
releaseReference, 372
releaseReferences, 382
remove, 607
removeAttribute, 508
removeAttributeNode, 509
removeAttributeNS, 508
removeChild, 435, 591
removeEventListener, 541
removelnternal Attribute, 244
removeNamedItem, 565
removeNamedltemNS, 565

Index

renameColspec, 669
renameColumns, 669
renameNode, 462
renameSpanspec, 670
replaceChild, 436, 591
replaceData, 320
replaceWholeText, 702

row, 657

rule, 658

run, 297

runPipeline, 439

save, 217, 372

ScriptContext interface, 626-628
search, 404

selectNode, 615
selectNodeContents, 616
sendToBack, 731
setAttribute, 373, 404, 509, 670
setAttributeNode, 511
setAttributeNodeNS, 511
setAttributeNS, 510
setAttributes, 373
setCMSObject, 262

setEnd, 616

setEndAfter, 617
setEndBefore, 618
setFileMappingEntry, 404
setldAttribute, 512
setldAttributeNode, 513
setIdAttributeNS, 513
setInternal Attribute, 244
setltem, 630

setNamedltem, 566
setNamedItemNS, 566
setOldUserData, 330, 374, 405
setOption, 219, 297, 717, 731
setParameter, 489

setSize, 731

setStart, 618

setStartAfter, 619
setStartBefore, 620
setUserData, 331, 375, 406, 592

755

SetVar, 198
show, 732
span, 641, 680
split, 658
splitText, 703
stopPropagation, 533
StringList interface, 630
substringData, 320
surroundContents, 620
TableCell interface, 638-641
TableColumn interface, 646
TableGrid interface, 654-659
tableModelCells, 230
tableModelRow, 231
tableModelSupport, 231
tableModelTables, 232
tableModelTableTitle, 232
tableModelTags, 233
tableModelWrappers, 233
TableObject interface, 667-670
TableObjectStore interface, 672-673
TableRectangle interface, 680
TableRow interface, 684
TableSet interface, 692-694
TableTilePlex interface, 696-700
terminate, 628
Text interface, 702-703
toMarkupString, 307
toMarkupStringEx, 307
ToolBarEvent interface, 706
toString, 621
Typelnfo interface, 711
UlEvent interface, 714
undo, 220
undoBoundary, 220
undoClear, 220
unspan, 641
validateDocument, 466
verifyOperationEnabledInCurrent-
State, 407
View interface, 717
vlineRuleList, 659

756

Window interface, 727-732

WindowEvent interface, 734
Microsoft JScript interpreter, 58
mousedown event type, 132
MouseEvent module event type, 132
mousemove event type, 133
mouseout event type, 133
mouseover event type, 133
mouseup event type, 133
multicell

defined, 30
MutationEvent module, 134

(0

OID
defined, 30
opening documents, 110

P

pasting document content, 116
Paths
custom font and formatting files, 46
custom library files, 47
custom pdfcf files, 46
PDF
custom pdfcf files, 46
platform requirements
Java interface, 64
JavaScript interface, 76
JScript interface, 96
VBScript interface, 102
program language support, 33
programming skill recommendations,
27
properties
defined, 30
publishing configuration file
custom, 42
publishing rules files
loading automatically, 47
PubTex

Programmer's Reference

automatically loading formatter
files, 45
pubview files
loading automatically, 47

R

resources for more information, 30
Rhino JavaScript interpreter, 58

S

Sample applications

line numbering, 170

namespace, 171, 174
saving documents, 110
script language support, 33
scripts

defined, 30
Scripts

loading automatically, 48
selecting document content, 114
Set options, 737

See also setOption

SGML documents

and the DOM, 38
startup files

customizing, 48

editing, 49

T

table of supported languages, 33

Tables
identifying a document type's table

model support, 160

inserting a column, 158
inserting and modifying, 157
interface summary, 156
working with, 156

Tag
conventions, 174

Tag templates

Index

loading automatically, 48
setting paths, 48
.tmx files
loading automatically, 45, 47
TOID
defined, 30
Traversal
conventions, 174
traversing documents, 111-113

U
UIEvent module, 131

Vv

VBScript
accessing COM using, 90
event handling, 128
VBScript interface, 102
calling from ACL, 102
code sample files, 104
error handling, 103
features, 103
global objects, 103
limitations, 102
platform requirements, 102
Visual Basic
event handling, 129

w

WindowActivated event type, 142
WindowClosed event type, 141
WindowClosing event type, 141
WindowCreated event type, 141
WindowDeactivated event type, 142
WindowEvent module, 141
WindowLoad event type, 141
WindowMinimized event type, 142
Windowrestored event type, 142

757

	About This Guide
	Getting Started
	Supported Program and Script Languages
	Arbortext Object Model (AOM) Overview
	Introduction to the Arbortext Object Model (AOM)
	Introduction to the Document Object Model (DOM)
	Using the DOM Support in AOM
	DOM Programming Considerations
	DOM Limitations
	Using the DOM with SGML Documents

	Custom Applications
	Overview of Custom Programs and Scripts
	The Custom Directory Structure
	The Application Directory Structure

	Description of the Custom Directory Structure
	custom.xml File
	Subdirectory Structure
	Error Reporting for the custom\init Directory
	Additional Information

	Using the Custom Directory for Custom Applications
	Description of the Application Directory Structure
	Subdirectory Structure
	Application Startup File
	Related Topics

	Using the Application Directory for Custom Applications
	Deploying Zipped Customizations
	Specifying the JavaScript Interpreter Engine

	Using the AOM
	Using ACL with the AOM
	Using the Acl Interface

	Using Java to Access the AOM
	Java Interface Overview
	Java Interface Platform Requirements

	Java and ACL
	Passing Arrays Between Java and ACL

	Java Virtual Machine (JVM) Management
	Making Classes Available to the Embedded JVM
	Making the AOM Available for Other Java Programs

	Accessing the Java Console
	AOM Packages
	Javadoc

	Compiling Your AOM Java Program
	Using an IDE to create Your AOM Java Program
	Making Classes Available to the Embedded JVM
	Java Access to DOM Extensions
	Java Interface Exceptions
	Accessing the Java Console
	Debugging Java Applications
	The Socket Method
	The Shared Memory Method

	Sample Java Code

	Using JavaScript to Access the AOM
	JavaScript Interface Overview
	JavaScript platforms

	JavaScript and ACL
	Passing Arrays Between JavaScript and ACL

	JavaScript Limitations
	JavaScript Language Extensions
	JavaScript Global Objects
	Calling Java from JavaScript
	JavaScript Interface Error Handling
	Errors When Executing JavaScript
	Exception Handling

	Specifying the Interpreter for .js Files
	Sample JavaScript Code

	Using COM to Access the AOM
	COM Interface Overview
	Registering and Unregistering Arbortext Editor as a COM Server
	Accessing COM Using JScript or VBScript
	COM Objects and ACL
	COM Error Handling
	Sample COM Code

	Using JScript to Access the AOM
	JScript Interface Overview
	JScript Platforms

	JScript with ACL
	Passing Arrays Between JavaScript and ACL

	JScript Limitations
	AOM Interfaces Specific to JScript
	JScript Global Objects
	JScript Exception Handling
	Specifying the Interpreter for .js Files
	Sample JScript Code

	Using VBScript to Access the AOM
	VBScript Interface Overview
	VBScript Platforms

	VBScript and ACL
	VBScript Limitations
	AOM Interfaces Specific to VBScript
	VBScript Global Objects
	VBScript Error Handling
	Sample VBScript Code

	Programming and Scripting Techniques
	Overview of Programming and Scripting Techniques
	Basic Document Manipulation Using the DOM and AOM
	Overview
	Opening, Closing, and Saving documents
	Traversing a Document Using the DOM and AOM
	Traversing and Printing a Document Structure
	Using getElementsByTagName
	Using getElementsByAttribute

	Inserting Text
	Inserting Text Using createTextNode
	Inserting Text Containing a Non-Latin Character
	Inserting an Entity Reference Using createEntityReference

	Using Range to Select and Delete Content
	Deleting Sections of a Document Using a Range

	Selecting, Copying, Moving Content
	Cutting and Pasting within a Document
	Copying and Pasting within a Document
	Copying and Pasting between Documents
	Inserting Text at the Caret
	Inserting Markup at the Caret

	Events
	Overview
	Event Interfaces
	Event Modules and Domains
	Application-Dependent Features
	Notes and Limitations
	Event Handlers
	Java
	JavaScript
	JScript
	VBScript
	Visual Basic
	COM C++

	Event Types
	UIEvent Module
	MouseEvent Module
	MutationEvent Module
	AEditEvent Module
	ApplicationEvent Module
	ADocumentEvent Module
	ADocumentEntityEvent Module
	WindowEvent Module
	MenuEvent Module
	CMSObjectEvent Module
	CMSSessionConstructEvent Module
	CMSSessionCreateEvent Module
	CMSSessionFileEvent Module
	CMSSessionBurstEvent Module
	CMSSessionDisconnectEvent Module
	CMSAdapterConnectEvent Module
	CMSAdapterDisconnectEvent Module

	Working with Tables
	Working with Tables Overview
	Example: Inserting and Modifying a Table
	Example: Inserting a Column Based on the Current Selection
	Example: Identifying a Document Type's Table Model Support

	Working with XSL Composition
	Overview
	Related AOM Interfaces and Methods
	Example: Composing an HTML File

	Line Numbering in Arbortext Editor and Arbortext Publishing Engine
	Line Numbering Overview
	Applying Line Numbers
	Line Numbering Sample Application
	Line Numbering Namespace
	Line Numbering Limitations

	Building a Basic Line Numbering Application
	Line numbering application building reference
	Tag traversal and current tag conventions
	The line numbering namespace
	The atipl layout markup
	The commonattr entity in the layout.dtd
	type, location, error and generic attributes
	startpage and endpage
	startspan and endspan
	startcolumn and endcolumn
	startfloat and endfloat
	startrow, endrow, startentry, and endentry
	startline and endline

	The Layout file and document type
	The common entities
	Layout structure
	Page level structures
	Floating structures
	Galley structures
	Text level structures

	Interfaces
	Interface Overview
	W3C AbstractView interface
	document attribute

	Acl interface
	DOMDocument method
	DOMOID method
	Eval method
	Execute method
	GetCMSObject method
	GetCMSSession method
	GetVar method
	GetWindow method
	SetVar method

	ActivexEvent interface
	initActivexEvent method

	ADocument interface
	ATISelectionType enumeration
	MarkupType enumeration
	SaveFlags enumeration
	CloneFlags enumeration
	ModifyRefFlags enumeration
	CMSObjects attribute
	aclId attribute
	directory attribute
	insertionPoint attribute
	markupType attribute
	modified attribute
	name attribute
	optionNames attribute
	properties attribute
	selectionType attribute
	tables attribute
	tableSelection attribute
	textSelection attribute
	canRenameNode method
	cloneDocument method
	close method
	editBegin method
	editEnd method
	generateEntityName method
	getElementsByAttribute method
	getElementsByAttributeNS method
	getOption method
	modifyReferences method
	redo method
	save method
	setOption method
	undo method
	undoBoundary method
	undoClear method

	ADocumentEntityEvent interface
	object attribute
	relatedDocument attribute
	relatedNode attribute
	result attribute
	initADocumentEntityEvent method

	ADocumentEvent interface
	detail attribute
	relatedDocument attribute
	relatedWindow attribute
	targetEncoding attribute
	targetURI attribute
	initADocumentEvent method

	ADocumentType interface
	doctypeName attribute
	doctypeURI attribute
	tableModels attribute
	tableModelCells method
	tableModelRow method
	tableModelSupport method
	tableModelTables method
	tableModelTableTitle method
	tableModelTags method
	tableModelWrappers method

	AEditEvent interface
	bufferName attribute
	detail attribute
	relatedRange attribute
	initAEditEvent method

	AElement interface
	ATIContentType enumeration
	tableCell attribute
	tableColumn attribute
	tableGrid attribute
	tableRow attribute
	tableRule attribute
	tableSet attribute
	tagContentType attribute
	getElementsByAttribute method
	getElementsByAttributeNS method
	getInternalAttribute method
	getInternalAttributes method
	isTableMarkup method
	removeInternalAttribute method
	setInternalAttribute method

	AEvent interface
	EventDomain enumeration
	EventModule enumeration
	domain attribute
	moduleType attribute

	ANode interface
	ATIElementAttributeSelector enumeration
	CMSObject attribute
	contentModel attribute
	dialog attribute
	enclosingCell attribute
	enclosingCMSObject attribute
	firstOID attribute
	icon attribute
	icon2 attribute
	lastOID attribute
	tableNoDelete attribute
	tableObject attribute
	userDataKeys attribute
	collapse method
	contextPath method
	distanceTo method
	expand method
	getGraphicPath method
	insertTable method
	setCMSObject method

	AOMException exception
	AOMObject interface
	ObjectType enumeration
	objectType attribute

	Application interface
	LoadFlags enumeration
	MessageBoxFlags enumeration
	OptionScope enumeration
	acl attribute
	activeDocument attribute
	activeSession attribute
	activeWindow attribute
	adapterQNames attribute
	customProperties attribute
	documents attribute
	domImplementation attribute
	event attribute
	haveWindows attribute
	initDone attribute
	isE3 attribute
	lastErrorDetail attribute
	name attribute
	optionNames attribute
	path attribute
	userProperties attribute
	alert method
	confirm method
	constructObject method
	createComposer method
	createDialogFromDocument method
	createDialogFromFile method
	createEvent method
	createPropertyMap method
	createScriptContext method
	createStringList method
	createTableObjectStore method
	createTableTilePlex method
	createWindow method
	error method
	getAdapter method
	getCustomDirectory method
	getLocale method
	getLocalizedMessage method
	getOption method
	getOptionScope method
	getScriptContext method
	logicalIdExists method
	logicalIdToSession method
	messageBox method
	openDocument method
	print method
	prompt method
	quit method
	registerIOAdapter method
	run method
	setOption method

	ApplicationEvent interface
	detail attribute
	initApplicationEvent method

	ARange interface
	MarkupFlags enumeration
	allowedInsertElements attribute
	allowedSurroundElements attribute
	contextString attribute
	endOID attribute
	endPos attribute
	startOID attribute
	canInsertNode method
	canInsertNodeWithFixup method
	insertNodeWithFixup method
	insertParsedString method
	toMarkupString method
	toMarkupStringEx method

	W3C Attr interface
	isId attribute
	name attribute
	ownerElement attribute
	schemaTypeInfo attribute
	specified attribute
	value attribute

	W3C CDATASection interface
	W3C CharacterData interface
	data attribute
	length attribute
	appendData method
	deleteData method
	insertData method
	replaceData method
	substringData method

	W3C CharacterDataEditVAL interface
	canAppendData method
	canDeleteData method
	canInsertData method
	canReplaceData method
	canSetData method
	isWhitespaceOnly method

	CMSAdapter interface
	aclId attribute
	name attribute
	qualifiedName attribute
	valid attribute
	connect method
	createEvent method
	getUserData method
	hasFeature method
	setOldUserData method
	setUserData method

	CMSAdapterConnectEvent interface
	initCMSAdapterConnectEvent method

	CMSAdapterDisconnectEvent interface
	currentUser attribute
	initCMSAdapterDisconnectEvent method

	CMSBrowseItem interface
	CMSItemType enumeration
	CMSLockStatus enumeration
	applyOverlay attribute
	displayIcon attribute
	fullPath attribute
	itemType attribute
	lockStatus attribute
	logicalId attribute
	name attribute
	revision attribute

	CMSBrowseIterator interface
	getNext method
	hasNext method

	CMSException exception
	CMSExceptionCode enumeration

	CMSObject interface
	CMSSaveFlags enumeration
	CMSLockFlags enumeration
	CMSObjectClassType enumeration
	CMSObjectLockStatusType enumeration
	CMSBurstFlags enumeration
	aclId attribute
	allReferences attribute
	cmsObjectType attribute
	cmsPathName attribute
	comment attribute
	contentType attribute
	creationDate attribute
	enclosingObject attribute
	encoding attribute
	end attribute
	fullTextIndexed attribute
	hasChildRefs attribute
	instanceDoctypeName attribute
	isFolder attribute
	isLatestVersion attribute
	isVirtualDocContainer attribute
	lockable attribute
	lockOwner attribute
	lockStatus attribute
	lockStatusDisplay attribute
	logicalId attribute
	modificationDate attribute
	modified attribute
	name attribute
	objectClass attribute
	permission attribute
	poid attribute
	publicId attribute
	readOnly attribute
	session attribute
	size attribute
	start attribute
	systemId attribute
	tagName attribute
	valid attribute
	version attribute
	burst method
	cancelCheckout method
	checkin method
	checkout method
	createEvent method
	deleteObject method
	getAttribute method
	getAttributes method
	getChildren method
	getParents method
	getUserData method
	getVersions method
	invokeExtension method
	move method
	releaseReference method
	save method
	setAttribute method
	setAttributes method
	setOldUserData method
	setUserData method

	CMSObjectEvent interface
	end attribute
	errorCode attribute
	errorMessage attribute
	flags attribute
	result attribute
	start attribute
	initCMSObjectEvent method

	CMSObjectList interface
	length attribute
	item method
	releaseReferences method

	CMSSession interface
	CMSBurstBoundaryType enumeration
	CMSBurstPolicy enumeration
	CMSCreateFlags enumeration
	CMSOperationEnabledType enumeration
	CMSSessBurstFlags enumeration
	aclId attribute
	adapter attribute
	burstPolicy attribute
	burstUserOverride attribute
	connected attribute
	currentUser attribute
	defaultFolder attribute
	fullTextSearch attribute
	objectReuse attribute
	sessionToken attribute
	burstDocument method
	clearBurstConfig method
	createEvent method
	createFolder method
	createNewObject method
	createObjectFromSubtree method
	disconnect method
	getAttribute method
	getBurstBoundaryType method
	getDefaultCreateInfo method
	getFile method
	getFileMappingEntry method
	getGraphicCreateInfo method
	getRangeCreateInfo method
	getUserData method
	invokeExtension method
	logicalIdToPoid method
	objectExists method
	poidToLogicalId method
	putFile method
	refreshObjectStatus method
	search method
	setAttribute method
	setFileMappingEntry method
	setOldUserData method
	setUserData method
	verifyOperationEnabledInCurrentState method

	CMSSessionBurstDocumentEvent interface
	canOverride attribute
	document attribute
	errorCode attribute
	errorMessage attribute
	flags attribute
	folderLogicalId attribute
	topLevelName attribute
	initCMSSessionBurstDocumentEvent method

	CMSSessionConstructEvent interface
	errorCode attribute
	errorMessage attribute
	result attribute
	initCMSSessionConstructEvent method

	CMSSessionCreateEvent interface
	end attribute
	errorCode attribute
	errorMessage attribute
	flags attribute
	folderLogicalId attribute
	name attribute
	objType attribute
	result attribute
	start attribute
	version attribute
	initCMSSessionCreateEvent method

	CMSSessionDisconnectEvent interface
	currentUser attribute
	initCMSSessionDisconnectEvent method

	CMSSessionFileEvent interface
	errorCode attribute
	errorMessage attribute
	folderLogicalId attribute
	localPath attribute
	logicalId attribute
	notation attribute
	objectName attribute
	result attribute
	initCMSSessionFileEvent method

	W3C Comment interface
	Component interface
	ComponentType enumeration
	componentType attribute
	firstChild attribute
	lastChild attribute
	nextSibling attribute
	ownerWindow attribute
	parentComponent attribute
	previousSibling attribute
	text attribute
	appendChild method
	insertBefore method
	isSameComponent method
	removeChild method
	replaceChild method

	Composer interface
	getDefaultParameters method
	getParamDocumentation method
	getParamEnumerationValues method
	getParamLabel method
	getParamType method
	isParamRequired method
	runPipeline method

	ControlEvent interface
	initControlEvent method

	Dialog interface
	dialogView attribute

	W3C Document interface
	doctype attribute
	documentElement attribute
	documentURI attribute
	domConfig attribute
	implementation attribute
	inputEncoding attribute
	strictErrorChecking attribute
	xmlEncoding attribute
	xmlStandalone attribute
	xmlVersion attribute
	adoptNode method
	createAttribute method
	createAttributeNS method
	createCDATASection method
	createComment method
	createDocumentFragment method
	createElement method
	createElementNS method
	createEntityReference method
	createProcessingInstruction method
	createTextNode method
	getElementById method
	getElementsByTagName method
	getElementsByTagNameNS method
	importNode method
	normalizeDocument method
	renameNode method

	W3C DocumentEditVAL interface
	continuousValidityChecking attribute
	getDefinedElements method
	validateDocument method

	W3C DocumentEvent interface
	createEvent method

	W3C DocumentFragment interface
	W3C DocumentRange interface
	createRange method

	W3C DocumentType interface
	entities attribute
	internalSubset attribute
	name attribute
	notations attribute
	publicId attribute
	systemId attribute

	W3C DocumentView interface
	defaultView attribute

	W3C DOMConfiguration interface
	canSetParameter method
	getParameter method
	setParameter method

	W3C DOMException exception
	ExceptionCode enumeration

	W3C DOMImplementation interface
	createDocument method
	createDocumentType method
	getFeature method
	hasFeature method

	W3C DOMStringList interface
	length attribute
	contains method
	item method

	W3C Element interface
	schemaTypeInfo attribute
	tagName attribute
	getAttribute method
	getAttributeNS method
	getAttributeNode method
	getAttributeNodeNS method
	getElementsByTagName method
	getElementsByTagNameNS method
	hasAttribute method
	hasAttributeNS method
	removeAttribute method
	removeAttributeNS method
	removeAttributeNode method
	setAttribute method
	setAttributeNS method
	setAttributeNode method
	setAttributeNodeNS method
	setIdAttribute method
	setIdAttributeNS method
	setIdAttributeNode method

	W3C ElementEditVAL interface
	ContentTypeVAL enumeration
	allowedAttributes attribute
	allowedChildren attribute
	allowedFirstChildren attribute
	allowedNextSiblings attribute
	allowedParents attribute
	allowedPreviousSiblings attribute
	contentType attribute
	requiredAttributes attribute
	canRemoveAttribute method
	canRemoveAttributeNS method
	canRemoveAttributeNode method
	canSetAttribute method
	canSetAttributeNS method
	canSetAttributeNode method
	canSetTextContent method
	isElementDefined method
	isElementDefinedNS method

	W3C Entity interface
	inputEncoding attribute
	notationName attribute
	publicId attribute
	systemId attribute
	xmlEncoding attribute
	xmlVersion attribute

	W3C EntityReference interface
	W3C Event interface
	PhaseType enumeration
	bubbles attribute
	cancelable attribute
	currentTarget attribute
	eventPhase attribute
	target attribute
	timeStamp attribute
	type attribute
	initEvent method
	preventDefault method
	stopPropagation method

	W3C EventException exception
	EventExceptionCode enumeration

	W3C EventListener interface
	handleEvent method

	W3C EventTarget interface
	addEventListener method
	dispatchEvent method
	removeEventListener method

	W3C ExceptionVAL exception
	ExceptionVALCode enumeration

	MenuBar interface
	find method

	MenuEvent interface
	initMenuEvent method

	MenuItem interface
	checked attribute
	enabled attribute

	W3C MouseEvent interface
	altKey attribute
	button attribute
	clientX attribute
	clientY attribute
	ctrlKey attribute
	metaKey attribute
	relatedTarget attribute
	screenX attribute
	screenY attribute
	shiftKey attribute
	initMouseEvent method

	W3C MutationEvent interface
	AttrChangeType enumeration
	attrChange attribute
	attrName attribute
	newValue attribute
	prevValue attribute
	relatedNode attribute
	initMutationEvent method

	W3C NamedNodeMap interface
	length attribute
	getNamedItem method
	getNamedItemNS method
	item method
	removeNamedItem method
	removeNamedItemNS method
	setNamedItem method
	setNamedItemNS method

	W3C NameList interface
	length attribute
	contains method
	containsNS method
	getName method
	getNamespaceURI method

	W3C Node interface
	NodeType enumeration
	DocumentPosition enumeration
	attributes attribute
	baseURI attribute
	childNodes attribute
	firstChild attribute
	lastChild attribute
	localName attribute
	namespaceURI attribute
	nextSibling attribute
	nodeName attribute
	nodeType attribute
	nodeValue attribute
	ownerDocument attribute
	parentNode attribute
	prefix attribute
	previousSibling attribute
	textContent attribute
	appendChild method
	cloneNode method
	compareDocumentPosition method
	getFeature method
	getUserData method
	hasAttributes method
	hasChildNodes method
	insertBefore method
	isDefaultNamespace method
	isEqualNode method
	isSameNode method
	isSupported method
	lookupNamespacePrefix method
	lookupNamespaceURI method
	lookupPrefix method
	normalize method
	removeChild method
	replaceChild method
	setUserData method

	W3C NodeEditVAL interface
	validationState enumeration
	validationType enumeration
	defaultValue attribute
	enumeratedValues attribute
	canAppendChild method
	canInsertBefore method
	canRemoveChild method
	canReplaceChild method
	nodeValidity method

	W3C NodeList interface
	length attribute
	item method

	W3C Notation interface
	publicId attribute
	systemId attribute

	W3C ProcessingInstruction interface
	data attribute
	target attribute

	PropertyMap interface
	DataType enumeration
	keys attribute
	modified attribute
	containsKey method
	getDataType method
	getNumber method
	getString method
	getStringList method
	putNumber method
	putString method
	putStringList method
	remove method

	W3C Range interface
	CompareHow enumeration
	collapsed attribute
	commonAncestorContainer attribute
	endContainer attribute
	endOffset attribute
	startContainer attribute
	startOffset attribute
	cloneContents method
	cloneRange method
	collapse method
	compareBoundaryPoints method
	deleteContents method
	detach method
	extractContents method
	insertNode method
	selectNode method
	selectNodeContents method
	setEnd method
	setEndAfter method
	setEndBefore method
	setStart method
	setStartAfter method
	setStartBefore method
	surroundContents method
	toString method

	W3C RangeException exception
	RangeExceptionCode enumeration

	ScriptContext interface
	scriptType enumeration
	addTypeLibFlags enumeration
	addNamedItem method
	addTypeLib method
	loadScriptFile method
	loadScriptText method
	terminate method

	StringList interface
	length attribute
	append method
	item method
	setItem method

	TableCell interface
	cellAbove attribute
	cellBelow attribute
	cellLeft attribute
	cellRight attribute
	column attribute
	contents attribute
	multicell attribute
	onBottomMulticellEdge attribute
	onLeftMulticellEdge attribute
	onRightMulticellEdge attribute
	onTopMulticellEdge attribute
	row attribute
	ruleAbove attribute
	ruleBelow attribute
	ruleLeft attribute
	ruleRight attribute
	spanned attribute
	spanning attribute
	deleteFontPI method
	findFontPI method
	inSameColumn method
	inSameRow method
	instantiate method
	isAdjacent method
	nextGalleyCell method
	previousGalleyCell method
	rectangle method
	span method
	unspan method

	TableColumn interface
	bottomCell attribute
	cellCount attribute
	cells attribute
	columnLeft attribute
	columnRight attribute
	first attribute
	index attribute
	last attribute
	ruleAbove attribute
	ruleBelow attribute
	rulesLeft attribute
	rulesRight attribute
	suppressed attribute
	topCell attribute
	cell method

	TableException exception
	TableExceptionCode enumeration

	TableGrid interface
	cells attribute
	columnCount attribute
	columns attribute
	firstGalleyCell attribute
	gridAbove attribute
	gridBelow attribute
	index attribute
	lastGalleyCell attribute
	rowCount attribute
	rows attribute
	rules attribute
	addColumn method
	addRow method
	cell method
	column method
	deleteColumn method
	deleteRow method
	hlineRuleList method
	insertColumns method
	insertRows method
	row method
	rule method
	split method
	vlineRuleList method

	TableMulticell interface
	spanningCell attribute

	TableObject interface
	Type enumeration
	Direction enumeration
	ExamineWhatColspec enumeration
	Orientation enumeration
	document attribute
	element attribute
	grid attribute
	modifiable attribute
	set attribute
	tableModel attribute
	toid attribute
	type attribute
	clearAttributes method
	deleteAttribute method
	deletePrivateColspecs method
	deleteSpanspecs method
	getAttribute method
	minimizeAttributes method
	renameColspec method
	renameColumns method
	renameSpanspec method
	setAttribute method

	TableObjectStore interface
	length attribute
	addObject method
	deleteObject method
	findObject method
	item method
	multicellFilter method

	TableRectangle interface
	cells attribute
	cellsAbove attribute
	cellsBelow attribute
	cellsLeft attribute
	cellsOnBottomEdge attribute
	cellsOnLeftEdge attribute
	cellsOnRightEdge attribute
	cellsOnTopEdge attribute
	cellsRight attribute
	height attribute
	lowerLeft attribute
	lowerRight attribute
	rulesAbove attribute
	rulesBelow attribute
	rulesLeft attribute
	rulesRight attribute
	upperLeft attribute
	upperRight attribute
	valid attribute
	width attribute
	copyRectangle method
	span method

	TableRow interface
	cellCount attribute
	cells attribute
	first attribute
	index attribute
	last attribute
	leftCell attribute
	rightCell attribute
	rowAbove attribute
	rowBelow attribute
	ruleLeft attribute
	ruleRight attribute
	rulesAbove attribute
	rulesBelow attribute
	suppressed attribute
	cell method

	TableRule interface
	cellAbove attribute
	cellBelow attribute
	cellLeft attribute
	cellRight attribute
	endColumnIndex attribute
	endRowIndex attribute
	orientation attribute
	ruleAbove attribute
	ruleBelow attribute
	ruleLeft attribute
	ruleRight attribute
	startColumnIndex attribute
	startRowIndex attribute
	suppressed attribute

	TableSet interface
	gridCount attribute
	grids attribute
	markupRange attribute
	title attribute
	addGrid method
	deleteGrid method
	deleteTitle method
	grid method
	insertGrid method

	TableTilePlex interface
	empty attribute
	pasteRectangle attribute
	valid attribute
	addObject method
	addRectangle method
	clear method
	clonePlex method
	deleteFromDocument method
	getObjects method
	isSelected method
	pasteType method
	rectangle method

	W3C Text interface
	isElementContentWhitespace attribute
	wholeText attribute
	replaceWholeText method
	splitText method

	ToolBarEvent interface
	initToolBarEvent method

	W3C TypeInfo interface
	DerivationMethods enumeration
	typeName attribute
	typeNamespace attribute
	isDerivedFrom method

	W3C UIEvent interface
	detail attribute
	view attribute
	initUIEvent method

	View interface
	aclId attribute
	backgroundColor attribute
	foregroundColor attribute
	optionNames attribute
	suspendUpdate attribute
	window attribute
	getOption method
	setOption method

	Window interface
	DockEnabled enumeration
	DockState enumeration
	aclId attribute
	activeView attribute
	backgroundColor attribute
	dock attribute
	dockable attribute
	embedded attribute
	foregroundColor attribute
	height attribute
	longNativeHandle attribute
	menuBar attribute
	modal attribute
	nativeHandle attribute
	optionNames attribute
	ownerNode attribute
	parent attribute
	propertyMap attribute
	screenX attribute
	screenY attribute
	visible attribute
	width attribute
	activate method
	bringToFront method
	close method
	createEvent method
	createMenuItem method
	dockTo method
	enableDocking method
	getOption method
	getScriptContext method
	hide method
	loadComponentFile method
	moveTo method
	sendToBack method
	setOption method
	setSize method
	show method

	WindowEvent interface
	initWindowEvent method

	WindowException exception
	WindowExceptionCode enumeration

	AOM set Options Overview
	Index

