
Content Pipeline Guide
8.2.0.0

Contents

About This Guide ...5
Prerequisite Knowledge ...5
Technical Support ..5
Documentation for PTC Products..6
Global Services ...6
Comments ..6
Documentation Conventions...7

Content Pipeline Guide...9
Overview...10
Conventions Used in this Guide ..10
Where to Get More Information...10

Content Pipelines...13
Overview...14
Creating Filters and Filter Adapters ...14
Composer Configuration Files ..20
CCF Files and Profiling ..28

Using AOM with Pipelines and Filters ..31
Overview...32
Running a Composer using AOM..32
AOM Publishing using Java ..32

Using ACL with Pipelines and Filters ...37
Overview...38
ACL Pipeline Example ...38
Running Standard Publishing Processes with ACL ...40
Using Core Functions...41

Error Handling ...43
Overview...44
Using ErrorHandler Interface Methods...44
Using log4j Methods ..44
Customizing Error Handling..46

Customizing Publishing ..49
Adding Web Publishing to a Document Type..50
Switching from Saxon to the Xalan Processing Engine51
Configuring Character Entity Substitution Files for HTML Publishing..................52
Controlling Graphics Conversion for HTML-Based Publishing55
Configuring Publishing Processes to Output Change Tracking Markup55
Internationalization Considerations ...56

SAX2 Filter Interfaces..59
ContentHandler ...59
DTDHandler ..60
LexicalHandler Interface...61
ErrorHandler Interface..61
DeclHandler ..62

3

EntityResolver ...62
EntityResolver2 ...63

AOM Reference ...65
Application Interface ..65
Composer Interface ...65

ACL Reference ..69
ACL Publishing Functions ..69
Interactive and Batch Publishing Functions..72
Event Log Functions ..80
Core Functions ..81

Java Reference..87
Interfaces..87
Helper Classes ..91

Distributed Files ..93
The File Types...93
Content Pipeline Guide Files ..95

4 Content Pipeline Guide

About This Guide

This guide describes the content pipeline concepts and describes the components that
make up a pipeline. It provides examples of using AOM and ACL to manipulate filters
and pipelines, along with providing information on adding web publishing to a document
type, switching XSL processing engines, and other topics.

Prerequisite Knowledge

This guide assumes the person who will be creating and implementing filters and
pipelines is a programmer who has some experience with SAX, AOM, C++, and Java.
Refer to Where to Get More Information on page 10 for resources.

Technical Support

To contact PTC Technical Support, use the Contact Support and Customer Support Guide
links on support.ptc.com.

The PTC Support pages also provide a search facility for you to browse for knowledge
articles, best practices, and other information.

You must have a Service Contract Number (SCN) before you can receive technical
support. If you do not have an SCN, contact PTC Technical Support or Customer Care
Departments using the contact instructions found in your Customer Support Guide.

5

https://support.ptc.com/appserver/cs/portal/

Documentation for PTC Products

You can access PTC product documentation using the following resources:

• Online Help

Click Help from the user interface for online help available for the product.

• Reference Documentation

PDFs of reference information are available from the Product Documentation area
of support.ptc.com.

Select the Arbortext tab to access the Arbortext Reference Documentation link.

• Help Center

Help Centers for the most recent product releases are available from the Product
Documentation area of support.ptc.com.

Select the Arbortext tab to access the Help Centers link.

You must have a Service Contract Number (SCN) before you can access the Arbortext
Reference Documentation or Help Centers links. If you do not have an SCN, contact PTC
Technical Support or Customer Care Departments using the contact instructions found in
your Customer Support Guide.

Global Services

PTC Global Services delivers the highest quality, most efficient and most comprehensive
deployments of the PTC Product Development System including Creo, Windchill,
Arbortext, and PTC Mathcad. PTC's Implementation and Expansion solutions integrate
the process consulting, technology implementation, education and value management
activities customers need to be successful. Customers are led through Solution Design,
Solution Development and Solution Deployment phases with the continuous driving
objective of maximizing value from their investment.

Contact your PTC sales representative for more information on Global Services.

Comments

PTC welcomes your suggestions and comments on our documentation. You can submit
your feedback to the following email address:

arbortext-documentation@ptc.com

Please include the following information in your email:

• Name

6 Content Pipeline Guide

https://support.ptc.com/appserver/cs/portal/
https://support.ptc.com/appserver/cs/portal/

• Company

• Product

• Product Release

• Document or Online Help Topic Title

• Level of Expertise in the Product (Beginning, Intermediate, Advanced)

• Comments (including page numbers where applicable)

Documentation Conventions

This guide uses the following notational conventions:

• Bold text represents exact text that appears in the program's user interface. This
includes items such as button text, menu selections, and dialog box elements. For
example,

Click OK to begin the operation.

• A right arrow represents successive menu selections. For example,

Choose File ▶▶Print to print the document.

• Monospaced text represents code, command names, file paths, or other text
that you would type exactly as described. For example,

At the command line, type version to display version information.

• Italicized monospaced text represents variable text that you would type.
For example,

installation-dir\custom\scripts\

• Italicized text represents a reference to other published material. For example,

If you are new to the product, refer to the Getting Started Guide for basic interface
information.

7

1
Content Pipeline Guide

Overview.. 10
Conventions Used in this Guide .. 10
Where to Get More Information... 10

9

Overview
The Content Pipeline Guide provides detailed information about the SAX filter pipeline
that Arbortext Editor and Arbortext Publishing Engine use to transform documents. A
pipeline, which is a sequence of filters that perform a task in several step, is configured by
a content configuration file (CCF) and exposed as an AOM composer object.

A pipeline can perform many kinds of document manipulation, not just publishing. For
example, Arbortext Editor uses a pipeline to display a profiled document in the Edit
window and validate a document against a schema.

Conventions Used in this Guide
In addition to the conventions described earlier, this guide uses the following notational
conventions:

• Bold text represents an exact reference, such as names of methods, classes, and
attributes or paths and file names. For example:

You can use the hide method to hide the dialog box.

See the sample file demo.xml.

• File paths are typically given using backslashes. For example:

Arbortext-path\custom\doctypes

• Square braces ([]) denote optional parameters which may be omitted. For example:

insertBefore(newChild[, refChild])

• A vertical bar (|) separates parameters in a list from which one parameter must be
chosen or used. For example:

allowinvalidmarkup {on | off}

• Arbortext-path refers to the directory in which Arbortext Editor is installed.

Where to Get More Information
The files for Arbortext Editor and Arbortext Publishing Engine supporting documentation
can be found in the Arbortext Help Center. You can access the Help Center from the
Arbortext Editor Help menu.

If you're using Arbortext Publishing Engine, be sure to review Installation Guide for
Arbortext Publishing Engine and Configuration Guide for Arbortext Publishing Engine
for extensive information on Arbortext Publishing Engine installation, setup, and
configuration.

10 Content Pipeline Guide

Refer to the Programmer's Reference for more information on the Arbortext Object
Model (AOM).

You can find training classes on the PTC web site at www.ptc.com

If you are looking for more general information on the Java programming language, you
may want to consult the following resources:

• Thinking in Java, Third Edition, by Bruce Eckel. Published by Prentice Hall PTR.
The full content of the book is available online.

• Sun has extensive Java information available at its web site java.sun.com. The
tutorials are especially helpful to beginners.

Content Pipeline Guide 11

http://www.ptc.com
http://java.sun.com

2
Content Pipelines

Overview.. 14
Creating Filters and Filter Adapters... 14
Composer Configuration Files... 20
CCF Files and Profiling.. 28

13

Overview
Arbortext Editor and Arbortext Publishing Engine use a SAX filter pipeline, called a
composer, to transform documents. A composer is a processor that can be configured to
transform a document by passing it through one or more SAX filters in a filter pipeline.
The result of this transformation may be one or more XML documents or external files. A
content pipeline is defined in a CCF file, and exposed as an AOM composer object.

You can configure and run a composer object using an associative array of parameters.
Users can create new composer objects or customize existing ones by subclassing existing
filters in a pipeline or by adding or deleting filters in a CCF file to create new pipelines.

A composer is created by calling a createComposer method. When this method is called,
the following process occurs:

• The composer's CCF file is parsed.

• For each filter in the pipeline, the composer:

– Creates the adapter from the class specified in the adapterClass attribute.

– Creates the filter.

– Links the filter to its predecessor.

– Maps the interface parameters to the filter’s parameters.

Creating Filters and Filter Adapters
At a basic level, a filter in a content pipeline is a Java object that implements at least one
of the seven SAX2 interfaces. You can use the publishing framework to write custom
filters. These filters must conform to the SAX2 interfaces.

You can use filters in a pipeline to perform a variety of processes. The following list
describes primitive transformations that filters can perform. You can also combine these
filters to create more powerful transformations.

• Suppression or profiling — Filters out content that does not match certain criteria.
The criteria may be imposed on elements, attribute values, or content. The output is
a subset of the input.

• Extraction — Retains data that matches certain criteria. The criteria can be based
on markup or content. The output is a subset of the input.

• Insertion or embellishing — Adds data to a document, and is driven by document
content or external information. A data merge is an example of a database-driven
insertion. The output is a superset of the input.

• Aggregation — Assembles many documents into one document. Aggregation can
be driven by a single document, called by a driver, or by external data.

14 Content Pipeline Guide

• Division or disassembly — Splits one document into components. Division can be
driven by document markup or by size constraints on the resulting chunks.

• Reordering — Moves data within a document from one location to another. You
can reorder using markup to identify the data to move or content or attribute values
to define target locations. Sorting is an example of reordering.

A filter needs an adapter object. An adapter is a Java object that implements the
FilterAdapter interface. The FilterAdapter interface defines methods that allow the
composer to query the SAX2 interfaces that the filter supports. It also defines methods
that allow the composer to initialize and configure the filter.

An adapter is responsible for creating and destroying the filter. It knows which SAX2
interfaces the filter implements. Thus, when the composer queries the adapter for the
filter’s SAX2 interfaces, it returns the filter or null.

Default Java Classes
Arbortext Editor and Arbortext Publishing Engine provide two classes, DefaultSAXFilter
and DefaultAdapter, for developing filters. These files help minimize the amount of code
that needs to be written.

The DefaultSAXFilter class implements the SAXFilter interface, which is a convenience
mix-in interface that extends the seven SAX2 interfaces and the FilterControl interface.
The DefaultSAXFilter echoes the SAX events it receives to its outputs.

For example, if you want to write a simple filter that counts the number of characters in
an XML document, you would subclass the DefaultSAXFilter class and override the
characters method to keep a tally of the number of characters.

You can use the DefaultAdapter class with any filter that implements the SAXFilter
interface. Therefore, any class that is a subclass of DefaultSAXFilter can be used in the
pipeline with an instance of the DefaultAdapter class. Refer to the grep Filter Example
on page 16 for an example of how to implement the DefaultAdapter class in a filter.

If an object exists that implements one or more of the SAX2 interfaces, you can write a
filter adapter. This is helpful in situations in which the object is an off-the-shelf
component that cannot be modified to implement Arbortext-specific interfaces.

Reusing Filters
To improve performance, the publishing framework caches pipelines. This allows you to
reuse filters. Since you can't control a filter's lifetime, you should write the filter to obtain
resources using the initFilter method and free them using the destroyFilter method. You
should also use the initFilter method to reinitialize parameter values for parameters with
default values. If you don't reinitialize parameter values, you could end up with a
parameter value from a previous pipeline run, rather than the default value.

Content Pipelines 15

grep Filter Example
This example describes a filter that provides functionality similar to the grep command.
The grep filter uses a regular expression to look for character matches in the input.
Matches are reported to the error handler.

If you use this filter in a pipeline that runs in Arbortext Editor, matches are listed in the
Event log window with links to the location within the document where the match
occurred.

The filter has the following configuration:

• A regular expression.

• The number of characters reported (includes the matched string) upon a successful
match.

• Spanning of non-character events such as start and end elements. For example,
when you span non-character events, the regular expression “testcase” results in a
match in the following situation:
<element1>test</element1>
<element1>case</element1>

• Maximum number of characters that the filter tries to match against the regular
expression.

This filter implements the characters, startElement and endElement methods in the
ContentHandler interface. All SAX events are repeated since grep functionality does
not alter content.

To implement this filter, you subclass the DefaultSAXFilter class, which overrides the
characters, startElement, endElement, and initFilter methods. The initFilter method is
called by the publishing framework to initialize filters.
/*
* grep.java Version 1.0
*
* Created 15-Aug-02
*
* 1000 Victor’s Way, Ann Arbor, MI, 48108, U.S.A.
*/

package com.arbortext.epic.compose.examples;

import java.util.Map;

import org.xml.sax.Attributes;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import gnu.regexp.RE;
import gnu.regexp.REMatch;

import com.arbortext.epic.saxfilter.DefaultSAXFilter;
import com.arbortext.epic.saxfilter.utils.Logger;

/**

16 Content Pipeline Guide

* grep
*
* The grep filter performs an operation similar to the grep
* command on characters that are present in the SAX event stream.
* When a match is found, the filter creates a SAXParseException
* and sends it to the ErrorHandler resource. The SAXParseException
* contains the ’matched’ string, along with some context as the
* message. A locator object is also set in the constructor of the
* exception.
*
* The filter can be configured with these parameters:
* - regexp is the regular expression that is used to perform
* the match.
* - numContextChars is the number of characters that are reported
* (includes the matched string) upon a successful match.
* - crossNonCharEventBoundary indicates if the match crosses
* non-character events such as start and end element
* events.
* - maxMatchSize is the maximum number of characters that the
* filter tries to match against the regular expression.
* NOTE: This filter does not affect the SAX events that
* pass through. Therefore, all methods that override the
* base class methods call the respective super class methods.
*/

public class grep extends DefaultSAXFilter
{

//Parameters
public static final String PARAM_REGEXP = "regexp";
public static final String PARAM_NUM_CONTEXT_CHARS =

"numContextChars";
public static final String

PARAM_CROSS_NONCHAR_EVENT_BOUNDARIES =
"crossNonCharEventBoundary";

public static final String PARAM_MAX_MATCH_SIZE =
"maxMatchSize";

//constants used for default value for the parameters
public static final int DEFAULT_NUM_CONTEXT_CHARS = 100;
public static final int DEFAULT_MAX_MATCH_SIZE = 1000;

//instance variables
private boolean crossNonCharEventBoundary;
private int numContextChars;
private int maxMatchSize;
private RE reObj; //regular expression object used to perform

the actual match.
private StringBuffer currString;

private Logger logger;

/**
* Default constructor.
*/
public grep()
{

resetParameters();
}

/**
* Helper function that resets the parameter values to the
* default values.
*/
private void resetParameters() {

Content Pipelines 17

crossNonCharEventBoundary = false;
numContextChars = DEFAULT_NUM_CONTEXT_CHARS;
maxMatchSize = DEFAULT_NUM_CONTEXT_CHARS;

}
/**
* initFilter
*
* The initFilter method sets-up the parameters.
*
* @param parameters is a map containing the parameters.
*
* @throws exception if the regular expression string is
* not present.
*/
public void initFilter(Map parameters) throws Exception
{

//The super class, DefaultSAXFilter, manages the output
//handler objects. Therefore, this class needs to call
//the super class’ initFilter methods to set up the output
//handlers.
super.initFilter(parameters);
logger = Logger.getLogger(this.getClass());
//Uses the utility logger class
resetParameters();
Object paramValue;

//Get the regular expression string.
String regExpString = (String)parameters.get(PARAM_REGEXP);
if (regExpString == null || regExpString.equals(""))

throw new Exception("Grep filter requires a"
+ "valid regular expression.");

//How many context chars?
paramValue = parameters.get(PARAM_NUM_CONTEXT_CHARS);
if (paramValue != null) {

try {
numContextChars =

Integer.parseInt((String)paramValue);
}
catch (NumberFormatException nfe) {

logger.warn("Illegal value for "
+ PARAM_NUM_CONTEXT_CHARS);

numContextChars = DEFAULT_NUM_CONTEXT_CHARS;
}

}

//Can the match cross non char event boundaries?
if ("true".equalsIgnoreCase((String)parameters.get

(PARAM_CROSS_NONCHAR_EVENT_BOUNDARIES))) {
crossNonCharEventBoundary = true;

}

paramValue = parameters.get(PARAM_MAX_MATCH_SIZE);
if (paramValue != null) {

try {
maxMatchSize =

Integer.parseInt((String)paramValue);
}
catch (NumberFormatException nfe) {

logger.warn("Illegal value for "
+ PARAM_MAX_MATCH_SIZE);

maxMatchSize = DEFAULT_MAX_MATCH_SIZE;
}

18 Content Pipeline Guide

}

reObj = new RE(regExpString);
currString = new StringBuffer(maxMatchSize);

} //initFilter()

/**
* endElement resets the current string if the
* match can’t span non-character events.
*
*/
public void endElement(String NameSpaceURI, String lName,

String qName) throws SAXException
{

super.endElement(NameSpaceURI, lName, qName);

//If the match can’t cross non-character event
//boundaries, then the match string should be reset.
if (!crossNonCharEventBoundary)

currString.setLength(0);
} //endElement()

/**
* startElement resets the current string if the match
* can’t span non-character events.
*/

public void startElement(String NameSpaceURI, String lName,
String qName, Attributes atts) throws SAXException

{
super.startElement(NameSpaceURI, lName, qName, atts);
if (!crossNonCharEventBoundary)

currString.setLength(0);
} // startElement()

/**
* characters - This method tests the current string
* against the regular expression. The method does
* the following:
* - Maintains the current string. The maximum size
* of the string is controlled by the "maxMatchSize"
* parameter.
* - Tests the current string against the regular
* expression.
* - If a match is found, a SAXParseException is created
* with the match string.
*
* The filter gets the document Locator using the
* getDocumentLocator() method. The document locator
* must have been set for the locator to be useful.
* The publishing framework typically sets the document
* locator.
*
* IMPLEMENTATION NOTE: If generateEpicDirectives is set to
* true for the epicGenerator filter, then the locator is set
* for all filters in the pipeline that follow the epicGenerator.
*/

public void characters(char[] ch, int start, int length)
throws SAXException

{
super.characters(new string cch, start, length);
currString.append(ch);
if (currString.length() > maxMatchSize) {

currString.delete(0, currString.length() - maxMatchSize);

Content Pipelines 19

}

//See if the current string matches the regular expression.
//For now ignore multiple matches.

REMatch match = reObj.getMatch(currString);
if (match != null) {

int matchStartIndex = match.getStartIndex();
int matchEndIndex =

Math.min(currString.length(),
matchStartIndex + numContextChars);

SAXParseException ex = new SAXParseException
(currString.substring(matchStartIndex,

matchEndIndex),
getDocumentLocator());

getErrorHandlerResource().warning(ex);
//Reset the current string to avoid duplicate matches
//in subsequent character method calls.
currString.setLength(0);

}
} // characters(...)

}

The filter does not affect the SAX events that pass through the filter. This is because the
super class methods are called in all the methods that the filter overrides.
super.initFilter(parameters);
...
super.characters(ch, start, length);
...

You can put this grep filter between an epicGenerator and an xslTransformer with no
data loss. The filter uses the com.arbortext.epic.saxfilter.utils.Logger class to log
warnings. We recommend using this class to report messages that are not related to SAX
events.
logger = Logger.getLogger(this.getClass());
...
logger.warn("Illegal value for " + PARAM_MAX_MATCH_SIZE);

The filter resets its parameters in the initFilter method so that subsequent calls (the filter
is reused by the publishing framework) do not result in stale values for non-required
parameters (for example, PARAM_MAX_MATCH_SIZE).

Composer Configuration Files
A composer configuration file (CCF) is an XML document that defines a filter pipeline.
CCF files are named type.ccf, where type is the type of composer (for example,
htmlfile.ccf). A composer reads a CCF file, and builds and configures the pipeline
based on the information in the CCF file.

20 Content Pipeline Guide

Composer Document Type Definition
A CCF file is created based on the composer document type definition (DTD). The DTD
specifies three main elements to define a pipeline:

• Interface

• Resource

• Pipeline

Note
For more detailed information on the composer DTD, refer to the documentation included
in the composer.dtd file distributed with Arbortext Editor and Arbortext Publishing
Engine. This file is located at Arbortext-path\doctypes\composer.

Creating a Simple CCF File
The following CCF file defines a two-filter content pipeline that reads an Arbortext Editor
XML document and then serializes it to a file on the file system.
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE Composer PUBLIC "-//Arbortext//DTD Composer 1.0//EN"

"composer.dtd">

<Composer>
<Interface>

<Parameter name="document" idref="epicGenerator.docId"
required="yes"></Parameter>

<Parameter name="output_filename" idref="fileSerializer.outputFile"
required="yes"></Parameter>

</Interface>

<Resource>
<FilterDef id="epicGenerator" type="source"

adapterClass="com.arbortext.epic.saxfilter.DefaultFilterAdapter"
filterClass="com.arbortext.epic.saxfilter.EpicGenerator">
<Parameter id="epicGenerator.docId" name="docId"

required="yes"></Parameter>

</FilterDef>
<FilterDef id="fileSerializer" type="sink"

adapterClass="com.arbortext.epic.saxfilter.DefaultFilterAdapter"
filterClass="com.arbortext.epic.saxfilter.FileSerializer">
<Parameter id="fileSerializer.outputFile"

name="outputFile"></Parameter>
</FilterDef>

</Resource>

<Pipeline startFilters="epicParser">
<Filter id="epicParser" filterDefRef="epicGenerator">

<FilterParameter name="docId"><ComposerParameter
name ="document"/></FilterParameter>

</Filter>
<Filter id="serializer" filterDefRef="fileSerializer">

Content Pipelines 21

<FilterParameter name="outputFile">
<ComposerParameter name="output_filename"/>

</FilterParameter>
<FilterParameter name="method">

<Value>xml</Value>
</FilterParameter>
<Input filterRef="epicParser"/>

</Filter>
</Pipeline>
</Composer>

Interface element
The Interface element exposes pipeline parameters to the composer API. An Interface
element can incorporate Label, Documentation, and Parameter elements.
<Interface>

<Parameter name="document" idref="epicGenerator.docId"
required="yes"></Parameter>

<Parameter name="output_filename"
idref="fileSerializer.outputFile"
required="yes"></Parameter>

</Interface>

The composer in this example has two parameters, the document ID and the name of the
serialized file. The Parameter names are exported as composer parameter names. These
composer parameters get mapped to the filter parameters.

Resource element
The Resource element defines filters and their properties. This includes filter and adapter
class names, and all parameters that the filter expects. Filter definitions contain parameter
definitions for every parameter that the filter adapter accepts. After you define a filter
using the FilterDef element, the Pipeline element can reference the filter.
<Resource>

<FilterDef id="epicGenerator" type="source"
adapterClass=

"com.arbortext.epic.saxfilter.DefaultFilterAdapter"
filterClass=

"com.arbortext.epic.saxfilter.EpicGenerator">
<Parameter id="epicGenerator.docId" name="docId"

required="yes"></Parameter>
</FilterDef>

An associated adapter constructs, initializes, and controls the filter. In the following
example, the adapterClass attribute specifies com.arbortext.epic.saxfilter.
DefaultFilterAdapter as the adapter’s qualified class. The optional filterClass
attribute specifies com.arbortext.epic.saxfilter.FileSerializer as the
filter's package qualified class. The adapter's constructor uses this value as its argument.
If you omit the filterClass attribute, the adapter constructor has no arguments.
<FilterDef id="fileSerializer" type="sink"

adapterClass="com.arbortext.epic.saxfilter.DefaultFilterAdapter"
filterClass="com.arbortext.epic.saxfilter.FileSerializer">
<Parameter id="fileSerializer.outputFile"

name="outputFile"></Parameter>

22 Content Pipeline Guide

</FilterDef>

A filter can implement the adapter interface. In this situation, the adapter class is the same
as the filter, so you can safely omit the filter class.

The type attribute defines the type of filter: source, transformer, or sink.

• A sink cannot have any Output elements.

• A source does not have to implement the SAX2 interfaces, but it must implement
the runFilter method.

• A transformer must have Input and Output elements.

Pipes connect the filters in a pipeline. A filter that generates SAX events may direct these
events to one or more pipes using the Output element. Each Output element within a
FilterDef must have a distinct pipeName attribute. If you omit an Output element, the
default pipe is used. If a filter doesn't declare an output, then it is a sink filter, and cannot
come before any other filter in the pipeline.

Pipeline element
The Pipeline element defines the pipeline structure by specifying the filters and their
inputs.

The Pipeline calls a filter's runFilter method, which is identified by the startFilters
attribute.

In the following example, epicParser is the pipeline's source filter. The composer runs
this filter when it receives the specified signal.
<Pipeline startFilters="epicParser">

Note
If the startFilters attribute lists multiple source filters, their runFilter methods are called
in the order listed.

The Filter element defines the filters that make up the pipeline. In the following example,
the first filter in the pipeline (epicParser) is connected to the second filter
(serializer) by the Input element.

<Filter id="epicParser" filterDefRef="epicGenerator">
<FilterParameter name="docId"><ComposerParameter

name="document"/></FilterParameter>
</Filter>
<Filter id="serializer" filterDefRef="fileSerializer">

<FilterParameter name="outputFile">
<ComposerParameter name="output_filename"/>

</FilterParameter>
<FilterParameter name="method">

<Value>xml</Value>
</FilterParameter>
<Input filterRef="epicParser"/>

</Filter>

Content Pipelines 23

Filters must receive certain parameters at run-time. These parameters can come from the
composer parameters provided at run-time or they can be specified in the CCF file. For
example, the serializer needs to know the name of the file to which it outputs
(output_filename). The value for this parameter is provided at run-time from the
composer parameter named output_filename. As a result, the value provided when
the run_composer command is issued is passed to the filter.

The method parameter specifies the output format. The fileSerializer filter
(Arbortext-path\composer\fileSerializer.ent) defines the valid values
for the method parameter (xml, html, text, or runTime). In the following example,
xml is the output method.
<FilterParameter name="method">

<Value>xml</Value>
</FilterParameter>

Creating a Complex CCF File
The following CCF file defines a pipeline that appends a copyright statement to the input
document and writes the output to a file or back to an Arbortext Editor document.
<?xml version="1.0" encoding="utf-8"?>
<!--ArborText, Inc., 1988-2002, v.4002-->
<!DOCTYPE Composer PUBLIC "-//Arbortext//DTD Composer 1.0//EN"
"composer.dtd" [

<!ENTITY % stock PUBLIC "-//Arbortext//DTD Fragment -
ATI Stock filter list//EN" "">

%stock;
]>
<Composer>

<Label>Copyright.ccf</Label>
<Documentation>This CCF file defines the pipeline that

appends a copyright statement to an HTML file that is
generated by the XSL transformation.

</Documentation>
<Interface>

<Label>API Parameters</Label>
<Documentation>The composer exposes the following parameters

to the API.
</Documentation>
<Parameter idref="epicGenerator.docId" name="document"

required="yes"></Parameter>
<Parameter idref="switch.outputPipe" name="destination"

required="yes"></Parameter>
<Parameter idref="fileSerializer.outputFile" name="filename"

required="no"></Parameter>
<Parameter idref="epicSerializer.docId" name="output_docid"

required="no"></Parameter>
<Parameter idref="xslTransformer.stylesheet"

name="stylesheet" required="yes"></Parameter>
<Parameter idref="fileSerializer.html.entSubFname"

name="html.entSubFname"></Parameter>
</Interface>
<Resource>

<Label>Filter resources.</Label>
<Documentation>The composer uses the following filter resources
</Documentation>
&epicGenerator;
&fileSerializer;

24 Content Pipeline Guide

&epicSerializer;
&switch;
&xslTransformer;
&namespaceFixer;
<FilterDef id="htmlTailAppender"

adapterClass=
"com.arbortext.epic.saxfilter.DefaultFilterAdapter"

filterClass=
"com.arbortext.epic.compose.examples.HTMLTailAppender"

type="transformer">
<Label>HTML Tail Appender</Label>
<Documentation>Definition for filter that appends a given

HTML stream to the first one.
</Documentation>

</FilterDef>
</Resource>
<Pipeline startFilters="epic_generator copyright_statement">

<Label>Pipeline geometry.</Label>
<Documentation>The following filters implement this composer.
</Documentation>
<Filter id="epic_generator"

filterDefRef="epicGenerator">
<FilterParameter name="docId">

<ComposerParameter name="document"/>
</FilterParameter>

</Filter>
<Boilerplate id="copyright_statement">

<Content>
<html:h6 xmlns:html="http://www.w3.org/TR/REC-html40">

Copyright2002.Arbortext Inc.
</html:h6>

</Content>
</Boilerplate>
<Filter id="xsl_transformer"

filterDefRef="xslTransformer">
<FilterParameter name="stylesheet">

<ComposerParameter name="stylesheet"/>
</FilterParameter>
<Input filterRef="epic_generator"/>

</Filter>
<Filter id="copyright_ns_fixer"

filterDefRef="namespaceFixer">
<FilterParameter name="originNamespace">

<Value>http://www.w3.org/TR/REC-html40</Value>
</FilterParameter>
<FilterParameter name="prefix">

<Value> </Value>
</FilterParameter>
<Input filterRef="copyright_statement"/>

</Filter>
<Filter id="copyright_appender"

filterDefRef="copyrightAppender">
<Input filterRef="xsl_transformer"/>
<Input filterRef="copyright_ns_fixer"/>

</Filter>
<Filter id="output_selector" filterDefRef="switch">

<FilterParameter name="outputPipe">
<ComposerParameter name="destination"/>

</FilterParameter>
<FilterParameter name="pipeName1">

<Value>File</Value>
</FilterParameter>
<FilterParameter name="pipeName2">

Content Pipelines 25

<Value>Epic</Value>
</FilterParameter>
<Input filterRef="copyright_appender"/>

</Filter>
<Filter id="file_output" filterDefRef="fileSerializer">

<FilterParameter name="outputFile">
<ComposerParameter name="filename"/>

</FilterParameter>
<FilterParameter name="html.entSubFname">

<ComposerParameter name="html.entSubFname"/>
</FilterParameter>
<Input filterRef="xsl_transformer"

pipeName="outputProps"/>
<Input filterRef="output_selector" pipeName="pipe1"/>

</Filter>
<Filter id="epic_output" filterDefRef="epicSerializer">

<FilterParameter name="docId">
<ComposerParameter name="output_docid"/>

</FilterParameter>
<Input filterRef="output_selector" pipeName="pipe2"/>

</Filter>
</Pipeline>

</Composer>

The pipeline has two start filters, the epicgenerator, which reads the document from
Arbortext Editor or the Arbortext Publishing Engine, and the Boilerplate, which sends
the copyright statement as SAX events.
<Pipeline startFilters="epic_generator copyright_statement">

A Boilerplate is a source filter that can contain CDATA or namespace elements. The
Content element specifies the SAX events to be generated by the Boilerplate.

If you include namespace elements in the Boilerplate filter, you must specify a
namespace to conform to the composer DTD. In the following example, an HTML h6 tag
is used as markup, so the element must specify the HTML namespace.

Note
The namespace is subsequently stripped using the namespace_fixer filter.

<Boilerplate id="copyright_statement">
<Content>

<html:h6 xmlns:html="http://www.w3.org/TR/REC-html40">
Copyright2002.Arbortext Inc.

</html:h6>
</Content>

</Boilerplate>

Note
You could also store this Boilerplate in a file and include it as a file entity. This would
localize the copyright message, allowing for translations.

26 Content Pipeline Guide

Two SAX event streams are merged in the copyright_appender filter using two
Input elements. The filter intercepts the end element events for body and html, and
appends the copyright statement.
<Filter id="copyright_appender" filterDefRef="copyrightAppender">

<Input filterRef="xsl_transformer"/>
<Input filterRef="copyright_ns_fixer"/>

</Filter>

A switch filter controls the output destination. The filter directs its input to the pipe
specified by the outputPipe parameter. There are two pipes in this example, a file and
Arbortext Editor.

<Filter id="output_selector" filterDefRef="switch">
<FilterParameter name="outputPipe">

<ComposerParameter name="destination"/>
</FilterParameter>
<FilterParameter name="pipeName1">

<Value>File</Value>
</FilterParameter>
<FilterParameter name="pipeName2">

<Value>Epic</Value>
</FilterParameter>
<Input filterRef="copyright_appender"/>

</Filter>

Common CCF Elements
The following table lists the three common elements in a CCF file.

Element Description
Label Identifies the components of a composer in a user

interface.
Documentation Documents the components in a pipeline.

Note
All elements in the content must have a
namespace.

Value Contains the actual or default value of a filter
parameter or composer parameter. If used to
define a parameter's enumeration values, the
default attribute indicates the value to be treated
as the default.

Distributed CCF Files
Arbortext Editor and Arbortext Publishing Engine distribute a set of CCF files for
performing web, PDF, and HTML publishing using user-provided stylesheets. These CCF
files use entities to modularize filter definitions so they can be reused.

Content Pipelines 27

For example, most CCF files use EpicGenerator as the start filter. This filter takes an
Arbortext Editor document and generates SAX events that become inputs in the pipeline.
The EpicGenerator FilterDef element is an entity, epicGenerator.ent, and is
included in the CCF files that require it.

The entity definitions are stored in the stock.ent file, which is located at
Arbortext-path\composer. The entity files are found using normal catalog
resolution.

The following example illustrates how the epicGenerator.ent and
fileSerializer.ent entities are defined in the stock.ent entity:
<ENTITY epicGenerator PUBLIC

"-//Arbortext//ENTITIES Epic Generator//EN" "epicGenerator.ent">
<ENTITY fileSerializer PUBLIC

mposer"-//Arbortext//ENTITIES File Serializer//EN" "fileSerializer.ent">

Publishing Types and Distributed CCF Files
The following table lists the Arbortext Editor publishing types and their corresponding
CCF files.

Publishing types and CCF files

Publishing Type CCF file
View profiled document profile.ccf

Print Preview xslfo.ccf

Web web.ccf

HTML Help htmlhelp.ccf

HTML File
Wireless
For PDA

htmlfile.ccf

PDF File pdf.ccf

Using XSL xsl.ccf

CCF Files and Profiling
Arbortext Editor publishing only handles three profiling attributes by default. If you want
to use more than three profiling attributes, you can modify the corresponding CCF files.

Note
You must configure profiling attributes in the .dcf file.

28 Content Pipeline Guide

To Add a Profile Filter to a CCF File:
1. Determine the publishing types to which you want to add profiling attributes, and

add a profile filter and its parameters to the associated CCF files.

For example, if you want to add a fourth filter to the pipeline in the profile.
ccf, include the following code after the profiler3 filter definition.

<Filter id="profiler4" filterDefRef="profiler">
<FilterParameter name="targetAttribute">

<ComposerParameter name="prof4.targetAttribute"/>
</FilterParameter>
<FilterParameter name="targetValue">

<ComposerParameter name="prof4.targetValue"/>
</FilterParameter>
<FilterParameter name="alias">

<ComposerParameter name="prof4.alias"/>
</FilterParameter>
<FilterParameter name="client">

<ComposerParameter name="prof4.client"/>
</FilterParameter>
<FilterParameter name="server">

<ComposerParameter name="prof4.server"/>
</FilterParameter>
<FilterParameter name="separator">

<ComposerParameter name="prof4.separator"/>
</FilterParameter>
<Input filterRef="profiler3"/>

</Filter>

<Filter id="epic_serializer" filterDefRef="epicSerializer">
...

<Input filterRef="profiler4"/>
</Filter>

</Pipeline>

The profiler4 filter is now the input for the last filter in the pipeline (epic_
serializer).

2. Add the filter parameters to the Interface section of the CCF file to which you
want to add the profiling attributes. All CCF files include similar profile filter
settings.

For example, if you want to use the fourth profiling attribute with the Edit ▶▶View
Profiled Document menu option, you would add the following code to the
profile.ccf file after the &profilerParameters; entity.
<Interface>
...

<Parameter name="prof4.targetAttribute"
idref="profiler.targetAttribute"/>

<Parameter name="prof4.targetValue"
idref="profiler.targetValue"/>

<Parameter name="prof4.alias"
idref="profiler.alias"/>

<Parameter name="prof4.client"
idref="profiler.client"/>

<Parameter name="prof4.server"
idref="profiler.server"/>

<Parameter name="prof4.separator"
idref="profiler.separator"/>

Content Pipelines 29

</Interface>

If you want to pass an XML document and a profile through a pipeline and return the
profiled version of the same document, you can create a composer for XSL with the
desired profile as the input profile and use identity.xsl as the stylesheet. The
stylesheet is located in lib\xsl\debug.

The compose_using_xsl batch function and other ACL publishing functions are
described in Interactive and Batch Publishing Functions on page 72 .

30 Content Pipeline Guide

3
Using AOM with Pipelines and

Filters

Overview.. 32
Running a Composer using AOM.. 32
AOM Publishing using Java .. 32

31

Overview
The AOM provides object-oriented programming access to Arbortext Editor and
Arbortext Publishing Engine. The AOM supports the W3C DOM (Document Object
Model) interfaces with extensions, and provides many additional interfaces for Arbortext-
specific features that are not part of the DOM.

The Arbortext extensions to the DOM use a naming convention where A (for Arbortext)
is prefixed to the DOM interface name; for example, the Arbortext extension for the
DOM Node interface is ANode.

The AOM supports bindings to Java, COM (Component Object Model), and C++. The
AOM also provides scripting access to its interfaces using JavaScript, JScript, VBScript,
and ACL (Arbortext Command Language).

Running a Composer using AOM
You can use the AOM to run a content pipeline. This allows you to write composer calls
in any AOM-supported language.

The Application.createComposer method creates a composer object. You need to pass
this method the path for the CCF file.

In the following example, the CCF file (Arbortext-path\composer\htmlfile.
ccf) creates a composer used by File ▶▶Publish ▶▶HTML File for publishing an HTML
file.
Composer comp = Application.createComposer(APT_PATH +

"/composer/htmlfile.ccf");

AOM Publishing using Java
The following example shows how to create a pipeline using Java. HTMLFilecomposer
has two public methods that take XML input (as an in-memory Arbortext Editor
document or a file) and transforms it to an HTML file using the specified XSL stylesheet.
package com.arbortext.epic.compose.examples;
/*
* HTMLFileComposer is an example of calling the content
* pipeline using the AOM composer. In this example, an XML
* document is published to an HTML file. The source document
* can exist in one of two places, in Arbortext or a file.
* The composer uses the htmlfile pipeline defined in
* htmlfile.ccf in the composer directory of the Arbortext
* installation tree.
*/

import com.arbortext.epic.*;
import org.w3c.dom.*;
import java.io.File;

32 Content Pipeline Guide

public class HTMLFileComposer {

/**
* Used internally to access the composer configuration file.
*/

private static final String HTMLFILE_CCF =
File.separator + "composer" + File.separator +

"htmlfile.ccf";

/**
* Used internally to access the entity substitution file.
*/

private static final String HTMLENTSUBFILE =
File.separator + "composer" + File.separator +

"htmlEntSub.xml";

/**
* Produces HTML from an in-memory XML file and an
* XSL stylesheet.
*@param docId is the ID of document to process.
*@param stylesheet is a fully-pathed XSL stylesheet.
*@param outputFile is a fully-pathed HTML output filename.
*/

public static void composeToHtmlFromDoc
(int docId, String stylesheet,String outputFile) {

ComposerLog log = new ComposerLog();
try {

String installPath = Acl.eval("main::aptpath");

//Create the Composer object for the HTML publishing process.
Composer composer = Application.createComposer(installPath

+ HTMLFILE_CCF);
PropertyMap params = Application.createPropertyMap();

//Set up the parameters.
params.putString("stylesheet", stylesheet);
params.putString("document", Integer.toString(docId));

//The entity substitution file for HTML
params.putString("html.entSubFname", installPath

+ HTMLENTSUBFILE);
params.putString("outputFile", outputFile);

//The following code creates the directory in which
//graphics would be placed and the associated href in
//the HTML document.
params.putString("graphicsHref",

(new File(outputFile)).getName() + ".graphics/");
params.putString("graphicsPath", outputFile + ".graphics/");

//Let the composer know we are using an XSL stylesheet.
params.putString("stylesheetType", "xsl");

//Start the composer log with level at info.
log.startJob("HTMLFileComposer", ComposerLog.SEVERITY_INFO);

//runPipeline returns a boolean indicating success or failure.
if (composer.runPipeline(params)) {

log.logMessage("Success", ComposerLog.SEVERITY_INFO);
}
else {

//Error information will have been placed into the

Using AOM with Pipelines and Filters 33

//Event Log.
log.logMessage("Failure", ComposerLog.SEVERITY_INFO);

}
}
catch (AclException ex) {

//Unexpected.
System.err.println("ACLException in

composeToHtmlFromDoc: " + ex);
ex.printStackTrace(System.err);

}
catch (AOMException aomex) {

//Unexpected.
System.err.println("AOMException in

composeToHtmlFromDoc: " + aomex);
aomex.printStackTrace(System.err);

}
finally {

log.endJob();
}

}

/**
* Produces HTML from an on-disk XML file and an XSL stylesheet.
* @param inputFile is a fully-pathed XML filename.
* @param stylesheet is a fully-pathed XSL stylesheet.
* @param outputFile is a fully-pathed HTML output filename.

*/
public static void composeToHtmlFromFile

(String inputFile, String stylesheet,
String outputFile) {

ADocument doc = null;
try {

doc = (ADocument) Application.openDocument
(inputFile, Application.OPEN_RDONLY |
Application.OPEN_NOSTYLE |
Application.OPEN_NOCC |
Application.OPEN_NOMSGS |
Application.OPEN_NODTPROMPT);

composeToHtmlFromDoc(doc.getAclId(), stylesheet,
outputFile);

}
catch (AOMException aomex) {

System.err.println
("AOMException in composeToHtmlFromFile: " +
aomex);

aomex.printStackTrace(System.err);
}
finally {

if (doc != null) {
doc.close();
}

}
}

}

The first step in this example is creating the composer object from the CCF file
(Arbortext-path\composer\htmlfile.ccf):
Composer composer = Application.createComposer(installPath

+ HTMLFILE_CCF);

34 Content Pipeline Guide

The composer expects to receive parameters as a PropertyMap AOM object. Refer to the
createPropertyMap method in the Programmer's Referencefor more information.
PropertyMap params = Application.createPropertyMap();
params.putString("stylesheet", stylesheet);
...

The Event Log must be started before a publishing process is run. A ComposerLog
object wraps the ACL calls. The source can be found in the examples.jar file
distributed with the Content Pipeline Guide. (included in the examples.zip file).
log.startJob("HTMLFileComposer", ComposerLog.SEVERITY_INFO);

The pipeline is then run using the parameters provided by the PropertyMap AOM object.
If the pipeline runs successfully, a true value is returned. If there are errors, a false value
is returned.
if (composer.runPipeline(params)) ...

The Event Log must have an end signal to conclude logging. Place the end signal in the
finally clause to ensure that this signal is called even if an exception occurs.
log.endJob();

Using AOM with Pipelines and Filters 35

4
Using ACL with Pipelines and

Filters

Overview.. 38
ACL Pipeline Example... 38
Running Standard Publishing Processes with ACL .. 40
Using Core Functions .. 41

37

Overview
ACL functions are often used to post-process composer output. You may also want to use
ACL to call third party tools, such as HTML Help Workshop.

Arbortext Editor and Arbortext Publishing Engine provide a set of ACL functions that
query CCF files, and configure and start pipeline processes. Refer to C ACL Reference on
page 69 for detailed information on the ACL publishing functions.

ACL Pipeline Example
You can use ACL functions to start publishing when the user interface is unavailable
(such as in the Arbortext Publishing Engine) or when running a custom pipeline.

The following example illustrates two ACL functions for HTML publishing, one from an
in-memory XML document and one from an on-disk XML file. The functions use the
pipeline defined in Arbortext-path\composer\htmlfile.ccf.
#HTMLFileComposer.acl

require _composerlog;

#Produces HTML from an in-memory XML file and an
#XSL stylesheet.

#docId is the ID of the document to process.
#stylesheet is a fully-pathed XSL stylesheet.
#outputFile is a fully-pathed HTML output filename.

#Returns 1 if publishing was successful, 0 otherwise.
function composeToHtmlFromDoc(docId, stylesheet,

outputFile) {
local installPath = main::aptpath;
local ccfParameters[];
local composeStatus;

#Set the catalog path.
compose::composer_set_catalog_path(option("catalogpath"));
#Get the composer for htmlfile.ccf (present in
#the composerpath).
local composer = get_composer(ccfParameters, "htmlfile", docId);

#Set up the parameters.
ccfParameters["stylesheet"] = stylesheet; #stylesheet
#Use only XSL stylesheets in this example.
ccfParameters["stylesheetType"] = "xsl";
ccfParameters["outputFile"] = outputFile;

#the entity substitution file for HTML
ccfParameters["html.entSubFname"] = installPath .

"\\composer\\htmlEntSub.xml";

#The following code creates the directory in which graphics
#are placed and the associated href in the HTML document.
ccfParameters["graphicsHref"] = basename(outputFile) .

".graphics/";
ccfParameters["graphicsPath"] = outputFile .

38 Content Pipeline Guide

".graphics\\";

#Start logging.
_composerlog::start_job("HTMLFileComposer");
composeStatus = run_composer(composer, ccfParameters);

if (composeStatus) {
compose::info("Success.");

}
else {

compose::info("Failure.");
}

_composerlog::end_job();
return composeStatus;

}

#Produces HTML from an on-disk XML file and an
#XSL stylesheet.
#inputFile is a fully-pathed XML filename.
#stylesheet is a fully-pathed XSL stylesheet.
#outputFile is a fully-pathed HTML output filename.

#Returns 1 if publishing was successful, 0 otherwise.
function composeToHtmlFromFile(inputFile, stylesheet,

outputFile) {
#Load the file into an Arbortext Editor document. Then,
#call composeToHtmlFromDoc.
local doc = doc_open(inputFile, 0x01 | 0x10 | 0x20 |

0x200 | 0x400);
local composerStatus;
if (!doc_valid(doc)) {

message "Unable to open file $inputFile";
return 0;

}

composerStatus = composeToHtmlFromDoc(doc, stylesheet,
outputFile);

doc_close(doc);
return composerStatus;

}

Set up the catalog path, so all entity files not in the standard install location can be
resolved.
compose::composer_set_catalog_path(option("catalogpath"));

For example, a new catalog file is created when you move the xsltransformer.ent
entity file to the custom\composer directory. You must call compose_set_
catalog_path so the composer will see this catalog file.

The location of the CCF file is not specified. Instead, the get_composer method calls
with the name of the composer:
local composer = get_composer(ccfParameters, "htmlfile", docId);

The get_composer method looks for the htmlfile.ccf file in the path specified by
the set composerpath command. The default composerpath includes the
Arbortext-path\composer directory and the Arbortext-path\custom
\composer directory . (Refer to on page for more information.)

Using ACL with Pipelines and Filters 39

After the composer object is obtained, the pipeline can be run using the run_composer
function. This function takes the composer object and an array of parameters. This array
can be the array from the get_composer function, with the parameters filled in.
composeStatus = run_composer(composer, ccfParameters);

To ensure proper error logging, you must inform the Event Log of the start and end of the
publishing process using the _composerlog::start_job and _composerlog::end_job
methods.

#Start logging.
_composerlog::start_job("HTMLFileComposer");
composeStatus = run_composer(composer, ccfParameters);

if (composeStatus) {
compose::info("Success.");

}
else {

compose::info("Failure.");
}

_composerlog::end_job();
return composeStatus;

}

The following example illustrates how to call the ACL functions:
#publish to HTML from Arbortext Editor document
composeToHtmlFromDoc(current_doc(), \
"c:\\arbortext\\editor\\doctypes\\axdocbook\\axdocbook-html.xsl", \
"c:\\document.htm")

#publish to HTML from file
composeToHtmlFromFile("c:\\temp\\file.xml", \
"c:\\arbortext\\editor\\doctypes\\axdocbook\\axdocbook-html.xsl",\
"c:\\file.htm");

Running Standard Publishing Processes
with ACL
The Arbortext Editor Publish menu relies on ACL functions to perform publishing
processes. These processes can be run interactively or in batch mode. The interactive
functions open dialog boxes in which you can enter publishing information and then run
the publishing process.

These interactive functions are in the form compose_type, where type is one of the
following publishing types:

htmlfile wap

htmlhelp web

pda xsl

pdf xslfo

40 Content Pipeline Guide

The following example illustrates how to use ACL to run the web publishing process on
the current document:
compose_web(current_doc());

The batch mode equivalents to the interactive functions are in the form compose_for_
type, where type is one of the publishing types listed above. These commands accept the
document ID and an array of parameters.
local parameters[];
#gather parameters
...
compose_for_pdf(current_doc(), parameters);

Note
The Publish ▶▶Using XSL process uses the compose_using_xsl batch function.

Refer to Interactive and Batch Publishing Functions on page 72 for more information on
ACL publishing functions.

Using Core Functions
Arbortext Editor and the Arbortext Publishing Engine provide a set of core publishing
functions. We recommend that you only use these functions for debugging purposes as
they may change in future releases.

Refer to Core Functions on page 81 for more information on these functions.

Using ACL with Pipelines and Filters 41

5
Error Handling

Overview.. 44
Using ErrorHandler Interface Methods.. 44
Using log4j Methods .. 44
Customizing Error Handling .. 46

43

Overview
The content pipeline uses Apache log4j Ver 1.13 (http://jakarta.apache.org/
log4j/docs/) as its error logging mechanism. The Log4jErrorHandler is the default
message reporting class. Messages generated by individual filters can be reported by
calling log4j methods or using calls to the error handler embedded in every filter.

The logj4 logging mechanism specifies the amount of information logged (verbosity),
destination (file, console, or screen), and format (for example, plain text or xml). The only
parameters to specify in the filter for error logging are message content and severity
levels.

You can control attributes of the Event Log by calling the composer_log ACL function.
Refer to the Arbortext Editor online help for detailed information on the composer_log
function.

Using ErrorHandler Interface Methods
A default error handler is embedded when a filter is constructed. You can retrieve the
error handler using a getErrorHandlerResource call in the FilterControl interface.

In the grep filter example, the getErrorHandlerResource call returns the embedded
error handler.

SAXParseException ex =
new SAXParseException

(currString.substring(matchStartIndex,
matchEndIndex),

getDocumentLocator());
getErrorHandlerResource().warning(ex);
//Reset the current string to avoid duplicate
//matches in subsequent character method calls.
currString.setLength(0);

}
} // characters(...)

The warning method takes org.xml.sax.SAXParseException as its argument.
SAXParseException contains location information for the current document. The
location information lets users link from the event log to the string in the document.

Refer to ErrorHandler Interface on page 61 for more information on the ErrorHandler
interface, and grep Filter Example on page 16 for the entire grep filter example.

Using log4j Methods
If you do not need to know the error location, you can call log4j class methods to log
errors.

The following example illustrates a filter that uses log4j to report messages. This filter
counts the number of elements in the document instance and reports the number to the

44 Content Pipeline Guide

log. The log4j Category class is imported and an instance of Category logger is created
using the getInstance static method.
package com.arbortext.epic.saxfilter.custom;

import java.util.Map;

import org.xml.sax.SAXException;
import org.xml.sax.Attributes;

// log4j
import org.apache.log4j.Category;

import com.arbortext.epic.saxfilter.DefaultSAXFilter;

/**
* CountTags.java
*
* <p> This filter counts how many elements are in the
* current document.
*
* <pre>
* <FilterDef id="tagCounter"
* adapterClass=

"com.arbortext.epic.saxfilter.DefaultFilterAdapter"
* filterClass=

"com.arbortext.epic.saxfilter.custom.CountTags"
* type="transformer">
* <Label>Count Tags Filter</Label>
* <Documentation>
* This filter counts how many elements are there in
* the current document.
* </Documentation>
* </FilterDef>
* </pre>
*
*
* Created: Wed Sep 11 09:53:38 2002
*
*/

public class CountTags extends DefaultSAXFilter {
protected int count = 0;
private Category logger = Category.getInstance

(CountTags.class);

public void initFilter (Map params) throws
Exception {

super.initFilter(params);
//Reset counter for each run.
count = 0;

}

public void startElement (String NameSpaceURI,
String lName, String qName,

Attributes atts) throws SAXException {
count++; // increment the counter
super.startElement(NameSpaceURI, lName, qName, atts);

}
public void endDocument () throws SAXException {

//Report the total number of elements using log4j

Error Handling 45

//"info" method.
logger.info("There are total of " + count +

" elements in this document.");
super.endDocument();

}

}//CountTags

The debug, info, warn, error and fatal methods are the most frequently used logging
methods in the Category class.

Note
Refer to the log4j web site at http://jakarta.apache.org/log4j/docs/ for
more information on the Category class.

Customizing Error Handling
If the default logging mechanism does not satisfy your needs, you can customize an error
handler. To do this, you need to:

• Create a filter that implements the ErrorHandler interface methods.

• Specify the new error handler in the appropriate CCF file.

Creating an Error Handling Filter
The following example shows a simple implementation of an error handler. This error
handler reports error messages to the Java console. The SimpleErrorHandler extends the
SAXFilterImpl and overrides the methods inherited from the ErrorHandler interface.
package com.arbortext.epic.saxfilter;

import java.util.Map;
import java.util.HashMap;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

// log4j
import org.apache.log4j.Category;

/**
*
* <pre>
* <FilterDef id="simpleErrorHandler"
* adapterClass=

"com.arbortext.epic.saxfilter.DefaultFilterAdapter"
* filterClass=

"com.arbortext.epic.saxfilter.SimpleErrorHandler"

46 Content Pipeline Guide

* type="sink">
* <Label>Simple Error Handler</Label>
* <Documentation> This filter reports error message

to the console.
* </Documentation>
* </FilterDef>
* </pre>
*/

public class SimpleErrorHandler extends SAXFilterImpl {

/**
* Creates a new SimpleErrorHandler instance.
*/

public SimpleErrorHandler () {
}

public void warning (SAXParseException e) throws
SAXException {

System.out.println("[WARNING]: " + e.getMessage());
}

public void error (SAXParseException e) throws
SAXException {

System.out.println("[ERROR]: " + e.getMessage());
}

public void fatalError (SAXParseException e) throws
SAXException {

System.out.println("[FATAL]: " + e.getMessage());
throw e;

}
}

Adding an Error Handler to a CCF File
You must add the error handler filter definition to the CCF's Resource element, and
specify the error handler as an attribute of the Pipeline element.

The following example illustrates how to replace the default error handler with your
custom error handler. The Resource element defines the simpleErrorHandler filter.
<Resource>
....
<FilterDef id="simpleErrorHandler"

adapterClass=
"com.arbortext.epic.saxfilter.DefaultFilterAdapter"

filterClass=
"com.arbortext.epic.saxfilter.SimpleErrorHandler"

type="sink">
<Label>Simple Error Handler</Label>
<Documentation> This filter reports error message to

the console.
</Documentation>

</FilterDef>
....
</Resource>

Error Handling 47

The Pipeline element specifies the errorHandler attribute, which refers to the simple_
error_handler. The simple_error_handler is then associated with the
simpleErrorHandler defined by the Resource element.
<Pipeline startFilters="epic_generator"

errorHandler="simple_error_handler">
...

<Filter id="simple_error_handler"
filterDefRef="simpleErrorHandler"/>

...
</Pipeline>

This error handler serves as the embedded error handler and reports messages for
publishing processes defined by the CCF file. Messages reported by calling log4j methods
directly are not affected by the new error handler.

48 Content Pipeline Guide

6
Customizing Publishing

Adding Web Publishing to a Document Type.. 50
Switching from Saxon to the Xalan Processing Engine .. 51
Configuring Character Entity Substitution Files for HTML Publishing 52
Controlling Graphics Conversion for HTML-Based Publishing............................. 55
Configuring Publishing Processes to Output Change Tracking Markup............... 55
Internationalization Considerations... 56

49

Adding Web Publishing to a Document
Type
Adding an existing composer to a document type is easy, provided that a suitable
stylesheet exists for the document type.

To Add Web Publishing to a Document Type:
1. Add a web stylesheet ID processing instruction to the stylesheet you're going to use

for web publishing. For example,
<?APT StylesheetID Title="DocBook Web"

PublishingTypes="web,xsl"?>

This allows the stylesheet to be used for web publishing.

Note
Refer to the Stylesheet identification processing instruction topic in the Arbortext
Editor online help for more information.

2. Edit the DCF file for the document type as follows:

• Set the allowComposeStylesheetList attribute in the Options element to
yes.
<Options allowApplicationToolbar="no"

allowComposeStylesheetList="yes"
allowFosiMod="yes" allowTouchup="yes"
protected="no"/>

Note
Refer to the Document type configuration files topic in the Arbortext Editor
online help for more information.

• Specify web as the publishing type for the Compose element in the DCF
file.
<Composition><Compose type="web"></Compose></Composition>

This adds the Publish ▶▶For Web menu option to the File menu.

• Add a frameset definition to the DCF file:
<Framesets>
<Frameset description="default" location="default"/>
</Framesets>

50 Content Pipeline Guide

Switching from Saxon to the Xalan
Processing Engine
Arbortext Editor and Arbortext Publishing Engine now use the Saxon XSLT processing
engine to publish XML and SGML documents using XSL stylesheets. Previously,
Arbortext Editor and the Arbortext Publishing Engine used the Xalan XSLT processing
engine. If you use document types distributed with Arbortext Editor or the Arbortext
Publishing Engine, there should be no visible changes to your publishing output as the
result of this change.

If you use stylesheets that incorporate Xalan extensions, you can switch your publishing
engine from Saxon to Xalan.

Note
The information on switching to the Xalan processing engine is provided as a
convenience. If you experience problems using the Xalan processing engine, we suggest
you switch back to using the Saxon processing engine.

To Switch from Saxon to Xalan for XSL Publishing (Other than HTML
Help):
1. Locate the xslTransformer.ent file in the Arbortext-path\composer

directory. Copy this file into the Arbortext-path\custom\composer
directory.

2. Edit the copied file with a text editor and locate the <Parameter name=
"transformerClass" section. You will see a nested <Value> element similar to the
following example:
<Value>com.icl.saxon.TransformerFactoryImpl</Value>

3. Remove the contents of the <Value> element, and specify the value of the Xalan
processor:
<Value>org.apache.xalan.processor.TransformerFactoryImpl</Value>

4. In the Arbortext-path\custom\composer directory, create a text file
called catalog (if one is not already present).

5. Open the Arbortext-path\composer\catalog file and copy the following
line into the new catalog file (ignore the line break):
PUBLIC "-//Arbortext//ENTITIES XSL Transformer//EN"

"xslTransformer.ent"

6. Restart Arbortext Editor for the change to take effect.

Customizing Publishing 51

To Switch from Saxon to Xalan for HTML Help Publishing:
1. Locate the htmlHelpAdapter.ent file in the Arbortext-path

\composer directory. Copy this file into the Arbortext-path\custom
\composer directory.

2. Edit the copied file with a text editor and locate the <Parameter name=
"transformerClass" section. You will see a nested <Value> element similar to the
following example:
<Value>com.icl.saxon.TransformerFactoryImpl</Value>

3. Remove the contents of the <Value> element, and specify the value of the Xalan
processor:
<Value>org.apache.xalan.processor.TransformerFactoryImpl</Value>

4. In the Arbortext-path\custom\composer directory, create a text file
called catalog (if one is not already present).

5. Open the Arbortext-path\composer\catalog file and copy the following
line into the new catalog file:
PUBLIC "-//Arbortext//ENTITIES HtmlHelp Adapter//EN"

"htmlHelpAdapter.ent"

6. Restart Arbortext Editor for the change to take effect.

Configuring Character Entity Substitution
Files for HTML Publishing
Entity substitution solves various issues with web browsers and HTML. The HTML 4.0
standard provides definitions for some characters, such as the em dash (Unicode character
8212), and the publishing process will use this definition. However, some browsers may
not fully support the HTML 4.0 standard, resulting in dropped or malformed characters.
You can usually solve this by substituting a numeric character reference for the problem
character.

The HTML Help navigation pane is a proprietary format that is not based on HTML. For
example, if the em dash character (Unicode character 8212) was included in a title that
displayed in the HTML Help navigation pane, it would not display properly because the
navigation pane cannot display Unicode characters. In this example, you could substitute
a hyphen character to achieve acceptable results.

Entity Substitution Files
The following entity substitution files are located in the Arbortext-path
\composer directory. Each file controls a different aspect of entity substitution, and
uses the same XML format for specifying substitutions.

52 Content Pipeline Guide

Note
Some of these files are purposefully void of mapping entries. These files exist as starting
points for customization.

• htmlEntSub.xml — Controls entity substitution for HTML (not XHTML)
outputs.

Note
This file does not control entity substitution for the HTML Help content pane.
Currently, there is no support for entity substitution for the HTML Help content
pane.

• htmlHelpNavEntSub.xml — Controls entity substitution for the HTML Help
navigation pane.

• xmlEntSub.xml — Controls entity substitution for XML outputs (includes
XHTML).

• textEntSub.xml — Controls entity substitution for XSL stylesheets that
include a text output method.

For entity substitution when publishing using File ▶▶Publish ▶▶For Web, use the XSLT 2.0
character map feature describe at www.w3.org/TR/xslt20/#character-maps.

Entity Substitution File Format
This section defines the format for the entity substitution files. These files are free-form
XML with the following simple element structure.

<character-mapping> — Top-level element; required. No attributes.

<unicode/> — The only allowed child element. It has the following attributes:

• char — Required. Represents the Unicode character to be substituted.

• entity — Optional. Represents the entity to substitute. The entity may be a regular
named entity like “mdash” or a numeric character reference like “#8212”. The
value of this attribute would be the markup with the leading ampersand and trailing
semicolon removed.

• string — Optional. Represents a string value to substitute, used for HTML Help
Navigation and text because these outputs are not represented by markup.
However, you can use this attribute with the other output formats. If both entity
and string are present, entity is used.

Customizing Publishing 53

 http://www.w3.org/TR/xslt20/#character-maps

Substitutions Involving Entities
Following are examples of entity substitutions:
<character-mapping>
<unicode char="34" entity="quot"/>
<unicode char="38" entity="amp"/>
<unicode char="39" entity="#8217"/>
<unicode char="60" entity="lt"/>
<unicode char="62" entity="gt"/>
<unicode char="160" entity="nbsp"/>
<unicode char="161" entity="#161"/>
<unicode char="8212" entity="#8212"/>
</character-mapping>

Substitutions Involving Strings
Following are examples of string substitutions:
<character-mapping>
<unicode char="8658" string="=>"/>
<unicode char="8656" string="<="/>
<unicode char="8594" string="->"/>
<unicode char="8592" string="<-"/>
<unicode char="402" string="f"/>
<unicode char="8230" string="..."/>
<unicode char="352" string="S"/>
<unicode char="8249" string="<"/>
<unicode char="338" string="OE"/>
<unicode char="8216" string="'"/>
<unicode char="8217" string="'"/>
<unicode char="8220" string="&quot;"/>
<unicode char="8221" string="&quot;"/>
<unicode char="8226" string="."/>
<unicode char="8211" string="-"/>
<unicode char="8212" string="--"/>
<unicode char="732" string="~"/>
<unicode char="8482" string="(TM)"/>
<unicode char="353" string="s"/>
<unicode char="8250" string=">"/>
<unicode char="339" string="oe"/>
<unicode char="376" string="Y"/>
<unicode char="8194" string=" "/>
<unicode char="8195" string=" "/>
</character-mapping>

The string attribute value is read by an XML parser, so entity references beginning with
an ampersand (&) are resolved to form a character. For example “=>” is parsed and
substituted as “=>”, and “&quot;” is parsed and substituted as “"”.

Customizing Entity Substitution Files
Following is the procedure for customizing entity substitution files.

54 Content Pipeline Guide

To Customize Entity Substitution Files:
1. Determine which file in the Arbortext-path\composer directory you need

to modify.

2. Copy the appropriate file to Arbortext-path\custom\composer.

3. Edit the files as you would any XML file.

4. Save and close the file.

5. Exit and restart Arbortext Editor.

Controlling Graphics Conversion for
HTML-Based Publishing
When publishing documents to HTML (Publish ▶▶For Web and Publish ▶▶For HTML
File), Arbortext Editor and Arbortext Publishing Engine copy graphics with GIF, JPEG,
and PNG file formats. Other graphic file formats are converted to GIF during the
publishing process.

If you do not want Arbortext Editor and Arbortext Publishing Engine to convert your
graphics, you can use the APTCOPYGRAPHICEXTS environment variable to override
the list of graphic file formats that Arbortext Editor and Arbortext Publishing Engine
automatically convert.

The format for this is a comma-delimited list of extensions (case-insensitive) that
Arbortext Editor or the Arbortext Publishing Engine will copy instead of converting. In
the following DOS example,

set APTCOPYGRAPHICEXTS=gif,jpg,jpeg,png,tif

the GIF, JPG, PNG, and TIF file formats will be copied instead of converted.

Configuring Publishing Processes to
Output Change Tracking Markup
You can configure Arbortext Editor publishing processes to output change tracking
markup. This allows you to specify formatting in an XSL stylesheet to output additions
and deletions in a document, similar to the change tracking markup displayed in the Edit
pane.

changetracking Variable
Change tracking markup is output based on the setting of the changetracking parameter in
the Arbortext Generator pipeline filter (Arbortext-path/composer/
epicGenerator.ent). The changetracking parameter accepts the following values:

Customizing Publishing 55

• nothighlighted — Outputs the view of the document specified by the set
viewchangetracking command. However, if set viewchangetracking
is set to changeshighlighted, then nothighlighted outputs the changes
applied view of the document. This is the default setting.

• original — Outputs the original view of the document.

• changesapplied — Outputs the changes applied view of the document.

• changeshighlighted — Outputs the changes highlighted view of the document.

• active — Outputs the view of the document specified by the set
viewchangetracking option

Change Tracking and Publishing Example
The following example describes how to enable change tracking markup.

To Enable Change Tracking Markup for HTML Publishing:
1. Open Arbortext Editor, and choose File ▶▶New.

2. In the New Document dialog box, choose DocBook in the Category list and ATI
XML DocBook V4.0 in the Type list, select Sample, and then click OK.

3. Choose Tools ▶▶Change Tracking ▶▶Track Changes, and then delete the first
paragraph in the document. The para element will display as red, with red
strikethrough to indicate the paragraph has been deleted.

4. Enter the following command on the Arbortext Editor command line:
require compose compose.acl

5. Type the following command on the Arbortext Editor command line:
$compose::changetracking="changeshighlighted"

6. Choose File ▶▶Publish ▶▶HTML File and select the axdocbook-html.xsl
stylesheet.

The change tracking markup for the deleted paragraph displays in red in the
resulting HTML file.

In this example, you don't have to modify the Arbortext XML DocBook stylesheet to
view the change tracking markup because the stylesheet outputs the unrecognized markup
in red (the stylesheet doesn't output all unrecognized markup; in some instances, it
ignores unrecognized markup).

Internationalization Considerations
To support different encodings in web output, the SAXSerializer filter supports an
encoding parameter. Following is a list of valid encodings for this parameter:

56 Content Pipeline Guide

• ISO-8859-1

• ISO-8859-2

• ISO-8859-5

• ISO-8859-7

• ISO-8859-9

• Windows-1252

• UTF-8

Customizing Publishing 57

A
SAX2 Filter Interfaces

This appendix describes the SAX2 filter interfaces. A pipeline consists of a collection of
filters that are driven by the SAX2 API.

If you need to extend a filter or implement a new one, you must be familiar with the
following SAX2 interfaces:

• ContentHandler

• DTDHandler

• LexicalHandler

For more complete information, refer to the Javadoc for these interfaces at SAX: Simple
API for XML: Overview (http://www.saxproject.org/apidoc/overview-
summary.html).

ContentHandler
ContentHandler is the interface that most SAX2 filters implement. Filters that need to be
informed of basic parsing events implement the ContentHandler interface.

The pipeline ensures that the filter receives method calls defined by the ContentHandler
interface from the preceding filter in the pipeline. The preceding filter uses
ContentHandler to report basic document-related events, such as the start and end of
elements and character data.

The pipeline guarantees that the first event seen by a filter is startDocument and the last
event seen is endDocument unless an error terminates the pipeline process.

59

http://www.saxproject.org/apidoc/overview-summary.html
http://www.saxproject.org/apidoc/overview-summary.html

Since filters allow multiple inputs, the pipeline buffers the SAX events for all inputs
except the currently active one. When the active input pipe receives the endDocument
event, the pipeline releases buffered SAX events for the next pipe. If the next pipe
receives the endDocument event, then the pipeline moves on to the next pipe, until the
SAX events from all the inputs have been processed.

The pipeline ensures that a filter only sees one startDocument and one endDocument.
The pipeline sends the startDocument event when it receives the startDocument event
for the first input pipe. The pipeline sends the endDocument event after it receives the
endDocument event for the last input pipe. The pipeline suppresses all other
startDocument and endDocument events.
package org.xml.sax;
public interface ContentHandler
{

public void setDocumentLocator (Locator locator);
public void startDocument ()

throws SAXException;
public void endDocument()

throws SAXException;
public void startPrefixMapping (String prefix, String uri)

throws SAXException;
public void endPrefixMapping (String prefix)

throws SAXException;
public void startElement (String namespaceURI,

String localName, String qName,
Attributes atts)

throws SAXException;
public void endElement (String namespaceURI, String localName,

String qName)
throws SAXException;

public void characters (char ch[], int start, int length)
throws SAXException;

public void ignorableWhitespace (char ch[], int start,
int length)

throws SAXException;
public void processingInstruction (String target, String data)

throws SAXException;
public void skippedEntity (String name)

throws SAXException;
}

DTDHandler
The DTDHandler interface is notified of basic DTD-related events. If a SAX filter needs
information about notations and unparsed entities or just needs to pass them along, then a
filter implements the DTDHandler interface. The source filter may use the instance to
report notation and unparsed entity declarations to the application.
package org.xml.sax;
public interface DTDHandler {

public abstract void notationDecl
(String name, String publicId,
String systemId)

throws SAXException;
public abstract void unparsedEntityDecl

(String name, String publicId,

60 Content Pipeline Guide

String systemId, String notationName)
throws SAXException;

}

LexicalHandler Interface
The LexicalHandler is an optional extension handler for SAX2 that provides lexical
information about an XML document, such as comments and CDATA section boundaries.
XML readers are not required to recognize this handler, and it is not part of core-only
SAX2 distributions.

Events in the LexicalHandler interface apply to an entire document, not just to the
document element. All LexicalHandler events must appear between the content handler’s
startDocument and endDocument events.
package org.xml.sax.ext;
import org.xml.sax.SAXException;
public interface LexicalHandler
{

public abstract void startDTD
(String name, String publicId,
String systemId)

throws SAXException;
public abstract void endDTD ()

throws SAXException;
public abstract void startEntity (String name)

throws SAXException;
public abstract void endEntity (String name)

throws SAXException;
public abstract void startCDATA ()

throws SAXException;
public abstract void endCDATA ()

throws SAXException;
public abstract void comment

(char ch[], int start, int length)
throws SAXException;

}

ErrorHandler Interface
The ErrorHandler is a basic interface for SAX error handlers. If a pipeline needs to
implement customized error handling, some filters must implement this interface. The
Pipeline element’s errorhandler attribute must name the filter if it is to act as an
ErrorHandler resource for the pipeline.
package org.xml.sax;
public interface ErrorHandler {

public abstract void warning
(SAXParseException exception)

throws SAXException;
public abstract void error

(SAXParseException exception)
throws SAXException;

public abstract void fatalError
(SAXParseException exception)

Customizing Publishing 61

throws SAXException;
}

DeclHandler
The DeclHandler is an optional extension handler for SAX2 that provides information
about DTD declarations in an XML document. XML readers are not required to recognize
this handler, and it is not part of core-only SAX2 distributions.

Note
Data-related DTD declarations (unparsed entities and notations) are reported using the
DTDHandler interface.

If you are using the DeclHandler interface with the LexicalHandler interface, all events
will occur between the startDTD and endDTD events.
package org.xml.sax.ext;
import org.xml.sax.SAXException;
public interface DeclHandler
{

public abstract void elementDecl (String name, String model)
throws SAXException;

public abstract void attributeDecl
(String eName, String aName, String type,
String valueDefault, String value)

throws SAXException;
public abstract void internalEntityDecl

(String name, String value)
throws SAXException;

public abstract void externalEntityDecl
(String name, String publicId,
String systemId)

throws SAXException;
}

EntityResolver
The EntityResolver is a basic interface for resolving entities. If a SAX application needs
to implement customized handling for external entities, some filters must implement this
interface.

The Pipeline element’s entityresolver attribute must name this filter if it is to act as an
EntityResolver resource for the pipeline.

The EntityResolver interface is only called by parsers that need application-specific
directions for resolving entities. The value of the entity is returned to the parser by the
resolveEntity method as an org.xml.sax.InputSource object that wraps an java.io.
InputStream, java.io.Reader or system file.
package org.xml.sax;

62 Content Pipeline Guide

import java.io.IOException;
public interface EntityResolver {

public abstract InputSource resolveEntity
(String publicId, String systemId)

throws SAXException, IOException;
}

EntityResolver2
The EntityResolver2 is an extended interface for mapping external entity references to
input sources and for providing missing external subsets.

If a SAX application needs to implement customized handling for external entities, some
filters must implement the EntityResolver2 interface. The Pipeline element's
entityresolver2 attribute must name this filter if it is to act as an EntityResolver2
resource for the pipeline.
package org.xml.sax;
import java.io.IOException;
public interface EntityResolver2 {

public InputSource getExternalSubset
(java.lang.String name,
java.lang.String baseURI)

throws SAXException,
java.io.IOException;

public InputSource resolveEntity
(java.lang.String name,
java.lang.String publicId,
java.lang.String baseURI,
java.lang.String systemId)

throws SAXException,
java.io.IOException;

}

Customizing Publishing 63

B
AOMReference

This appendix describes the AOM interfaces and methods associated with pipelines and
filters. Refer to the Programmer's Reference for a complete AOM reference. You can
obtain the latest version of the guide from the PTC support site in the Reference
Documentation section.

Application Interface
createComposer Method
createComposer(String ccfPath)

The createComposer method returns a Composer object. The ccfpath argument must be
a string that is the path to the CCF file.

A content pipeline does not need to process an Arbortext Editor DOM document.

Composer Interface
The Composer interface implements a composer configuration. An object that
implements this interface is obtained by calling the createComposer method.

getDefaultParameters Method
getDefaultParameters

65

The getDefaultParameters method returns a PropertyMap of all composer parameters in
the pipeline definition. Each key is the name of a Parameter element, and its value is a
string. If a parameter has no default value, its key value is null.

Note
Refer to the Composer DTD (Arbortext-path\doctypes\composer
\composer.dtd) for more information about composer parameters.

runPipeline Method
runPipeline([parameters PropertyMap])

The runPipeline method runs a pipeline associated with a composer object. It returns the
status associated with the composer object from the running pipeline. If parameters is not
specified, the pipeline runs with the default parameters specified in the Pipeline element
in the CCF file.

getParameterLabel Method
getParameterLabel(String parameter)

The getParameterLabel method returns the label for the pipeline parameter specified by
parameter. If parameter is not found, this function returns a null value.

The label is text that can display in a user interface.

Note
Refer to the Composer DTD (Arbortext-path\doctypes\composer
\composer.dtd) for more information about composer parameters.

getParamDocumentation Method
getParamDocumentation(String parameter)

The getParamDocumentation method returns the documentation for the pipeline
parameter specified by parameter. If parameter is not found, the function returns a null
value.

The documentation describes the parameter.

66 Content Pipeline Guide

Note
Refer to the Composer DTD (Arbortext-path\doctypes\composer
\composer.dtd) for more information about composer parameters.

getParamType Method
getParamType(String parameter)

The getParamType method returns the type of the pipeline parameter specified by
parameter. If parameter is not found, this function returns a null value.

The type specifies filter type: sink, source, or transformer.

Note
Refer to the Composer DTD (Arbortext-path\doctypes\composer
\composer.dtd) for more information about composer parameters.

getParamEnumerationValue Method
getParamEnumerationalues(parameter)

The getParamEnumerationValue method returns all possible values for the enumeration
as a StringList if the value of parameter is “enumeration”. If parameter does not exist
or is not an enumeration, this function returns a null value.

isParamRequired Method
isParamRequired(parameter)

The isParamRequired method method determines if the given parameter is required.
This function returns a false value if parameter is missing.

Customizing Publishing 67

C
ACL Reference

This appendix describes the ACL functions associated with pipelines and filters.

ACL Publishing Functions
This section lists the ACL functions used with content pipelines.

append_composer_path
append_composer_path(dir[, prepend])

The append_composer_path function appends dir to the directories specified by the
set composerpath command. If the optional prepend argument is specified and non-
zero, dir is added to the beginning of the path list, removing any later occurrence of the
directory. If prepend is zero or omitted and if dir is already present in the path list, the
path list is returned.

For example, if you want to append your composer directory stored in the composer
subdirectory of the company directory, so your CCF files are searched last:
append_composer_path("/company/composer")

If you want to prepend your composer directory stored in the company subdirectory, so
your CCF files are searched first:
append_composer_path('/company/composer',1)

If there is an Arbortext-path\custom\composer subdirectory at startup, the
\custom\composer path is automatically prepended to the path for CCF files. Putting

69

your CCF files in the \custom\composer subdirectory makes them automatically
available, avoiding manual steps to add them to the path.

get_composer
get_composer(arr, type[, doc])

The get_composer function gets a composer handle that corresponds to the composer
type from the DCF file of the document to be published. It then populates an array with
the composer parameters.

The arr parameter specifies the array to populate. The type parameter specifies the type of
composer. The types are the type attribute values specified in the Compose element in
the DCF file for doc.

The doc parameter specifies the document for which the composer is being created. If doc
is 0 or not specified, the current document is used.

The associative array arr is populated with the values of the composer parameters.
Composer parameters are defined by Parameter elements in the CCF file's Interface
element. A Parameter element in the DCF file can override the composer parameters
specified in the CCF file. A defined parameter that does not have a default value specified
in the DCF or CCF file returns an empty string as its value.

The function returns a composer handle or an empty string if an error occurs.

Note
Calling this function requires parsing the CCF file, unless the file has been cached.
Subsequent changes to the CCF file will not be seen unless you flush the composer using
the flush_composer function.

run_composer
run_composer(composer, arr)

The run_composer function runs the publishing process associated with composer, using
the parameters in the associative array arr.

The composer parameter is a composer handle generated by the get_composer function.
The arr parameter specifies an associative array of parameter values. Both parameters are
defined in a composer’s CCF file.

The function returns 0 if an error occurs, or 1 if the operation was successful.

70 Content Pipeline Guide

Note
Calling this function requires parsing the CCF file, unless the file has been cached.
Subsequent changes to the CCF file will not be seen unless you flush the composer using
the flush_composer function.

flush_composer
flush_composer ([doc[, type]])

The flush_composer function removes the cached composer configuration for the
publishing type.

If type is not specified, all composers associated with doc are flushed. If doc is not
specified, then all cached composers are flushed.

list_stylesheets
list_stylesheets()

The list_stylesheets function returns the paths to all stylesheets in the compiled stylesheet
cache. Arbortext Editor and Arbortext Publishing Engine store XSL stylesheets in this
cache after they've been compiled during a publishing process. By storing these
stylesheets, Arbortext Editor and Arbortext Publishing Engine avoid having to recompile
them during subsequent publishing runs.

You can use a path returned by this function as an argument to the clear_stylesheet
function.

clear_stylesheet
clear_stylesheet(path)

The clear_stylesheet function removes the stylesheet indicated by path from the
compiled stylesheet cache. Arbortext Editor and Arbortext Publishing Engine store XSL
stylesheets in this cache after they've been compiled during a publishing process. By
storing these stylesheets, they don’t need to be recompiled during subsequent publishing
runs.

You can obtain a list of paths using the list_stylesheets function. If path is not specified
or is an empty string, all stylesheets are cleared from the cache.

For example, if you edited an XSL stylesheet that had previously been used in a
publishing process, you would use this function to clear out the stylesheet cache. The
updated stylesheet would then be used during the next publishing process.

Customizing Publishing 71

Interactive and Batch Publishing
Functions
You can run publishing processes using ACL functions. These processes can be run
interactively or in batch mode.

Interactive Functions
The interactive functions bring up dialog boxes that gather publishing information and
then run the publishing process.

compose_htmlfile
compose_htmlfile([doc])

The compose_htmlfile interactive function publishes a document as HTML output. This
function assumes the DCF file defines an htmlfile composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

Note
The File ▶▶Publish ▶▶HTML File menu option uses this function. Publishing parameters are
entered in the Publish HTML File dialog box.

compose_htmlhelp
compose_htmlhelp([doc])

The compose_htmlhelp interactive function publishes a document as HTML Help output
(.chm). This function assumes the DCF file defines an htmlhelp composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

This function returns the following values:

72 Content Pipeline Guide

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

Note
The File ▶▶Publish ▶▶For HTML Help menu option uses this function. Publishing
parameters are entered in the Publish for HTML Help dialog box.

compose_pda
compose_pda([doc])

The compose_pda interactive function publishes a document as PDA output. This
function assumes the DCF file defines a pda composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

Note
The File ▶▶Publish ▶▶For PDA menu option uses this function. Publishing parameters are
entered in the Publish For PDA dialog box.

compose_pdf
compose_pdf([doc])

The compose_pdf interactive function publishes a document as PDF output. This
function assumes the DCF file defines a pdf composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

This function returns the following values:

Customizing Publishing 73

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

Note
The File ▶▶Publish ▶▶PDF File menu option uses this function. Publishing parameters are
entered in the Publish PDF File dialog box.

compose_wap
compose_wap([doc])

The compose_wap interactive function publishes a document as WAP output. This
function assumes the DCF file defines a wap composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

Note
The File ▶▶Publish ▶▶For Wireless menu option uses this function. Publishing parameters
are entered in the Publish For Wireless dialog box.

compose_web
compose_web([doc])

The compose_web interactive function publishes a document as web output. This
function assumes the DCF file defines a web composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

This function returns the following values:

74 Content Pipeline Guide

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

Note
The File ▶▶Publish ▶▶For Web menu option uses this function. Publishing parameters are
entered in the Publish For Web dialog box.

compose_xsl
compose_xsl([doc])

The compose_xsl interactive function publishes a document as XSL output. This function
assumes the DCF file defines an XSL composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

Note
The File ▶▶Publish ▶▶Using XSL menu option uses this function. Publishing parameters
are entered in the Publish Using XSL dialog box.

Batch Functions
The publishing batch functions accept the document ID and an array of parameters. They
are part of the ACL compose.acl package, so you’ll need to specify it with the
function, for example compose::compose_for_htmlfile.

compose_for_htmlfile
compose_for_htmlfile(doc, arr)

Customizing Publishing 75

The compose_for_htmlfile batch function publishes a document as HTML output. This
function assumes the DCF file defines an htmlfile composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

The arr parameter is an associative array of properties to pass to the composer. If the
array is empty, the publishing process proceeds interactively. Otherwise, the arr
parameter overrides any entries in the array populated by the get_composer function.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

compose_for_htmlhelp
compose_for_htmlhelp(doc, arr)

The compose_for_htmlhelp batch function composes a document as HTML Help output.
This function assumes the DCF file defines an htmlhelp composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

The arr parameter is an associative array of properties to pass to the composer. If the
array is empty, the publishing process proceeds interactively. Otherwise, the arr
parameter overrides any entries in the array populated by the get_composer function.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

compose_for_pda
compose_for_pda(doc, arr)

The compose_for_pda batch function publishes a document as PDA output. This
function assumes the DCF file defines a pda composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

76 Content Pipeline Guide

The arr parameter is an associative array of properties to pass to the composer. If the
array is empty, the publishing process proceeds interactively. Otherwise, the arr
parameter overrides any entries in the array populated by the get_composer function.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

compose_for_pdf
compose_for_pdf(doc, arr)

The compose_for_pdf batch function publishes a document as PDF output. This function
assumes the DCF file defines a pdf composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

The arr parameter is an associative array of properties to pass to the composer. If the
array is empty, the publishing process proceeds interactively. Otherwise, the arr
parameter overrides any entries in the array populated by the get_composer function.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

compose_for_wap
compose_for_wap(doc, arr)

The compose_for_wap batch function publishes a document as WAP output. This
function assumes the DCF file defines a wap composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

The arr parameter is an associative array of properties to pass to the composer. If the
array is empty, the publishing process proceeds interactively. Otherwise, the arr
parameter overrides any entries in the array populated by the get_composer function.

This function returns the following values:

Customizing Publishing 77

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

compose_for_web
compose_for_web(doc, arr)

The compose_for_web batch function publishes a document as web output. This function
assumes the DCF file defines a web composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

The arr parameter is an associative array of properties to pass to the composer. If the
array is empty, the publishing process proceeds interactively. Otherwise, the arr
parameter overrides any entries in the array populated by the get_composer function.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

compose_using_xsl
compose_using_xsl(doc, arr)

The compose_using_xsl batch function publishes a document as XSL output. This
function assumes the DCF file defines an XSL composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

The arr parameter is an associative array of properties to pass to the composer. If the
array is empty, the publishing process proceeds interactively. Otherwise, the arr
parameter overrides any entries in the array populated by the get_composer function.

This function returns the following values:

78 Content Pipeline Guide

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

compose_for_xslfo
compose_for_xslfo(doc, arr)

The compose_for_xslfo batch function publishes a document as XSL-FO output. This
function assumes the DCF file defines an xslfo composer.

The doc parameter specifies the document to process. If doc is not specified, the current
document is used.

The arr parameter is an associative array of properties to pass to the composer. The arr
parameter overrides any entries in the array populated by the get_composer function.

This function returns the following values:

Value Description
-1 The publishing process was cancelled.

0 An error occurred.
1 The publishing process completed successfully.

Publish Menu Options
The following table lists the File ▶▶Publish menu options that use the pipeline
architecture.

Publish menu option Command (main::) CCF file
For Web compose_for_web

compose_web
web.ccf

For HTML Help compose_for_htmlhelp
compose_htmlhelp

htmlhelp.ccf

HTML file compose_for_htmlfile
compose_htmlfile

htmlfile.ccf

PDF compose_for_pdf
compose_pdf

pdf.ccf

For Wireless compose_for_wap
compose_wap

web.ccf

Customizing Publishing 79

Publish menu option Command (main::) CCF file
For PDA compose_for_pda

compose_pda
web.ccf

Using XSL compose_using_xsl
compose_xsl

xsl.ccf

Event Log Functions
get_composer_log_contents
get_composer_log_contents([html])

The get_composer_log_contents function returns the contents of the log file associated
with the last publishing operation as a formatted multiline string. If the html parameter is
present and non-zero, the string is HTML wrapped in a pre element.

Note
This function doesn't return anything if the Event Log window is closed after a composer
operation.

get_composer_log_doc
get_composer_log_doc()

The get_composer_log_doc function returns the ID of the read-only document
containing the log output from the last publishing operation.

composer_log
composer_log(destination, severity, verbosity)

The composer_log function sets the preferences for the Event Log error file. Use this log
file to troubleshoot publishing problems.

destination specifies the output destination for composer events:

Setting Description
0 Outputs to the Java Console.

1 Outputs to the Event Log window.

string Outputs a text file to the specified path.

80 Content Pipeline Guide

severity specifies the minimum severity of output events to generate:

Setting Description

$eventlog::SEVERITY_INFO Includes all diagnostic events, including errors and
warnings.

$eventlog::SEVERITY_
WARNING

Includes errors and warnings, but no informational
events. This is the default setting.

$eventlog::SEVERITY_
ERROR

Includes errors only.

verbosity indicates the amount of contextual information to generate in the log:

Setting Description
0 No contextual information.
1 Exception message.

2 Exception message and traceback. This is the default
setting.

For example,
Trace all possible composer events to a file.
composer_log("c:\\temp\\composer.log", $eventlog::SEVERITY_INFO, 2)

Trace warnings and errors (but not informational events) to
the java console and don’t include traceback information.
composer_log(0, $eventlog::SEVERITY_WARNING, 1);

Trace only errors (but not warnings and informational events)
to the event log.
composer_log(1, $eventlog::SEVERITY_ERROR);

show_composer_log
show_composer_log()

The show_composer_log function displays the Event Log window. If there is no Event
Log window, this function creates it.

Core Functions
Arbortext Editor and Arbortext Publishing Engine provide a set of core publishing
functions. We recommend that you only use these functions for debugging purposes as
they may change in future releases.

Customizing Publishing 81

composer_types
composer_types(arr[, doc])

The composer_types function populates an array arr with the available composer types
for a document.

The doc parameter specifies the document for which the composer type information is
being requested. If doc is not specified, the current document is used.

This function returns the size of the populated array or 0 if an error occurs.

composer_sysid
composer_sysid(type[, doc])

The composer_sysid function returns the composer handle for the specified composer
type associated with this document. The system ID acts as a handle.

The type parameter specifies the type of composer. The type is specified by the Compose
element's type attribute in the DCF file for doc.

The doc parameter specifies the document for which the composer handle is being
created. If doc is not specified, the current document is used.

The associated composer name is defined by the Compose element's config attribute in
the DCF file. This attribute may be a path to a CCF file or the CCF file name. If the file
name does not specify the .ccf extension, the file name is concatenated to the type name
to construct the composer name.

If the composer name is not an absolute path, then the doctype directory is searched for
the specified file. If the file is not found, the set composerpath directories are
searched in order. If a matching file is found, its full cannonicalized path becomes the
composer handle.

This function returns an empty string if the composer type was not defined or if the search
path does not contain an associated composer.

composer_get_ccf_parameters
composer_get_ccf_parameters(arr, comp)

The composer_get_ccf_parameters function populates an array arr with the parameters
associated with a composer. The comp parameter specifies a handle for the composer. The
handle should be the handle returned by the composer_sysid function.

The resulting array is an associative array in which each index is the name of a composer
interface parameter, as defined by the Parameter element in the composer's CCF file.
The entry at each index is the parameter's default value. The entry is an empty string if a
parameter has no default value.

This function returns the size of the populated array or 0 if an error occurs.

82 Content Pipeline Guide

Note
Calling this function requires parsing the CCF file unless the CCF file has been cached.
Subsequent changes to the CCF file will not be seen unless the composer is flushed by a
call to the composer_flush function.

composer_get_dcf_parameters
composer_get_dcf_parameters(arr, type[, doc])

The composer_get_dcf_parameters function populates the array arr associated with a
publishing type for doc. The type parameter specifies the composer type. The type is
specified by the Compose element's type attribute in the DCF file for doc.

The doc parameter specifies the document for which the composer is being created. If doc
is not specified, the current document is used.

The resulting array is an associative array where each index is a name of a composer
interface parameter, as defined by the Parameter element in the DCF for the specified
publishing type. The entry at each index is the parameter's default value. The entry is an
empty string if a parameter has no default value.

This function returns the size of the populated array or 0 if an error occurs.

composer_get_all_parameters
composer_get_all_parameters(arr, type[, doc])

The composer_get_all_parameters function populates an array arr with all the
parameters associated with the publishing type. The type parameter specifies a composer
type. The type is specified by the Compose element's type attribute in the DCF file for
doc.

The doc parameter specifies the document for which the composer is being created. If doc
is not specified, the current document is used.

The resulting array is an associative array where each index is a name of a composer
interface parameter, as defined by the Parameter element in the DCF file for the
specified publishing type or by the Parameter element in the associated CCF file.

The entry at each index is the parameter's default value, with the default values in the
DCF file taking precedence. If a parameter has no default value in the DCF or CCF file,
the entry is an empty string.

As a special case, the document parameter is added to the array and given the value of
doc.

The return value is the size of the populated array, or zero on failure.

Customizing Publishing 83

Note
Calling this function requires parsing the CCF file, unless the CCF file has been cached.
Subsequent changes to the CCF will not be seen unless the composer is flushed by a call
to the composer_flush function.

composer_get_parameter_info
composer_get_parameter_info(arr, comp, name)

The composer_get_parameter_info function populates an array arr with information
about a parameter in a CCF file. The comp parameter specifies a handle for the composer.
The handle specified should be the handle returned by the composer_sysid function.

The name parameter specifies a parameter in the CCF file, an index of the array populated
by the composer_get_ccf_parameters function.

The resulting array is an associative array where each index is a property of the named
parameter. Valid properties are:

Property Description

default A parameter's default value.

label The name of a parameter, to be displayed in the user
interface.

documentation The documentation for a parameter.

enumeration A list of all possible values for a parameter.

type The type of a parameter's value.

The type property can be boolean, byte, short, int, long, char, float, double, or
enumeration. If type is enumeration, the enumeration property should contain a list of all
possible values. These are concatenated into one string with a pipe (|) character as a
delimiter. Use the split function to convert this string into an array.

This function returns the size of the populated array or 0 if an error occurs.

Note
Calling this function requires parsing the CCF file unless the CCF file has been cached.
Subsequent changes to the CCF file will not be seen unless the composer is flushed by a
call to the composer_flush function.

84 Content Pipeline Guide

composer_check
composer_check(comp)

The composer_check function checks the CCF file against the composer DTD for
context errors. The comp parameter specifies a handle for the composer. The handle
should be the handle returned by the composer_sysid function.

This function returns a 0 if an error occurs or the document is malformed. It returns a 1 if
the CCF file is well-formed.

Note
Calling this function requires parsing the CCF file unless the CCF file has been cached.
Subsequent changes to the CCF file will not be seen unless the composer is flushed by a
call to the composer_flush function.

composer_flush
composer_flush([comp])

The composer_flush function removes the cached composer or all cached composers
from memory. The comp parameter specifies a handle for the composer. The handle
should be the handle returned by the composer_sysid function. If comp is not specified,
all cached composers are removed.

Once a composer CCF file is parsed, the results are stored in memory. Composers can be
written so that they retain static information about a previous run. If this static
information can interfere with the composer operation, you should flush the composer
after each use.

This function returns a 0 if the composer was not cached. It returns a 1 if the composers
were removed.

Customizing Publishing 85

D
Java Reference

This appendix describes the Java interfaces and classes associated with pipelines and
filters.

Interfaces
The publishing framework defines a set of interfaces that Java classes need to implement
to enable filters in the pipeline.

SAXInterfaceProvider
The SAXInterfaceProvider interface provides methods that get the various SAX2
interfaces. Since a filter may implement a subset of the seven SAX2 interfaces, this
interface allows the composer to query the object that implements this interface for the
individual SAX2 interfaces.
public interface SAXInterfaceProvider {

/** Returns the ContentHandler or null. */
ContentHandler getContentHandler();

/** Returns the DTDHandler or null. */
DTDHandler getDTDHandler();

/** Returns the ErrorHandler or null. */
ErrorHandler getErrorHandler();

/** Returns the EntityResolver or null. */
EntityResolver getEntityResolver();

/** Returns the LexicalHandler or null. */
LexicalHandler getLexicalHandler();

87

/** Returns the DeclHandler or null. */
DeclHandler getDeclHandler();

/** Returns the EntityResolver2 or null. */
EntityResolver2 getEntityResolver2();

}

SAXInterfaceRecipient
SAXInterfaceRecipient is a complimentary interface to SAXInterfaceProvider. This
interface allows you to set interfaces.
public interface SAXInterfaceRecipient {

/**
* Set the ContentHandler.
* @param ch is the ContentHandler to be set
*/

void setContentHandler(ContentHandler ch);

/**
* Set the DTDHandler.
* @param dh is the DTDHandler to be set.
*/

void setDTDHandler(DTDHandler dh);

/**
* Set the ErrorHandler
* @param eh is the ErrorHandler to be set.
*/

void setErrorHandler(ErrorHandler eh);

/**
* Set the EntityResolver.
* @param er is the EntityResolver to be set.
*/

void setEntityResolver(EntityResolver er);

/**
* Sets the LexicalHandler.
* @param lh is the LexicalHandler to be set.
*/

void setLexicalHandler(LexicalHandler lh);

/**
* Sets the DeclHandler.
* @param dh is the DeclHandler to be set.
*/

void setDeclHandler(DeclHandler dh);

/**
* Sets the EntityResolver2.
* @param er2 is the EntityResolver2 to be set.
*/

void setEntityResolver2(EntityResolver2 er2);
}

88 Content Pipeline Guide

FilterControl
FilterControl specifies the filter control interface used by the publishing framework to
configure and control the filter. The control interface uses methods to initialize and run
filters (if it is a source), as well as to set output and resource handlers.
public interface FilterControl {

/**
* Sets the object that handles the filter's SAX events.
* The output goes to the default (or unnamed) pipe.
* @param outputHandler is a SAXInterfaceProvider object
* that can be used to get the handles to the desired
* SAX interfaces that handle the filter's SAX events.
*/

void setOutputHandler(SAXInterfaceProvider outputHandler);

/**
* Sets the object that handles the filter SAX events for
* the given pipename.
*
* @param pipeName is the name of the output pipe.
* @param outputHandler is a SAXInterfaceProvider that can
* be used to get the handles to the desired SAX interfaces
* that handle the filter's SAX events.
*/

void setOutputHandler(String pipeName, SAXInterfaceProvider
outputHandler);

/**
* Gets the output handler object for the unnamed
* (or default) pipe.
* @returns is a SAXInterfaceProvider that is the output
* handler.
*/

SAXInterfaceProvider getOutputHandler();

/**
* Gets the output handler object for the named pipe.
* @returns is a SAXInterfaceProvider that is the output
* handler.
*/

SAXInterfaceProvider getOutputHandler(String pipeName);

/**
* Sets the ErrorHandler object. If the filter implements the
* ErrorHandler interface, this method can ignore the object
* passed in.
*/

void setErrorHandlerResource(ErrorHandler theErrorHandler);

/**
* Initializes the filter with the given set of parameters.
*
* @param parameters is an object implementing the Map
* interface that contains name value pairs representing the
* filter's parameters.
* @throws is an exception if there is any problem with the
* initialization such as missing or illegal parameters.
*/

void initFilter(java.util.Map parameters) throws Exception;

/**

Customizing Publishing 89

* Releases all resources used by the filter. The adapter
* can be destroyed after this method is called with no
* danger of resource leakage.
*/

void destroyFilter();

/**
* Runs the filter. This method only applies for filters
* that can generate SAX events. It is recommended that the
* implementing class throw an UnsupportedOperationException
* if the runFilter method does not apply.
* @throws is an exception if there is a problem running
* the filter.
*/

void runFilter() throws Exception;

/**
* Sets the EntityResolver object that the adapter can pass
* to the filter for the filter's entity resolution needs.
* The adapter can ignore the resolver if its filter
* implements the EntityResolver interface.
*/

void setEntityResolverResource(EntityResolver theResolver);

/**
* Sets the EntityResolver2 object that the adapter can pass
* to the filter for the filter's entity resolution needs.
* The adapter can ignore the resolver if its filter
* implements the EntityResolver2 interface.
*/

void setEntityResolver2Resource(EntityResolver2 theResolver);

/**
* Informs the adapter that the filter's parameter has
* changed to the new value. The adapter passes the
* information on to the filter if the filter's class
* matches the filterClass passed in.
* @param filterClass is the name of the class of the filter
* instance to which this parameter is intended.
* @param key is the name of the parameter
* @param value is the new value.
*/

void parameterChanged(String filterClass, String key, String
newValue);

/**
* Indicates the beginning of a named region. The name of the
* region is specified in the name parameter. The data parameter
* is a string that will be associated with the region.
* @param name is the name of the region.
* @param data is any data associated with the region. The
* format of the data is user defined.
*/

void regionBegin(String name, String data);

/**
* Indicates the end of the region. The regionBegin method is
* guaranteed to have been called with the same name.
* @param name is the name of the region.
*/

void regionEnd(String name);

/**

90 Content Pipeline Guide

* Command to set the current location from the file being
* processed.
*
*/

void setFileLocation(String systemid, int line, int column);

/**
* Command to set the current location where the source of the
* document is Arbortext.
* @param location is the location as a string. The format of the
* string is described in Arbortext Editor help.
*/

void setEpicLocation(String location);
}// FilterControl

FilterAdapter
The FilterAdapter interface combines the SAXInterfaceProvider and FilterControl
interfaces. Objects that act as filter adapters must implement this interface. The
adapaterClass attribute for a FilterDef element in a CCF file must implement this
interface.
public interface FilterAdapter extends SAXInterfaceProvider,
FilterControl {

}

SAXFilter
SAXFilter is a convenience interface that extends the seven SAX2 interfaces and the
FilterControl interface. You can use objects that implement this interface in a pipeline.
You can also use these objects with the DefaultFilterAdapter so that you do not have to
write a custom adapter class.
public interface SAXFilter extends

ContentHandler,
DTDHandler,
LexicalHandler,
DeclHandler,
ErrorHandler,
EntityResolver,
EntityResolver2,
FilterControl

{
}

Helper Classes
The publishing framework provides subclasses to help you quickly write filters and
adapters.

Customizing Publishing 91

DefaultSAXFilter
The DefaultSAXFilter filter implements the SAXFilter interface. This filter repeats its
input SAX events to its output. You can use this filter and its subclasses with the
DefaultFilterAdapter.

Note
We recommend that all non-buffering filters extend this class.

DefaultFilterAdapter
The DefaultFilterAdapter is a default implementation of an adapter. It specifies the
output handlers for the filter. This implementation is adequate for filters that extend the
DefaultSAXFilter class.

92 Content Pipeline Guide

E
Distributed Files

This appendix describes the publishing files that are distributed with Arbortext Editor and
Arbortext Publishing Engine. It also describes the sample files distributed for the Content
Pipeline Guide.

The File Types
Arbortext Editor and Arbortext Publishing Engine provide a set of CCF files and Java
classes that implement the filters. You can use these for reference or for extending
publishing functionality.

CCF Files
A set of CCF files defining several content pipelines are included in the Arbortext-
path\composer directory:

• htmlfile.ccf — Transforms documents to HTML (output as a file if using an
XSL stylesheet or as an Arbortext Editor document if using a FOSI stylesheet).

• htmlhelp.ccf — Transforms documents to HTML Help.

• pdf.ccf — Transforms XML to an XSL-FO document in Arbortext Editor. This
document can then be used to create PDF files.

• profile.ccf— Profiles documents to an Arbortext Editor document.

• schemavalidator.ccf — Validates documents against a specified schema.

93

• web.ccf— Publishes to web. This involves chunking sections of the document
into separate HTML files.

• xsl.ccf — Outputs the transformed document to a file.

• xslfo.ccf — Outputs the transformed XSL-FO document to an Arbortext
Editor document.

Filters
The distributed filters are saved as entities with the name filtername.ent. By saving
these filters as entities, they can be reused across CCF files. These files are included in
the Arbortext-path\composer directory

Following is a list of the distributed filters:

• charSubFilter.ent — Substitutes characters according to user-specified
substitution file in user-specified elements.

• chunker.ent — Sink filter that splits (or chunks) a stream of SAX events into
multiple files.

• debugFilter.ent — Monitors SAX events that pass through the pipeline.
Users can control which methods and handlers are monitored.

• entityResolver.ent — Resolves entities used in the pipeline. For example,
you could use this filter to resolve entities contained in the document to be
processed or resolve the file location for the entity substitution file used in HTML
output.

• epicGenerator.ent — Source filter that produces SAX events by parsing an
Arbortext Editor document.

• epicSerializer.ent — Sink filter that generates an Arbortext Editor
document from SAX events.

• errorHandler.ent — Parses error handler calls (warning, error, fatalError),
emits error messages as SAX events, and sends them to the output handler
connected to this handler.

• fileGenerator.ent — Source filter that produces SAX events by parsing an
XML file.

• fileSerializer.ent — Sink filter that serializes SAX events to a system
file.

• graphicConverter.ent — Copies graphic references to the appropriate
destination, and then modifies attributes to point to the new location. In future
releases, this filter will convert graphic file formats from one file format to another
(because most browsers support them, the GIF, JPEG, and PNG file formats will
continue to be copied rather than converted).

94 Content Pipeline Guide

• htmlHelpAdapter.ent — Sink filter that takes HTML Help parameters and
converts them to XSLTransformer parameters.

• log4jErrorHandler.ent— Converts error handling calls (warning, error,
fatalError) into new SAX events and passes them to its output handler using the
log4j logging mechanism. The format and output destination depend on the
appender and layout associated with the current filter class. For more information,
refer to the log4j documentation on Apache website.

• namespaceFixer.ent — Transformer filter that changes namespace prefixes.
You can use this filter to strip the namespaced content in the Boilerplate filter.

• piToElementConverter.ent — Converts processing instructions (PIs) into
elements. During serialization, Arbortext-specific PIs (for example, _font or
_cellfont) are transformed into text nodes containing XML markup and surrounded
by javax.xml.transform.disable-output-escaping and javax.xml.transform.
enable-output-escaping to retain escaping characters. When read back from the
file system, the text nodes are parsed into elements.

Note
In this release, the intermediate serialization is eliminated and each text node is
emitted as a character event instead of a set of elements. To solve the problem, the
PIs are first converted into elements. New stylesheet templates are provided to
handle the converted elements.

• profiler.ent — Transformer filter that suppresses elements that don’t match
certain criteria.

• switch.ent — Determines the flow of SAX events across multiple forks in the
pipeline. The SAX events are routed to the appropriate pipe.

• xslTransformer.ent — Compiles an XSL stylesheet and uses it to transform
the input stream to the output stream.

Content Pipeline Guide Files
The Content Pipeline Guide comes with a set of examples. The examples include CCF
files, ACL source files, and Java source and class files. These files are distributed in your
installation:

Arbortext-path\samples\pipeline\content-pipeline-examples.
zip

Customizing Publishing 95

CCF Files
The following CCF files are used in examples in the Content Pipeline Guide. These CCF
files should be placed in Arbortext-path\custom\composer or a directory that
is in the set composerpath path.

• simpleccf.ccf — Defines a two-filter content pipeline that reads an Arbortext
Editor XML document and then serializes it to a file on the file system

• copyright.ccf — Defines a pipeline that appends a copyright statement to the
input document and writes the output to a file or an Arbortext Editor document.

• grep.ccf — Defines a pipeline that provides functionality similar to the grep
command.

ACL Files
The ACL files should be placed in the Arbortext-path\custom\init folder.
These files define functions for running the CCF files distributed with Arbortext Editor
and Arbortext Publishing Engine. Documentation regarding the functions can be found
within the files.

Java Files
The Java source and class files are located in examples.jar. This file should be
placed in Arbortext-path\custom\classes directory. All the examples are in
the com.arbortext.epic.compose.examples package.

96 Content Pipeline Guide

Index

A
ACL

core functions, 41, 81
composer_check, 85
composer_flush, 85
composer_get_all_parameters, 83
composer_get_ccf_parameters, 82
composer_get_dcf_parameters, 83
composer_get_parameter_info, 84
composer_sysid, 82
composer_types, 82

distributed with the Content Pipeline
Guide, 96

publishing functions, 69
running publishing processes with, 38

AOM
Application interface

createComposer method, 65
Composer interface, 65

getDefaultParameters method, 66
getParamDocumentation method, 66
getParamEnumerationValue method,

67
getParameterLabel method, 66
getParamType method, 67
isParamRequired method, 67
runPipeline method, 66

overview, 32
publishing in Java, 32
running publishing processes with, 32

append_composer_path function, 69
APTCOPYGRAHPICEXTS environment
variable, 55

Arbortext Object Model, See AOM

B
batch functions

compose_for_htmlfile, 76
compose_for_htmlhelp, 76
compose_for_pda, 76
compose_for_pdf, 77
compose_for_wap, 77
compose_for_web, 78
compose_for_xslfo, 79
compose_using_xsl, 78

C
CCF file

adding profiling attributes to, 28
common elements in, 27
complex example of, 24
distributed with Arbortext Editor and
Arbortext Publishing Engine, 93

distributed with the Content Pipeline
Guide, 96

Interface element in, 22
Pipeline element in, 23
Resource element in, 22
simple example of, 21

change tracking markup
configuring for publishing processes, 55

character entity substitution files, 52
customizing, 54
examples of entries in, 54
format of, 53
htmlEntSub.xml, 52
htmlHelpNavEntSub.xml, 52
xmlEntSub.xml, 52

clear_stylesheet function, 71
compose_for_htmlfile batch function, 76
compose_for_htmlhelp batch function, 76
compose_for_pda batch function, 76
compose_for_pdf batch function, 77
compose_for_wap batch function, 77
compose_for_web batch function, 78

97

compose_for_xslfo batch function, 79
compose_htmlfile interactive function, 72
compose_htmlhelp interactive function, 72
compose_pda interactive function, 73
compose_pdf interactive function, 73
compose_using_xsl batch function, 78
compose_wap interactive function, 74
compose_web interactive function, 74
compose_xsl interactive function, 75
composer

configuration file for, 20
composer log

displaying, 81
composer_check function, 85
composer_flush function, 85
composer_get_all_parameters function, 83
composer_get_ccf_parameters function,
82

composer_get_dcf_parameters function,
83

composer_get_parameter_info function,
84

composer_log function, 80
composer_sysid function, 82
composer_types function, 82
contacting technical support, 5
ContentHandler interface, 59
conventions used in the documentation, 10
createComposer method, 65
customizing

error handling, 46
publishing, 50

D
DeclHandler interface, 62
DefaultFilterAdapter, 92
DefaultSAXFilter, 92
document types

adding web publishing to, 50
composer, 21
Publish menu options for, 79

documentation conventions, 10
DTDHandler interface, 60

E
elements in CCF files, 27
encodings supported, 56
EntityResolver interface, 62
EntityResolver2 interface, 63
environment variables

APTCOPYGRAHPICEXTS, 55
error handling, 40

adding to CCF file, 47
creating filter for, 46
customizing, 46
ErrorHandler interface methods, 44
log4j methods, 44
pipeline for, 44

ErrorHandler interface, 61
ErrorHandler interface methods, 44
examples of entries in character entity

substitution files, 54

F
files

character entity substitution
htmlEntSub.xml, 52
htmlHelpNavEntSub.xml, 52
xmlEntSub.xml, 52

distributed with Arbortext Editor and
Arbortext Publishing Engine, 93

distributed with the Content Pipeline
Guide, 95

filter adapter
creating, 15

filter adapters
overview of, 14

FilterAdapter Java interface, 91
FilterControl Java interface, 89
filters

creating, 15
distributed with Arbortext Editor and
Arbortext Publishing Engine, 94

error handling, 46–47
grep example, 16
overview of, 14
primitive, 14
reusing, 15

98 Content Pipeline Guide

flush_composer function, 71
functions

ACL, 69
flush_composer, 71
get_composer, 70
run_composer, 70

G
get_composer function, 70
get_composer_log_contents function, 80
get_composer_log_doc function, 80
getDefaultParameters method, 66
getParamDocumentation method, 66
getParamEnumerationValue method, 67
getParameterLabel method, 66
getParamType method, 67
graphics conversion, 55

H
HMTL file publishing

batch function, 76
interactive function, 72

HMTL Help publishing
batch function, 76
interactive function, 72

HTML Help publishing
changing XSLT processing engine for,
52

htmlEntSub.xml character entity
substitution file, 52

htmlHelpNavEntSub.xml character entity
substitution file, 52

I
information resources, 10
interactive functions

compose_htmlfile, 72
compose_htmlhelp, 72
compose_pda, 73
compose_pdf, 73
compose_wap, 74

compose_web, 74
compose_xsl, 75

Interface element in CCF file, 22
internationalization considerations, 56
isParamRequired method, 67

J
Java files

distributed with the Content Pipeline
Guide, 96

Java helper classes, 91
DefaultFilterAdapter, 92
DefaultSAXFilter, 92

Java interfaces, 87
FilterAdapter, 91
FilterControl, 89
SAXFilter, 91
SAXInterfaceProvider, 87
SAXInterfaceRecipient, 88

L
LexicalHandler interface, 61
list_stylesheet function, 71
log4j error handling methods, 44

P
PDA publishing

batch function, 76
interactive function, 73

PDF publishing
batch function, 77
interactive function, 73

pipeline
error handling for, 44
overview of, 10

Pipeline element in CCF file, 23
pipelines

overview of, 14
product support contact information, 5
Publish menu options, 79
publishing

Index 99

ACL functions for, 38
AOM, 32
configuring change tracking markup for,
55

customizing, 50
error handling

log for, 80
setting log preferences for, 80

web, 50
Publishing

configuration files
paths to, 69

publishing types, 40

R
reference

ACL, 69
AOM, 65
Java, 87

Resource element in CCF file, 22
resources for more information, 10
reusing filters, 15
run_composer function, 70
runPipeline method, 66

S
SAX2 filter interfaces, 59

ContentHandler, 59
DeclHandler, 62
DTDHandler, 60
EntityResolver, 62
EntityResolver2, 63
ErrorHandler, 61
LexicalHandler, 61

SAXFilter Java interface, 91
SAXInterfaceProvider Java interface, 87
SAXInterfaceRecipient Java interface, 88
Saxon processing engine, 51
show_composer_log function, 81
Stylesheets

clearing from cache, 71
determining paths to, 71

support contact information, 5

W
WAP publishing

batch function, 77
interactive function, 74

web publishing
adding to a document type, 50
batch function, 78
interactive function, 74

X
Xalan processing engine, 51
xmlEntSub.xml character entity

substitution file, 52
XSL publishing

batch function, 78
interactive function, 75

XSLT processing engine, switching from
Saxon to Xalan, 51

100 Content Pipeline Guide

	About This Guide
	Prerequisite Knowledge
	Technical Support
	Documentation for PTC Products
	Global Services
	Comments
	Documentation Conventions

	Content Pipeline Guide
	Overview
	Conventions Used in this Guide
	Where to Get More Information

	Content Pipelines
	Overview
	Creating Filters and Filter Adapters
	Composer Configuration Files
	CCF Files and Profiling

	Using AOM with Pipelines and Filters
	Overview
	Running a Composer using AOM
	AOM Publishing using Java

	Using ACL with Pipelines and Filters
	Overview
	ACL Pipeline Example
	Running Standard Publishing Processes with ACL
	Using Core Functions

	Error Handling
	Overview
	Using ErrorHandler Interface Methods
	Using log4j Methods
	Customizing Error Handling

	Customizing Publishing
	Adding Web Publishing to a Document Type
	Switching from Saxon to the Xalan Processing Engine
	Configuring Character Entity Substitution Files for HTML Publishing
	Controlling Graphics Conversion for HTML-Based Publishing
	Configuring Publishing Processes to Output Change Tracking Markup
	Internationalization Considerations

	SAX2 Filter Interfaces
	ContentHandler
	DTDHandler
	LexicalHandler Interface
	ErrorHandler Interface
	DeclHandler
	EntityResolver
	EntityResolver2

	AOM Reference
	Application Interface
	Composer Interface

	ACL Reference
	ACL Publishing Functions
	Interactive and Batch Publishing Functions
	Event Log Functions
	Core Functions

	Java Reference
	Interfaces
	Helper Classes

	Distributed Files
	The File Types
	Content Pipeline Guide Files

