
Programmer’s Guide to
Arbortext Publishing Engine

8.1.2.0

Contents

About This Guide ...7
Prerequisite Knowledge ...8
Technical Support ..8
Documentation for PTC Products..8
Global Services ...9
Comments ..9
Documentation Conventions...9

Arbortext Publishing Engine and its Components... 11
Technical Overview of Arbortext Publishing Engine...13

Distributed Computing and the Client/Server Model..15
Web Clients and the HTTP Protocol ..15
Java Servlets and Servlet Containers ..17
Arbortext Publishing Engine as a Java Servlet ...18
Arbortext Publishing Engine as a Web Application..18
Arbortext Publishing Engine as a Transaction Processor18
Internal Components of Arbortext Publishing Engine ..20
Arbortext PE sub-process Pools ...24
Arbortext PE Applications...24
Arbortext Publishing Engine as a Document Conversion Server25
Arbortext Publishing Engine as a Publishing Server..25
Arbortext Publishing Engine Java Client SDK...25
Monitoring and Reporting Using a Web Browser ..26
Logging and Tracking...28

Supporting Documentation ...31

The Arbortext PE Request Manager...35
Understanding the Internal Structure of Arbortext PE Request Manager.....................37

Initialization ...38
Request Processing...49
Transaction Management...53
Arbortext PE sub-process Pool Management...57
Arbortext PE sub-process Pool Attributes ..63
Arbortext PE sub-process Pool Parameters ...68
Terminating the Arbortext PE Request Manager...68

Predefined Dynamic Components ...69
Predefined Request Selectors ..70
Predefined Cache Managers ..71
Predefined Queue Managers..73
Predefined Request Handlers...74
Predefined Request Functions..75
Pre-Defined Queues ..81
Arbortext Queue Request Functions..85
Pre-Defined Notifiers..92

3

Customizing the Arbortext PE Request Manager ..93
Writing a Custom Cache Manager...95
Writing a Custom Queue Manager ..97
Writing a Custom Request Handler ...98
Writing a custom Request Function ...98
Writing a Custom Initializer ...98
Writing a Custom Request Selector...99
Writing a Custom Queue .. 100
Writing a Custom Notifier.. 103

The Arbortext PE sub-process .. 105
Implementing Arbortext PE Applications .. 107

Concurrency.. 108
Installing an Arbortext PE Application .. 108
Sample Applications .. 109
The Allowed Functions List ... 110
The Arbortext PE sub-process Application Context... 111
Support for Custom Applications with the APP Engine 111

Writing Arbortext PE Applications in Java... 115
Initialization ... 116
Request Processing... 116
Termination ... 118
Creating a Java Arbortext PE Application .. 118
The E3ApplicationRequest Class.. 120
The E3ApplicationResponse Class ... 120
The E3ApplicationConfig Class... 121
Calling the Conversion Processor From a Java Arbortext PE

Application .. 122
Sample Java Arbortext PE Application .. 124
Troubleshooting Java Applications for Arbortext Publishing Engine 124

Writing Arbortext PE Applications in JavaScript .. 127
Creating a JavaScript Arbortext PE Application .. 129
Testing JavaScript Syntax in Arbortext Publishing Engine Interactive 129
Calling the Conversion Processor from a JavaScript Arbortext PE

Application .. 130
Sample JavaScript Arbortext PE Application .. 131
Troubleshooting JavaScript Arbortext PE Applications.................................... 131

Writing Arbortext PE Applications in VBScript... 135
Passing Parameters .. 137
Constructing a Response ... 139
Retrieving the Configuration Parameters ... 142
Testing VBScript Syntax in Arbortext Publishing Engine Interactive.................. 143
Calling the Conversion Processor from a VBScript Arbortext PE

Application .. 144
Sample VBScript Arbortext PE Applications... 144
Troubleshooting VBScript Arbortext PE Applications 145

Writing Arbortext PE Applications in ACL ... 149
Passing Parameters .. 151
Constructing a Response ... 153
Retrieving the Configuration Parameters ... 156
Testing ACL Syntax with Arbortext Publishing Engine Interactive..................... 157

4 Programmer’s Guide to Arbortext Publishing Engine

Calling the Conversion Processor from an ACL Arbortext PE
Application .. 158

Sample ACL Arbortext PE Applications ... 159
Troubleshooting ACL Arbortext PE Applications... 160

Arbortext Publishing Engine Document Conversion .. 163
Document Conversion Parameters ... 165
Loading a Document for Conversion ... 173
Conversion Processing .. 176
Conversion Result ... 187
Customizing Document Conversion .. 188
Troubleshooting Conversion Processing.. 190

Arbortext Publishing Engine Clients ... 193
Using Adapters with Arbortext Publishing Engine ... 195

Connecting to a Repository Adapter .. 196
Using the Java Client SDK.. 199

Installing the Java Client SDK... 200
Overview of the Java Client SDK... 200
The Java Client SDK Package .. 201
Sample Java Client SDK Code ... 201
Testing the Java Client SDK ... 201

Troubleshooting Tips .. 203
Checking the Publishing Configuration Report ... 204
Enabling Tracing in compose.acl... 204
Enabling Publishing Debugging .. 204

Arbortext Publishing ... 207
Introduction ... 209

Starting a Publishing Operation... 210
Publishing Operation Components.. 210

Content Pipelines... 213
Developing and Configuring Content Pipelines... 214
Creating Content Pipelines with ACL... 216

Content Compilers ... 219
The Arbortext Formatting Engine and Arbortext Advanced Print

Publisher... 220
Producing PostScript and PDF from DVI.. 221
Producing HTML ... 221
Producing HTML Help.. 221

The Publishing Framework ... 223
The Outer Layer of the Publishing Framework.. 225
The Inner Layer of the Publishing Framework .. 229
The Publishing Framework Hook .. 233
Print and Print Preview... 234
How Arbortext PE server uses the Publishing Framework 236
Writing your own Outer Layer Module.. 238
Modifying the Inner Layer ... 239
Debugging the Publishing Framework ... 239

Arbortext Publishing Engine Client Composer .. 243
Synchronous and Asynchronous Operations ... 244
Immediate and Queued Operations... 244

Contents 5

Arbortext Publishing Engine Client Composer Operation 245
Significant Parameters for the Arbortext Publishing Engine Client

Composer ... 246
Client Composer Parameter Types.. 250
The Client Composition Extension .. 254
Queuing Support ... 259
Debugging the Client Composer ... 259

Arbortext Publishing Engine Server Composer ... 261
Publishing Applications .. 263
Arbortext Publishing Engine Server Composer... 263
The Server Composition Extension ... 265
Debugging the Server Composer .. 266

Server Configuration for Publishing ... 269
Overview... 270
Content of the Publishing Configuration Document... 271

Implementing Programs and Scripts for Arbortext Publishing Engine 277
Custom Applications .. 279

Overview of Custom Programs and Scripts .. 280
Description of the Custom Directory Structure.. 280
Using the Custom Directory for Custom Applications 290
Description of the Application Directory Structure ... 291
Using the Application Directory for Custom Applications 294
Deploying Zipped Customizations ... 295
Specifying the JavaScript Interpreter Engine.. 296

6 Programmer’s Guide to Arbortext Publishing Engine

About This Guide

Arbortext Publishing Engine is a server program that performs XML document
manipulation and publishing for requests submitted by web clients, including Arbortext
Editor. This documentation is intended for programmers creating custom applications to
run on the Arbortext PE server. Among its capabilities are:

• Reading SGML and XML documents into memory

• Importing Microsoft Word, Adobe FrameMaker, RTF, HTML, PDF, and text
documents into memory as XML documents

• Applying XSL stylesheets to XML documents, transforming them into other XML
documents

• Publishing XML documents to a variety of output formats, including PostScript,
PDF, HTML, HTML Help, Web, and RTF.

• Retrieving documents from and saving documents to content management
repositories.

Arbortext Publishing Engine provides publishing services to Arbortext Editor users.
Arbortext Editor can be configured to send documents to the Arbortext Publishing
Engine, and these documents can be imported from or published to non-XML input or
output formats. The publishing processing is performed on the Arbortext PE server, which
returns the result to the Arbortext Editor client.

The basic capabilities of Arbortext Publishing Engine can be extended by custom
applications written in Arbortext Command Language (ACL), Java, JavaScript, and
VBScript. A programmer would use the documentation in this manual in combination
with the documentation found in the Programmer's Reference and the Arbortext
Command Language Reference.

7

Prerequisite Knowledge

You should have substantial experience as a programmer. This document assumes
advanced skill using programming languages such as Java, JavaScript, VBScript, and
Arbortext Command Language (ACL). You should be familiar with servlet containers,
web servers, and HTTP protocols. You should also be familiar with the implementation at
your site and with standard system administration tasks.

In a typical implementation, a client program or web browser sends an HTTP request to a
web server. The web server interprets the URL and passes it to the servlet container. The
servlet container knows how to call Arbortext PE Request Manager from its own
configuration file, and it constructs and passes a request object and a response object to
the Arbortext PE Request Manager. From the request object, the Arbortext PE Request
Manager determines the client who sent it, what the request is for, what work to perform,
and what data to return in the response object to the servlet container. In turn, the servlet
container returns the response to the web server, which then returns it to the client making
the request.

Technical Support

To contact PTC Technical Support, use the Contact Support and Customer Support Guide
links on support.ptc.com.

The PTC Support pages also provide a search facility for you to browse for knowledge
articles, best practices, and other information.

You must have a Service Contract Number (SCN) before you can receive technical
support. If you do not have an SCN, contact PTC Technical Support or Customer Care
Departments using the contact instructions found in your Customer Support Guide.

Documentation for PTC Products

You can access PTC product documentation using the following resources:

• Online Help

Click Help from the user interface for online help available for the product.

• Reference Documentation

PDFs of reference information are available from the Product Documentation area
of support.ptc.com.

Select the Arbortext tab to access the Arbortext Reference Documentation link.

• Help Center

Help Centers for the most recent product releases are available from the Product
Documentation area of support.ptc.com.

8 Programmer’s Guide to Arbortext Publishing Engine

https://support.ptc.com/appserver/cs/portal/
https://support.ptc.com/appserver/cs/portal/
https://support.ptc.com/appserver/cs/portal/

Select the Arbortext tab to access the Help Centers link.

You must have a Service Contract Number (SCN) before you can access the Arbortext
Reference Documentation or Help Centers links. If you do not have an SCN, contact PTC
Technical Support or Customer Care Departments using the contact instructions found in
your Customer Support Guide.

Global Services

PTC Global Services delivers the highest quality, most efficient and most comprehensive
deployments of the PTC Product Development System including Creo, Windchill,
Arbortext, and PTC Mathcad. PTC's Implementation and Expansion solutions integrate
the process consulting, technology implementation, education and value management
activities customers need to be successful. Customers are led through Solution Design,
Solution Development and Solution Deployment phases with the continuous driving
objective of maximizing value from their investment.

Contact your PTC sales representative for more information on Global Services.

Comments

PTC welcomes your suggestions and comments on our documentation. You can submit
your feedback to the following email address:

arbortext-documentation@ptc.com

Please include the following information in your email:

• Name

• Company

• Product

• Product Release

• Document or Online Help Topic Title

• Level of Expertise in the Product (Beginning, Intermediate, Advanced)

• Comments (including page numbers where applicable)

Documentation Conventions

This guide uses the following notational conventions:

9

• Bold text represents exact text that appears in the program's user interface. This
includes items such as button text, menu selections, and dialog box elements. For
example,

Click OK to begin the operation.

• A right arrow represents successive menu selections. For example,

Choose File ▶▶Print to print the document.

• Monospaced text represents code, command names, file paths, or other text
that you would type exactly as described. For example,

At the command line, type version to display version information.

• Italicized monospaced text represents variable text that you would type.
For example,

installation-dir\custom\scripts\

• Italicized text represents a reference to other published material. For example,

If you are new to the product, refer to the Getting Started Guide for basic interface
information.

10 Programmer’s Guide to Arbortext Publishing Engine

I
Arbortext Publishing Engine and

its Components

11

1
Technical Overview of Arbortext

Publishing Engine

Distributed Computing and the Client/Server Model... 15
Web Clients and the HTTP Protocol ... 15
Java Servlets and Servlet Containers ... 17
Arbortext Publishing Engine as a Java Servlet ... 18
Arbortext Publishing Engine as a Web Application... 18
Arbortext Publishing Engine as a Transaction Processor..................................... 18
Internal Components of Arbortext Publishing Engine ... 20
Arbortext PE sub-process Pools ... 24
Arbortext PE Applications.. 24
Arbortext Publishing Engine as a Document Conversion Server 25
Arbortext Publishing Engine as a Publishing Server... 25
Arbortext Publishing Engine Java Client SDK... 25
Monitoring and Reporting Using a Web Browser .. 26
Logging and Tracking .. 28

Arbortext Publishing Engine is implemented as a Java Servlet that complies with the Java
Servlet Specification, v2.4 from Sun Microsystems. The servlet is called the Arbortext PE
Request Manager. This implementation makes Arbortext Publishing Engine portable

13

across platforms and operating systems. It runs in the Tomcat servlet container (which can
operate alone or in conjunction with the Microsoft Internet Information Server).

14 Programmer’s Guide to Arbortext Publishing Engine

Distributed Computing and the Client/
Server Model
Arbortext Publishing Engine and its clients follow the client/server model of distributed
computing. The term “distributed computing” refers to two or more programs or
machines working together to solve a problem or deliver service. The client/server model
is a conceptual framework for understanding distributed computing. In this model, every
interaction between two computers or programs is viewed as a transaction consisting of a
request and a response.

A transaction begins when a program running on one machine (the “client”) sends a
request for service to a program running on another machine (the “server”). When the
server receives the request from the client, the server interprets the request, performs
some kind of work, and returns a response to the client. The client usually waits for the
response from the server. When the client receives the response, the transaction is
considered to be over. The client continues processing, and the server sleeps, awaiting a
request from another client.

The term “client” can refer to either the program that transmits the request to the server
(the “client program”) or to the machine on which the client program runs (the “client
machine”). The term “server” can refer to either the program that receives the client
request (the “server program”) or to the machine on which the server program runs (the
“server machine”).

Sometimes the client and server machine are the same, and a client process transmits a
request to a server process running on the same machine. To fulfill a client request, a
server process may need to send a request to another server, in which case a single
program can be considered both a server and a client.

A client program and a server program must share common expectations about how to
exchange data in the request and response transaction. The set of rules governing how the
client will construct and send a request and how the server will return a response to the
client is called a “protocol”.

Web Clients and the HTTP Protocol
Arbortext Publishing Engine accepts requests and returns responses using the HTTP
protocol. The HTTP protocol is a set of rules that allow an exchange of data between an
HTTP client program and an HTTP server program. An HTTP client transmits an HTTP
request to an HTTP server asking the server to perform some action. After sending the
request, the HTTP client waits for the HTTP server to return a response.

HTTP client programs are often referred to as web clients, and HTTP server programs are
often referred to as web servers. The most common web client programs are web
browsers, such as Microsoft Internet Explorer, Mozilla Firefox, and Opera. While a web

Technical Overview of Arbortext Publishing Engine 15

browser is probably the most familiar type of web client, any client program that
transmits a request using HTTP protocol and receives an HTTP response is a web client.

HTTP Requests
An HTTP request consists of three parts: a request line, a set of HTTP headers, and a
request body. The headers and body can be omitted if they're not needed. The request line
consist of an HTTP command, a Uniform Resource Identifier (URI), and a version code.

There are many HTTP commands, but the most common are GET and POST. These are
the only commands supported by Arbortext Publishing Engine.

A GET command requests that the server return the object (usually a file) specified by the
URI. An HTTP GET request does not include a request body.

A POST command requests that the server return the object indicated after doing
something with the request body. An HTTP POST request usually includes a body.

The URI part of an HTTP request can specify a file or a program to be run by the web
server. The program can generate the file to be returned as part of the HTTP response.
The URI can include “query parameters” in a name=value format with the parameters
separated by ampersands (&); if the URI specifies a program, the query parameters are
passed to the program along with the rest of the HTTP request. Each query parameter has
a unique name and a string value. The HTTP standard places no restrictions on parameter
names and values.

The HTTP request headers are also structured as name/value pairs. However, HTTP
headers are defined by the HTTP standard specification. Generally, HTTP headers either
describe the HTTP request body or inform the HTTP server of the kind of response that
the client wants to receive.

The HTTP request body is only needed for POST requests. The request body is a data file
that the server will process according to the request instructions before generating a
response.

HTTP Responses
An HTTP server returns an HTTP response to the HTTP client that made the HTTP
request. The response either confirms that the requested action was performed or returns
information requested by the client.

An HTTP response consists of a status line, a set of message headers, and, possibly a
message body. The status line contains a status code and a phrase indicating the high level
response to the request. Codes and phrases are defined by the HTTP standard
specification The most common code and phrase is 200 OK, which mean that the request
was processed successfully. Other possible values report different kinds of errors.

The message headers in an HTTP response describe the characteristics of the message
body. HTTP response message headers are structured as name/value pairs and are defined
by the HTTP standard specification.

16 Programmer’s Guide to Arbortext Publishing Engine

The message body in an HTTP response, if one is present, provides the data requested by
the HTTP client.

Web Servers
Aweb server is a program that accepts HTTP requests from HTTP clients. When it
receives a request, the web server examines the URI part of the request and responds
accordingly. A URI can specify an action to perform, a file to be returned, or a script or
program that the web server should run to generate the response. After finding the file,
running the program, or performing some other action, the web server generates an HTTP
response and returns it to the client.

Aweb server is not limited to processing requests one at a time. Aweb server is capable
of processing a large number of requests simultaneously.

Java Servlets and Servlet Containers
Java is a popular language for writing programs run by web servers. A servlet is a Java
program that is implemented according to the Java Servlet Specification. Many web
servers know how to run Java servlets. A Java servlet can be implemented once and then
run under many different web servers.

To make a Java servlet available to service an HTTP request, a web server uses a Java
servlet container. A servlet container is a program in which Java servlets can run. The
servlet container provides an environment that complies with the Java Servlet
Specification.

Tomcat is a standalone servlet container supported by the open-source Apache project.
Apache or Microsoft IIS must use run Tomcat in a servlet container separate process.

Basic Flow of Control for the HTTP Protocol
Because Arbortext Publishing Engine is implemented as a Java servlet, a client request
must use the HTTP protocol. The basic flow of control for a web client, a web server, a
Java servlet container, and a Java servlet follows:

1. The client transmits an HTTP request to a web server and waits for a response.

2. The web server receives the request and examines the URI. The URI specifies that
the request should be handled by a Java servlet, so the web server passes the
request to its servlet container.

3. The servlet container receives the request and examines the URI to determine
which servlet should process the request.

a. If the servlet has not yet been loaded, the servlet container loads it and calls the
servlet's initialization method.

Technical Overview of Arbortext Publishing Engine 17

b. The servlet container passes the request to the servlet for processing.

4. The servlet processes the request, generates a response, and passes the response to
the servlet container.

5. The servlet container returns the response to the web server.

6. The web server transmits the response to the client.

7. The client receives the response and makes use of the data it contains.

Arbortext Publishing Engine as a Java
Servlet
Arbortext Publishing Engine is implemented as a Java servlet. The servlet is referred to as
the Arbortext PE Request Manager. Like all servlets, the Arbortext PE Request Manager
is written in Java; it implements the Java interface javax.servlet.http.HttpServlet, and
behaves as required by the Java Servlet Standard.

Internally, the Arbortext PE Request Manager contains a series of components, described
in the following sections, which work together to generate responses to the HTTP
requests delivered by the servlet container in which the Arbortext PE Request Manager is
running.

Arbortext Publishing Engine as a Web
Application
According to the Java Servlet Specification, a web application is a collection of servlets,
HTML documents, and other related components, organized into directories according to
the standard. The Arbortext PE Request Manager is organized as a web application
according to the standard.

Arbortext Publishing Engine as a
Transaction Processor
Arbortext Publishing Engine groups a request it receives and the response it returns into a
transaction. A transaction consists of a request, the eventual response to the request,
information about the request (time submitted, time completed, client identity, and so on).
A transaction can also include trace information (a configurable option) generated as the
response was generated, such as an application log or intermediate files.

The Arbortext PE Request Manager creates a new transaction each time it receives an
HTTP request. It assigns a unique integer called the transaction ID, provides a transaction

18 Programmer’s Guide to Arbortext Publishing Engine

name if one is supplied, and a temporary directory called the transaction directory, to the
transaction. Then, it stores the request in the transaction directory. As Arbortext
Publishing Engine processes the transaction, it adds information to the transaction
directory, including, eventually, the transaction response. After Arbortext Publishing
Engine has completed the transaction and returned the response to the client, it deletes the
transaction directory.

There are two kinds of transactions:

• immediate transaction

The client waits for its response until the transaction completes and the response is
returned.

• queued transaction

Arbortext PE Request Manager returns the transaction ID to the client and saves the
transaction for processing at a later time. The client can submit requests, using the
transaction ID, to determine whether the transaction has completed and to retrieve
the transaction result.

As a transaction is received, executed, and completed, it passes through several
transaction states that describe its condition.

• initializing

The Arbortext PE server is receiving the request.

• waiting

The transaction is waiting to be allocated to an Arbortext PE sub-process (for
immediate requests).

• queued

The transaction was placed in a queue and is waiting to be executed by the Queued
Transaction Scheduler.

• processing

The transaction is being executed by an Arbortext PE sub-process.

• complete

The transaction is finished. A completed transaction can be completed successfully
or completed with errors. Note that if the results is an error report rather than the
expected document, the transaction is still considered complete.

A transaction can also expire while waiting for an Arbortext PE sub-process
allocation (if it’s an immediate transaction).

• cancelled

The transaction has been cancelled.

The transaction lifecycles are as follows:

Technical Overview of Arbortext Publishing Engine 19

• An immediate request transaction follows the lifecycle:

Initializing → Waiting → Processing → Complete

• A queued request transaction follows the lifecycle:

Initializing → Queued → Processing → Complete or Cancelled

Internal Components of Arbortext
Publishing Engine
Arbortext Publishing Engine consists of two major components, the Arbortext PE
Request Manager and a collection of Arbortext PE sub-processes. As described earlier,
the Arbortext PE Request Manager is a Java servlet; it receives HTTP requests from the
servlet container in which it runs and returns a response for each request. Internally, it
consists of a number of components that cooperate in processing each request. The
Arbortext PE Request Manager is designed to be extensible; users can write custom
components that take part in the request-handling process. Such components are called
Dynamic Components.

The Arbortext PE Request Manager and its Dynamic Components have little or no
knowledge of XML technologies. To import, publish, export, and otherwise manipulate
XML documents, the Arbortext PE Request Manager uses separate programs called
Arbortext PE sub-processes. Each Arbortext PE sub-process runs in a separate process.
The Arbortext PE Request Manager maintains a pool of Arbortext PE sub-processes that
are idle, ready to work on its behalf. When, in the course of processing a request, the
Arbortext PE Request Manager determines that it needs some document-manipulation
function performed, it allocates an Arbortext PE sub-process to do so and waits for the
Arbortext PE sub-process to complete its work.

Like the Arbortext PE Request Manager, an Arbortext PE sub-process can be customized.
Users can write Arbortext Publishing Engine applications in several languages. These
applications run in Arbortext PE sub-processes just as Dynamic Components run in the
Arbortext PE Request Manager.

Arbortext PE Request Manager Dynamic
Components
There are three major kinds of Dynamic Components: Cache Managers, Queue Managers,
and Request Handlers. These objects are initialized when the Arbortext PE Request
Manager is loaded and initialized by its servlet container. When the Arbortext PE Request
Manager receives a request, it passes the request to each component in turn, asking the
component to process the request and produce a response. If a component indicates that it
cannot do so, the Arbortext PE Request Manager continues with the next component.
When a component produces a response, the Arbortext PE Request Manager ends the
scan and returns the response to the client.

20 Programmer’s Guide to Arbortext Publishing Engine

Other dynamic Arbortext PE Request Manager components are described in Internal
Components of Arbortext Publishing Engine on page 20.

Arbortext Publishing Engine Cache Managers
A cache manager is an object capable of storing a response to a request and later returning
that response to service a subsequent identical request. When the Arbortext PE Request
Manager presents a request to a cache manager, the cache manager can reply in one of
three ways:

• It can't fulfill requests of that type.

• It has a response stored for the request and provides it to the Arbortext PE Request
Manager.

If a cache manager has a stored response, then the response is transmitted to the
client.

• It doesn't have a response for that request, but it would like to store a copy of the
response when it's available.

If a cache manager wants a copy of the response to store, the Arbortext PE Request
Manager remembers the cache manager when the request is fulfilled.

If no cache manager can provide a response for a request, the Arbortext PE Request
Manager continues to the queue managers.

Arbortext Publishing Engine Queue Managers
A queue manager is an object that can accept a request and save it for execution at a later
time. When the Arbortext PE Request Managerr presents a request, a queue manager can
reply in one of two ways:

• It can't fulfill requests of that type.

• It has queued the request for execution later; it supplies a response to be returned
immediately to the HTTP client.

When a queue manager saves a request, it generates a response that includes the request’s
transaction ID, together with instructions on how the HTTP client can submit another
request at a later time to determine whether the request has been completed and to retrieve
the transaction result. This allows a client to submit a request and receive a very quick
response, rather than waiting (possibly for a very long time) for a transaction to complete
processing.

A Queue Manager stores requests by placing them on queues, as described in Basic Flow
of Control for Queued Requests on page 50. If no queue manager can process a request,
the Arbortext PE Request Manager continues to the request handlers.

Technical Overview of Arbortext Publishing Engine 21

Arbortext Publishing Engine Request Handlers
A request handler is an object capable of generating a response to a request. The
Arbortext PE Request Manager presents a request to each loaded request handler. When
the Arbortext PE Request Manager presents a request, a request handler can reply in one
of two ways:

• It can't fulfill requests of that type.

• It can fulfill the request; it supplies the response to send to the client.

If a request handler produces a response, then the Arbortext PE Request Manager checks
whether any cache manager wants to store that response before returning the response to
the client. If so, the response is passed to the appropriate cache manager.

If no request handler can handle a request, Arbortext PE Request Manager generates an
“unknown request” error response to be returned to the client.

Additional Arbortext PE Request Manager Dynamic
Components
In addition to Cache Managers, Queue Managers, and Request Handlers, the Arbortext
PE Request Manager supports Initializers, Notifiers, Queues, and Request Selectors.
These are all Dynamic Components, so custom versions of these components can be
developed and loaded into the Arbortext PE Request Manager .

Initializers
An initializer is an object that runs during Arbortext PE Request Manager startup.
Initializers prime cache managers, allocate resources, and otherwise set the stage for
request processing. There are two kinds of initializers, blocking and deferred. Blocking
initializers run during startup, after all other components have been initialized but before
the Arbortext PE Request Manager starts accepting client requests. Deferred initializers
run after the Arbortext PE Request Manager starts accepting client requests.

Notifiers
A notifier is an object that is informed by the Arbortext PE Request Manager every time a
transaction changes state. The notifier object can send email, communicate with the client
that submitted the transaction, or take other action.

Queues
A queue is an object that stores queued transactions for execution. Transactions are placed
on a queue by a queue manager. At some point determined by configuration settings, they
are retrieved for execution by the Queued Transaction Scheduler. The queue is
responsible for determining which transactions it will accept and the order in which its

22 Programmer’s Guide to Arbortext Publishing Engine

transactions will execute. According to configuration criteria, it keeps transactions from
executing until a set time or until other conditions are met.

Request Selectors
A request selector is an object that can examine an HTTP request and determine whether
the request meets some built-in or configured criterion. A series of request selectors can
be grouped by And and Or connectors into Test Sets. Test Sets may be used by queue
managers, queues, and subprocess pools to determine whether they can process a request.

Arbortext PE Request Manager Static Components
The static components are distinct parts of Arbortext PE Request Manager, but they are
not Dynamic Components. They cannot be replaced or extended by custom Java code,
although their behavior can be controlled by configuration parameters.

Arbortext Publishing Engine Queued Transaction Scheduler
The Queued Transaction Scheduler is a background process that runs inside the Arbortext
PE Request Manager. It awakens periodically and looks for idle Arbortext PE sub-
processes and queued transactions. If it finds a queued transaction that is is ready to
execute and an idle Arbortext PE sub-process in a sub-process pool that can process that
transaction, it starts the execution of the transaction.

Arbortext Publishing Engine Request Context
The Arbortext Publishing Engine Request Context is a global object that provides
services to Dynamic Components. The Arbortext Publishing Engine Request Context
offers capabilities like allocating temporary files, scheduling clean-up events for a later
time, allocating Arbortext PE sub-processes (described in Arbortext PE sub-process Pools
on page 24) and other utility capabilities used by Dynamic Components.

Configuration data
Almost all of the behavior of the Arbortext PE Request Manager, including loading
Dynamic Components, setting global and component parameters, and setting the
parameters for Arbortext PE sub-process pools, is specified by the configuration
information loaded from the e3config.xml configuration file when Arbortext
Publishing Engine starts. Dynamic Components obtain their parameters from the
configuration file when the Arbortext PE Request Manager initializes them.

Technical Overview of Arbortext Publishing Engine 23

Arbortext PE sub-process Pools
The primary purpose of Arbortext Publishing Engine is the manipulation of documents
using XML and related technologies. The Arbortext PE Request Manager acts as the
facilitator handling requests and responses, but it has no knowledge of XML. XML
processing is performed by Arbortext PE sub-processes.

Each Arbortext PE sub-process is a running instance of Arbortext’s XML processing
engine, with the graphic user interface disabled and additional publishing and
performance capabilities enabled. Groups of Arbortext PE sub-processes are organized
into Arbortext PE sub-process pools. When a dynamic Arbortext PE Request Manager
component determines that it needs the services of an Arbortext PE sub-process, it
invokes a method of the Arbortext Publishing Engine Request Context to obtain an
Arbortext PE sub-process from a particular pool, uses it to perform one or more
operations, and then releases it so that the Arbortext PE Request Manager can use it to
fulfill other requests.

An Arbortext PE sub-process pool is a collection of identical Arbortext PE sub-processes
that are associated by the following:

• a set of request selectors that specify criteria for determining whether the Arbortext
PE sub-processes in the pool should process a given transaction

• a set of parameters that determine how many Arbortext PE sub-processes are in the
pool, how often Arbortext PE sub-processes should be terminated and restarted,
and other behaviors (explained in Arbortext PE sub-process Pool Management on
page 57).

Having multiple Arbortext PE sub-process pools offer two major advantages:

• Pools of Arbortext PE sub-processes can be initialized differently.

• Arbortext PE sub-processes pools can be configured to process different types of
requests.

When a dynamic component (most frequently, a Request Handler) determines that it
needs an Arbortext PE sub-process, it calls an Arbortext Publishing Engine Request
Context routine and passes a reference to the HTTP request being processed. The
Arbortext Publishing Engine Request Context offers the request to each Arbortext PE
sub-process pool until one replies that it's configured to handle that type of request. The
last Arbortext PE sub-process pool queried is always the default pool, which can allocate
an Arbortext PE sub-process to fulfill any request not already handled.

Arbortext PE Applications
An Arbortext PE Application is a program written in Arbortext Command Language
(ACL), Java, JavaScript, or VBScript that runs in an Arbortext PE sub-process. The
Arbortext PE Request Manager invokes an Arbortext PE sub-process to run an Arbortext

24 Programmer’s Guide to Arbortext Publishing Engine

PE Application when it receives a request with HTTP query parameters specifying the
application language and a function or class name. The Arbortext PE Request Manager
passes the entire HTTP request to the Arbortext PE Application. The application is
responsible for constructing a complete HTTP response and returning the response to the
Arbortext PE Request Manager which returns it to the HTTP client.

Arbortext Publishing Engine as a
Document Conversion Server
Arbortext Publishing Engine is distributed with an Arbortext PE Application written in
ACL that facilitates the conversion of a document from one format to another. For
example, an HTTP POST request might pass an XML document and specify that the
document should be converted to PDF using an XSL stylesheet. Arbortext Publishing
Engine makes no assumptions about the client of a conversion request; the client can be
any program prepared to communicate using the HTTP protocol. The 11 Arbortext
Publishing Engine Document Conversion on page 163 provides extensive information.

Arbortext Publishing Engine as a
Publishing Server
Arbortext Publishing Engine is also distributed with an Arbortext PE Application written
in Java that provides publishing services to Arbortext Editor clients. Unlike the
conversion application, the publishing client must be Arbortext Editor. Arbortext Editor
users can specify an Arbortext PE server, then select publishing, import, and export
operations using the Arbortext Editor program. Publishing requests are fulfilled on the
Arbortext PE server.

As part of its publishing service, Arbortext Publishing Engine is distributed with a Cache
Manager, an Initializer, and a Java Arbortext PE Application that gathers information
about the publishing configuration of the Arbortext PE server (such as installed document
types, stylesheets, and so on) and reports that information to Arbortext Editor clients or
Arbortext Publishing Engine administrators.

Arbortext Publishing Engine Java Client
SDK
Arbortext Publishing Engine Java Client Software Developers' Kit allows Java
programmers to transmit HTTP requests to and receive HTTP responses from an
Arbortext PE server. Refer to 13 Using the Java Client SDK on page 199 for information.

Technical Overview of Arbortext Publishing Engine 25

Monitoring and Reporting Using a Web
Browser
Arbortext Publishing Engine has an index page with links that return information and
perform a variety of administrative actions and sample document conversions. After
you've successfully installed and configured Arbortext Publishing Engine, this index page
is available from a web browser. Use a URL that follows the example:

http://servername:port/e3/

In the URL, servername is the name of the Arbortext PE server machine, and port is the
port number the servlet container or web server uses to monitor HTTP requests on its
behalf.

View Arbortext Publishing Engine Information
• The Status link returns a status report. It includes:

– basic installation, system, COM, allowed functions and global parameters
information.

– Arbortext PE sub-process pool status, including whether it's enabled or
disabled, its associated configuration settings, the process IDs and allocation
status of each Arbortext PE sub-process.

26 Programmer’s Guide to Arbortext Publishing Engine

– all configuration settings for caches, queues, request handlers, and request
selectors.

– information on the Queue List, if queues are configured. Information about
individual queues is available from the Queue List page.

– system Environment Variables. If PTC_D_LICENSE_FILE is set, it will be
included in the Environment Variables report.

• The License link retrieves basic information about the installation, as well as the
license source, the user under which Arbortext Publishing Engine is running, and
the number of processor cores and packages on the Arbortext PE server. It also lists
the optional software components installed and whether they are licensed.

A license error report will be returned with the information that PTC_D_
LICENSE_FILE is either missing or set to an incorrect value (and the incorrect
value will be reported).

• The Version link retrieves version information about Arbortext Publishing
Engine and its Arbortext PE sub-processes.

• The Transaction Archive link retrieves information on the transaction
archive, if one has been implemented. More information about individual archived
transactions is available from the Transaction Archive page.

• You can retrieve a report on the Queue List, if queues are configured.
Information about individual queues is available from the Queue List page.

• The Java Properties link returns all information about the JVM.

• The Web Service Definitions link returns the Arbortext Publishing Engine
WSDL definitions.

• You can retrieve any of three variations of the Publishing Configuration report.

• You can retrieve a Usage Report with a summary of clients and transactions,
and usage by client.

• You can run an Application Save to retrieve configuration about Arbortext PE sub-
processes.

• All Available Information returns a zip archive containing all the information
available about Arbortext Publishing Engine listed in this section, as well as the
output from the sample PE applications in the testing section and the Application
Save zip archive.

Administer Arbortext Publishing Engine
You can rescan the publishing configuration information and its cache for use by
Arbortext Editor clients.

You can reload scripts and update cached stylesheets on Arbortext PE server for use by all
clients.

Technical Overview of Arbortext Publishing Engine 27

Test Arbortext Publishing Engine
You can convert a sample document to any of the supported output formats listed.

You can run Arbortext Publishing Engine sample test applications which return basic
information about server configuration. The source code for these sample applications is
available from your installation in PE_HOME\e3\samples, and they're described in the
Programmer's Guide to Arbortext Publishing Engine.

None of the actions available from the Arbortext Publishing Engine index page are
queued.

Logging and Tracking
There are a number of facilities that can be enabled to provide information about how
Arbortext Publishing Engine processes transactions. The following sections describe the
most important mechanisms.

The Servlet Log
Arbortext Publishing Engine uses the Java Apache log4j package to trace its internal
operation. By default, this information is entered in the servlet log. Administrators can
control the level of detail entered in the log by setting the global debug variable to true
in the e3config.xml configuration file. Enabling the debug parameter is the first step
in trying to diagnose problems with the Arbortext Publishing Engine.

With debug set to true, the Arbortext PE Request Manager will make several log
entries for every transaction, specifying the start of each transaction, whether a cache
manager, queue manager, or request handler generated a response, whether the transaction
was queued or processed immediately, how the transaction response was transmitted, and
whether the transaction was archived before it was deleted from the active transaction
area.

The Transaction Archive
The transaction archive stores transactions that have completed. After a transaction’s
response has been transmitted to the HTTP client, the Transaction Archive examines the
transaction and decides whether to store it.

By default, only transactions that generated an error response and transactions that
include an application log or intermediate file are stored in the archive. By default,
transactions are retained for 48 hours, and the transaction archive can occupy up to 500
MB of disk space.

However, you can configure the archive to retain all transactions processed by the
Arbortext PE Request Manager, or to save no transactions at all.

28 Programmer’s Guide to Arbortext Publishing Engine

Application Logs
An application log is a file containing information about how an application performed its
work. The log consists of any number of entries, each marked with a particular severity
(error, warning, information, etc.). The application log is stored as part of the transaction
archive entry for the transaction that invoked the application.

An application makes entries in the application log by making subroutine calls that write
information to the log. In addition, you must configure the Arbortext PE Request
Manager to enable log entries (by default, no log entries are saved). You can do this for
all applications, for all applications written in a particular programming language, or for
individual applications. In each case, you can specify that only application log entries for
a given severity and higher are saved, thereby controlling the amount of detail in the log.
Refer to Configuration Guide for Arbortext Publishing Engine for information on how to
configure these parameters.

Application Intermediate Files
An intermediate file is an open document or a file on disk that an application generates as
part of generating a response to a request. The application can make subroutine calls to
save such files and documents to the transaction archive for debugging purposes. When a
subroutine call is made, the file or document is only saved if the application log setting
for the application allows writing INFO and higher level entries to the application log.

An intermediate file can be any file used in processing the request, including the XML
document created by a content pipeline as part of a publishing operation, a text file passed
as input to a third-party tool, and so forth. Intermediate files are only saved if the
application running on the Arbortext PE server explicitly saves them, so developers must
decide when a file is worth saving and take steps to do so.

Technical Overview of Arbortext Publishing Engine 29

2
Supporting Documentation

For all platforms, Arbortext Publishing Engine documentation is available from Arbortext
Publishing Engine Interactive or an Arbortext Editor client by choosing Help ▶▶Help
Center to access Arbortext Publishing Engine online documentation. You can configure
the Help Center to display just the Publishing Engine product documentation. See the
Help Center online help to learn more about using Help Center.

The following documentation applies specifically to Arbortext Publishing Engine:

• Arbortext Publishing Engine Release Notes

contains general information about what is new or changed this release.

• Installation Guide for Arbortext Publishing Engine

describes installation and licensing.

• Configuration Guide for Arbortext Publishing Engine

describes configuration tasks, files and parameters and values that affect the
Arbortext PE server and its Arbortext PE sub-processes. It also describes the
reporting, monitoring, testing, and troubleshooting operations.

• Programmer's Guide to Arbortext Publishing Engine

describes how to write custom applications for Arbortext Publishing Engine in
Arbortext Command Language (ACL), Java, JavaScript, and VBScript languages.
A programmer would use this documentation in combination with other developer
documentation to implement custom applications.

• Test Utility User's Guide

contains information about how to use the Arbortext Publishing Engine Test Utility
to test your custom applications that will run on your Arbortext PE server.

31

Javadoc for the Arbortext Editor and Arbortext Publishing Engine interfaces is delivered
in the Programming ▶▶Javadoc ▶▶Arbortext Publishing Engine section of Help Center.

The following documentation contains information about using and customizing
Arbortext features as well as information that can help you develop custom applications.

• Arbortext Command Language Reference

introduction and reference to Arbortext Command Language commands, functions,
hooks, callbacks, and set options. Also includes a guide to the Arbortext
Repository API.

• Programmer's Reference

introduction and reference to the AOM, and how to use Java, JavaScript, JScript,
VBScript, COM, and C++ to access the AOM, how to perform basic document
operations and work with events, and includes documentation of W3C and
Arbortext interfaces (and their attributes, enumerations, and methods) supported by
the AOM.

• Customizer's Guide

describes how to configure and customize Arbortext features for use at your site.
Examples of typical customizations are provided throughout the guide.

• Document Types Guide

describes the document types delivered with Arbortext Editor and Arbortext
Publishing Engine, information on working with Arbortext Architect, and details
on creating and working with custom document types.

• Content Management Guide

contains administrative and configuration information for the PTC Server
connection..

• Administrator's Guide

contains administrative and configuration information about customizing your
Arbortext environment, including configuring toolbars, spelling checking,
Arbortext Editor startup, fonts, and publishing. Also contains a reference to
Arbortext environment variables.

• User's Guide to Arbortext Styler

describes how to create and use Arbortext Styler stylesheets and describes each of
the print engines: APP, FOSI, and XSL-FO.

• FOSI Reference

describes how to use FOSI stylesheets, covering topics such as FOSI coding
techniques, using the FOSI Editor, and testing FOSIs.

• Content Pipeline Guide

32 Programmer’s Guide to Arbortext Publishing Engine

describes the content pipeline concepts and describes the components that make up
a pipeline. It provides examples of using AOM and ACL to manipulate filters and
pipelines for publishing.

• Tutorial for Arbortext Import

contains step-by-step tutorials for using Arbortext Import, including the process of
running conversions, building MapTemplates for parsing text files, and building
MapTemplates to parse Word and HTML documents.

• Reference Guide to Arbortext Import

provides instructions on how to create and edit Arbortext Import MapTemplates. It
includes a complete reference to ppXML, the XML document type used by
Arbortext Import to represent different source document types and word processor
formats in a consistent markup language. Map development is typically the process
of converting ppXML markup into user-defined XML document types.

• Arbortext Editor, Arbortext Styler, and Arbortext Architect Release Notes

for Arbortext Publishing Engine, look for information about non-user interface
features and fixes that would apply to the Arbortext PE sub-processes.

• Arbortext's XSL Support

an annotated and excerpted version of the W3C's Extensible Stylesheet Language
(XSL) Version 1.0 Recommendation as permitted by the W3C Intellectual Property
policies for annotations.

Supporting Documentation 33

II
The Arbortext PE Request

Manager

35

3
Understanding the Internal

Structure of Arbortext PE Request
Manager

Initialization.. 38
Request Processing .. 49
Transaction Management.. 53
Arbortext PE sub-process Pool Management... 57
Arbortext PE sub-process Pool Attributes... 63
Arbortext PE sub-process Pool Parameters ... 68
Terminating the Arbortext PE Request Manager .. 68

This section describe the internal structure of the Arbortext PE Request Manager servlet
and discusses how Dynamic Components operate.

37

Initialization
The Arbortext PE Request Manager is implemented as a Java servlet named com.
arbortext.e3.E3servlet. The basic components of the servlet are located in the directory
PE_HOME\e3\e3, which conforms to the definition of a Web Application in the Java
Servlet Specification. The e3\e3\WEB-INF\web.xml contains the basic mappings
that tell the servlet container when to invoke the Arbortext PE Request Manager servlet.
(The web.xml file is described in Configuration Guide for Arbortext Publishing
Engine.) The Arbortext PE Request Manager may be loaded either when the servlet
container starts executing (the default) or when the servlet container receives the first
HTTP request for the Arbortext PE Request Manager.

Basic Flow of Control for Initialization
When the servlet container calls the Arbortext Publishing Engine servlet's init method,
the init method begins by finding the configuration file e3config.xml and parsing the
XML document into a set of Java objects rooted in an instance of the class com.
arbortext.e3cf.E3Config.

The init method continues by creating an instance of the object com.arbortext.e3.
E3RequestContext according to the parameters in e3config.xml. The
E3RequestContext constructor performs the following steps:

1. Builds a map of the global parameters specified in web.xml and e3config.
xml.

2. Examines the global parameter map. If any parameter is not specified, a default
value is stored in the map. As processing proceeds, other values are calculated and
stored in the map.

3. Sets the global debug parameter and debug-verbose flags so that tracing
produces the desired level of detail.

4. Sets global variables for the location of temporary files and directories.

5. Determines the location of the Arbortext PE sub-process installation, either as
specified by the parameter com.arbortext.e3.epicInstallation or relative to the
location of the servlet container's web application directory.

6. Initializes the transaction archive and the directory in which transactions directories
are created.

7. Initializes the com.arbortext.e3.E3Version object with information about the
Arbortext Publishing Engine version, build number, and time and date it was
launched

8. Loads, instantiates, and initializes an object for each component defined in
e3config.xml, in the order shown in Arbortext PE Request Manager
Components on page 40.

9. Runs all blocking initializers.

38 Programmer’s Guide to Arbortext Publishing Engine

10. Starts a background thread to run all deferred initializers.

Components of the same type are initialized in the order they appear in the e3config.
xml configuration file.

For each dynamic component, the com.arbortext.e3.E3RequestContext initializer calls
the object’s init method. Each object can use the services provided by the Arbortext
Publishing Engine Request Context that have already been initialized. Thus, for example,
a cache manager’s init method should not try to allocate an Arbortext PE sub-process
because cache managers are initialized before the Arbortext PE sub-process pools. Since
the initializers run last, they can assume that all other components have initialized and are
available for use.

The process of initializing the Arbortext PE sub-process pools may cause Arbortext PE
sub-processes to start running, meaning an Arbortext PE sub-process will start for each
pool that is not disabled and that has a minSubprocesses parameter greater than zero.

The process of running initializers may result in transactions being submitted to the
request handlers for processing, meaning these transactions look like real transactions
submitted from the network, but in fact they are pseudo-transactions submitted by the
initializers.

When the thread executing the deferred initializers finishes running, it will start the
Queued Transaction Scheduler. From this point, queued transactions may be submitted for
execution.

When the com.arbortext.e3.E3RequestContext initializer returns control to the init
method, the init method will return to the servlet container. From that point forward, the
Arbortext PE Request Manager will be prepared to accept requests from the servlet
container (from network clients on the web). The init returns before the deferred
initializers have completed execution.

If an error occurs during this initialization process, the method com.arbortext.e3.
E3servlet.init will throw a ServletException object. The object tells the servlet container
not to pass any requests to the Arbortext PE Request Manager. Instead, the servlet
container will call com.arbortext.e3.E3servlet.destroy. If another request arrives for the
Arbortext PE Request Manager, the servlet container will attempt to load it again by
calling the init method a second time.

The e3config.xml Configuration File
Every aspect of Arbortext Publishing Engine initialization and its operation is defined by
its configuration file located in the install tree:

PE_HOME\e3\e3\WEB-INF\e3config.xml

The XML document type it complies with is located in:

PE_HOME\doctypes\e3config\e3config.dtd

Understanding the Internal Structure of Arbortext PE Request
Manager 39

The configuration file can be edited using either a text editor or Arbortext Publishing
Engine Interactive. On Windows, you can launch Arbortext Publishing Engine
Configuration program, navigate to the Setup tab, and click Edit Configuration. The
Configuration Guide for Arbortext Publishing Engine guide describes the e3config.
xml file, its configuration settings, and how to edit it. You must restart Arbortext
Publishing Engine for configurations changes to take effect.

The Arbortext PE Request Manager reads e3config.xml and parses its contents into
objects as defined in the Java package com.arbortext.e3cf. During initialization, e3cf
objects are passed to the init method of each dynamic component, so that they may
retrieve their parameters. The e3cf objects are not used after initialization. Instead, the
Arbortext Publishing Engine Request Context object offers methods for locating all
instances of each type of dynamic component.

Almost every element in e3config.xml can have associated parameters. Parameters
can be global or local. Global parameters are specified at the top level (descendants of the
E3Config element). Local parameters are descendants of lower-level elements. Local
parameters apply only to the object within which they are defined.

Every parameter is specified by a Parameter element with name and value attributes. If
a local parameter has the same name as a global parameter, the local parameter value
overrides the global value. For example, if the global parameter debug has the value
false, you could specify a local debug parameter with the value true for a specific
cache manager.

Arbortext PE Request Manager Components
Arbortext PE Request Manager components are declared in the e3config.xml file by
the following elements:

Arbortext PE Request Manager Components

Component Element Interface
Parameter Parameter not a dynamic component

Request Selectors RequestSelectors and
RequestSelector

com.arbortext.e3.
E3RequestSelector

Cache Managers CacheManagers and
CacheManager

com.arbortext.e3.
E3CacheManager

Queue Managers QueueManagers,
QueueManager and
TestSet

com.arbortext.e3.
E3QueueManager

Request Handlers RequestHandlers and
RequestHandler

com.arbortext.e3.
RequestHandler

Arbortext PE sub-process
Pools

SubprocessPools,
SubprocessPool,

not a dynamic component

40 Programmer’s Guide to Arbortext Publishing Engine

Component Element Interface

SubprocessContext and
TestSet

Allowed Functions AllowedFunctions and
ClientFunction

not a dynamic component

Queues Queues, Queue, and
TestSet

com.arbortext.e3.
E3Queue

Notifiers Notifiers, Notifier, and
TestSet

com.arbortext.e3.
E3Notifier

The SubprocessPools element contains a series of SubprocessPool elements. Each
SubprocessPool has SubprocessContext and TestSet child elements as well as many
attributes. For information on the attributes, refer to Arbortext PE sub-process Pool
Management on page 57. The SubprocessContext element supports Parameter child
elements, and their values are passed to every Arbortext PE sub-process in the pool when
it is initialized.

A series of tests can be defined to determine whether a request can be processed by
Arbortext PE sub-processes in the pool. The TestSet element contains a set of Test
elements, which can be grouped by And and Or elements. ATest element refers to a
RequestSelector with an id attribute that matches the name of the test. A test evaluates
to true if its referenced RequestSelector returns true when offered a request for
evaluation. An And element contains Test, And, and Or elements, which means that it
evaluates to true if every element it contains evaluates to true. An Or element
contains Test, And, and Or elements, and it evaluates to true for any element that
evaluates to true.

Global Arbortext PE Request Manager Parameters
You can set the global parameters described in the next several sections using Parameter
elements (descendants of the E3Config element) in e3config.xml. These parameters
control the behavior of the Arbortext PE Request Manager. You can specify additional
global parameters, and their values can be retrieved using E3RequestContext.
getParameter.

The debug and debug-verbose Parameters
If debug is set to true, then log messages with WARN and INFO severity levels are
written to the servlet log. If it is set to false, only FATAL and ERROR level messages
are logged.

If debug-verbose is set to true, then TRACE and DEBUG level log messages are
written.

Understanding the Internal Structure of Arbortext PE Request
Manager 41

Caution

Setting debug-verbose to true includes messages from daemon threads that run every
few seconds, so use this parameter with caution and only during troubleshooting.

Creating Temporary Files
These parameters control how the Arbortext PE Request Manager creates temporary files:

• com.arbortext.e3.tempFileDirectory

is the absolute path to a directory in which all temporary files and directories will
be created by calls to E3RequestContext.createTemporaryFile. Its default is the
value of the Java Virtual Machine java.io.tmpdir system property.

• com.arbortext.e3.tempFilePrefix

specifies a string to be prepended when generating temporary file names. If not
specified, the default is ati.

• com.arbortext.e3.tempFileSuffix

specifies the end string for generating temporary file names. If not specified, the
default is .tmp.

Managing Arbortext PE sub-process Temporary Files
The delete-temp parameter controls whether temporary storage for each Arbortext
PE sub-process is deleted when the sub-process terminates. Setting it to false preserves
Arbortext PE sub-process temporary file storage for debugging.

Caution

Setting delete-temp to false will consume disk space quickly, so don't leave it on
for very long.

Parameters that Control Application Logging
• com.arbortext.e3.applicationLog

Sets the default level for tracing in all applications

• com.arbortext.e3.applicationLog.compose

Sets the log level for publishing requests submitted from an Arbortext Editor client.

• com.arbortext.e3.applicationLog.convert

Sets the log level for requests submitted using the f=convert function.

42 Programmer’s Guide to Arbortext Publishing Engine

• com.arbortext.e3.applicationLog.acl

Sets the log level for tracing in ACL applications

• com.arbortext.e3.applicationLog.acl.package.function

Sets the log level for the ACL application specified by package::function

• com.arbortext.e3.applicationLog.java.class

Sets the log level for the Java application specified by class

• com.arbortext.e3.applicationLog.javascript.function

Sets the log level for the JavaScript application specified by function

• com.arbortext.e3.applicationLog.vbscript.function

Sets the log level for the VBScript application specified by function

These application logging parameters can take the following values. By default, By
default, the value is set to WARN, meaning messages are logged for levels FATAL,
ERROR, and WARN.

• OFF

• FATAL

• ERROR

• WARN

• INFO

• DEBUG

• TRACE

• ALL

In addition, an application log is always included in the set of files saved to a transaction
archive. However, you can specify an additional location for sending application log
messages:

• com.arbortext.e3.applicationLog.display

If set to true (the default), application log messages are written to the Arbortext
Diagnostics window. If set to false, messages are only logged in the transaction
archive.

• com.arbortext.e3.applicationLog.displayPatternLayout

Specifies the Java log4j pattern to use when constructing log entries written to
Arbortext Diagnostics window on Windows.

Managing Transactions
• com.arbortext.e3.transactionDirectory

Understanding the Internal Structure of Arbortext PE Request
Manager 43

specifies the directory where Arbortext Publishing Engine puts transaction
subdirectories. For every request, Arbortext Publishing Engine will create a
subdirectory in this directory and store intermediate files in it, as well as build the
response to the request. The default directory is activeTransactions in the
temporary directory specified by com.arbortext.e3.tempFileDirectory, described
in Configuration Guide for Arbortext Publishing Engine.

• com.arbortext.e3.transaction.maxCompletedTransactionAge

specifies the maximum time, in hours, that a transaction directory will be kept in
the Active Transaction Directory. This parameter applies only to queued
transactions that have been completed but the results have not been retrieved. The
default is 168 hours (1 week).

When Arbortext Publishing Engine finishes processing a queued transaction, it
notes the time. When the interval specified by this parameter has elapsed, Arbortext
Publishing Engine may copy the transaction directory into the transaction archive
(according to the setting of the com.arbortext.e3.transactionArchive.selector
parameter). Either way, the transaction directory is then deleted.

Queued transaction results that have been retrieved are deleted according to the
interval specified by maxRetrievedTransactionAge.

• com.arbortext.e3.transaction.maxRetrievedTransactionAge

This parameter specifies the maximum time, in hours, that a transaction directory
will be kept in the Active Transaction Directory. This parameter applies only to
queued transactions that have been completed, and the results have been retrieved
at least once. The default is 24 hours (1 day).

After Arbortext Publishing Engine finishes processing a queued transaction, it’s
available for retrieval. When Arbortext Publishing Engine receives and processes
the first request to retrieve a queued transaction result, it notes the time. When the
interval specified by this parameter has elapsed, Arbortext Publishing Engine may
copy the transaction directory into the transaction archive (according to the com.
arbortext.e3.transactionArchive.selector parameter). Either way, the transaction
directory is then deleted.

Queued transaction results that have not been retrieved are deleted according to the
interval specified by maxCompletedTransactionAge.

• com.arbortext.e3.defaultTransactionName

This parameter specifies descriptive text for transaction names as the default for all
incoming requests that do not already specify a transaction name. The specification
can include a string $t, that will be replaced by the unique transaction ID assigned
on the Arbortext PE server. The default value is an empty string.

Arbortext Editor clients can specify a transaction name using the Queued
Transaction Names dialog box (available from Publishing Engine category of
Tools ▶▶Preferences) or the Transaction Name field on the File ▶▶Publish set of
dialog boxes.

44 Programmer’s Guide to Arbortext Publishing Engine

Applications can specify a transaction name using the transaction-name
query parameter. Refer to Configuration Guide for Arbortext Publishing Engine for
information.

Managing the Transaction Archive
• com.arbortext.e3.transactionArchive.maxAge

Specifies the maximum time in hours that an entry will remain in the archive before
it is automatically deleted. A value of 0 means never delete archive entries. The
default is 48 hours.

• com.arbortext.e3.transactionArchive.threadInterval

Specifies the number of seconds between execution of the management thread. The
thread checks for transactions completed since the last run, as well as checking for
transactions older that the interval specified by com.arbortext.e3.
transactionArchive.maxAge. The default is 10 seconds.

The thread will also check for transactions that are completed and should be
archived, as well as archived completed requests that should be deleted, as
configured by the maxCompletedTransactionAge and
maxRetrievedTransactionAge parameters.

• com.arbortext.e3.transactionArchive.maxSize

Specifies the maximum size in megabytes that the transaction archive may occupy
on disk. If an entry causes the archive to exceed this size, entries will be deleted,
oldest first, until the archive is less than the maximum size. A value of 0 means no
deletions will be performed based upon maximum size. The default is 500
megabytes.

• com.arbortext.e3.transactionArchive.clearOnStart

Specifies whether to clear the transaction archive when Arbortext Publishing
Engine starts.

– false (the default) keeps archive entries when Arbortext Publishing Engine
starts.

Keeping archived entries means the archive keeps all its entries each time
Arbortext Publishing Engine starts.

– true clears archive entries each time Arbortext Publishing Engine starts.

• com.arbortext.e3.transactionArchive.selector

Specifies the filters for determining which requests are saved in the archive.

– none saves no entries.

– error saves error entries, including requests with a response other than 200,
requests which cause an Arbortext PE sub-process to terminate abnormally, and
requests for which transmission of the response to the client fails.

Understanding the Internal Structure of Arbortext PE Request
Manager 45

– log (the default) saves error entries, as well as requests with log entries or
intermediate files.

– all saves all requests, including successful requests.

• com.arbortext.e3.transactionArchive.enable

– true (the default) makes the transaction archive available.

– false makes the transaction archive unavailable. Use this setting if you have
security concerns about the availability of the archive to unauthorized users.

• com.arbortext.e3.transactionArchiveDirectory

Specifies the directory where archive entries are stored. The default is the
subdirectory named transactionArchive in the temporary directory specified
by com.arbortext.e3.tempFileDirectory.

Managing Queued Transaction Processing
• com.arbortext.e3.transaction.maxConcurrentQueuedTransactions

Specifies the maximum number of queued transactions that may run concurrently.

There are two other possible values, -1 and 0.

If it’s set to -1, the default, there is no specified limit, and the Queued Transaction
Scheduler will execute as many queued transactions as it can match with idle
Arbortext PE sub-processes.

If it’s set to 0, no queued transactions will be allowed whatsoever. Transactions
may still be queued, but they will never be executed.

• com.arbortext.e3.scheduler.threadInterval

Specifies the number of seconds between execution of the Queued Transaction
Scheduler. The thread checks for queued transactions ready for processing and idle
Arbortext PE sub-processes, subject to the value specified for the global
maxConcurrentQueuedTransactions parameter and the
maxConcurrentQueuedTransactions parameter specified for each Arbortext PE
sub-process pool. The default is 1 second.

You should not need to change this value.

In addition, the following parameters apply specifically to a site where Arbortext Editor
clients are using Arbortext PE server to fulfill publishing requests. These parameters
control whether the Arbortext Editor client is allowed to queue a request and to,
optionally, submit information to receive notification about the completed transaction.

The settings for these parameters are included in the Publishing Configuration report that
is sent to Arbortext Editor clients using Arbortext Publishing Engine for publishing. The
Publishing Configuration document establishes the queuing policies for Arbortext Editor
clients. Refer to Configuration Guide for Arbortext Publishing Engine.

• com.arbortext.e3.queueCompositionOperations

46 Programmer’s Guide to Arbortext Publishing Engine

Specifies whether Arbortext Editor clients are allowed to submit queued publishing
requests. The values are always, optional, and never. The value never
means Arbortext Editor clients will never be permitted to queue a request. If
queueCompositionOperations is not specified in e3config.xml, the default is
never. However, e3config.xml ships with this value set to optional,
which lets the Arbortext Editor user choose whether to queue a request.

• com.arbortext.e3.compositionIdentificationPolicy

Specifies a valid HTTP query parameter name used to identify the user making a
publishing request. If it’s not specified, the default value is header. The
e3config.xml file ships with this value set to header.

• com.arbortext.e3.compositionEmailPolicy

Specifies an HTTP query parameter name that will be used to provide an email
address to Arbortext Publishing Engine. This is the parameter that will specify the
email address where the Arbortext PE server will send an email notification, if a
notifier is configured. If the query name is not specified, the default value is an
empty string "", which means no email will be sent.

Locating the Arbortext PE sub-process Installation
The com.arbortext.e3.epicInstallation parameter tells the Arbortext PE Request
Manager where to find the PE_HOME root installation directory. From this directory,
Arbortext PE Request Manager can locate the Arbortext PE sub-processes. By default, the
Arbortext PE Request Manager looks three directory levels above (../../..) the
location of the Arbortext Publishing Engine web application directory where
e3config.xml is located (e3/e3/WEB-INF). If you move the Arbortext Publishing
Engine web application directory from its default location in the PE_HOME install tree,
make sure to set this parameter to reflect the new location.

The Allowed Functions List
The allowed functions list, defined in e3config.xml by the element AllowedFunctions
contains a series of ClientFunction elements. Each ClientFunction element must have
pattern and type attributes. The pattern attribute specifies a string, in which the wildcard
?matches a single character and * matches zero or more characters. The type attribute
must specify one of the four Arbortext PE Application types, java, javascript, acl,
or vbscript.

When the Arbortext PE Request Manager receives an f=acl, f=java, f=javascript, or f=
vbscript request, it consults the allowed function list to see if the function or class query
parameter matches an entry in the allowed function list. If there is no match, then the
operation is disallowed and the Arbortext PE Request Manager returns an error to the
client.

Understanding the Internal Structure of Arbortext PE Request
Manager 47

Dynamic Component Initialization
Each dynamic component must be coded as a Java class that implements one of the
interfaces listed in Arbortext PE Request Manager Components on page 40. Each object
must provide an init method that takes as parameters the Arbortext Publishing Engine
Request Context object being constructed and the com.arbortext.e3cf object that
describes the object being initialized. Because the init method is called while the
Arbortext Publishing Engine Request Context is being constructed, not all of the
Arbortext Publishing Engine Request Context functionality is available. In particular, the
Arbortext PE sub-process pools are initialized after many of the Dynamic Components
have been initialized, so no dynamic component except an initializer can obtain an
Arbortext PE sub-process during its initialization. For example, a cache manager that
wants to use an Arbortext PE sub-process to obtain information can't do so; instead, you
must write an initializer that can run after the Arbortext PE sub-process pools have been
initialized.

Arbortext PE sub-process Pool Initialization
Arbortext PE sub-process pools are started during Arbortext Publishing Engine Request
Context initialization. When an Arbortext PE sub-process pool starts, it reads its
parameters and then launches a background work thread. The thread then launches
Arbortext PE sub-processes, terminates old ones, and controls other behaviors as defined
by the pool parameters in e3config.xml.

Remember that Arbortext PE sub-processes start asynchronously to the rest of
initialization, so there’s no guarantee that an Arbortext PE sub-process will be initialized
and ready to accept requests at any particular time. However, if an initializer calls the
Arbortext Publishing Engine Request Context’s allocateE3Subprocess method, the call
will block until an Arbortext PE sub-process has started and is ready to receive
communication. This means that initializers can use an Arbortext PE sub-process if
necessary.

Initializer Objects
Initializers are dynamically-loaded objects that perform initialization after all other
Dynamic Components and all Arbortext PE sub-process pools have been initialized.
Every initializer must implement the com.arbortext.e3.E3Initializer interface, which has
a single required method init(context, descriptor). The context is the Arbortext
Publishing Engine Request Context object and descriptor is a com.arbortext.e3cf
descriptor containing the initializer's parameters obtained from e3config.xml.

Every initializer is defined in e3config.xml as either blocking (by setting deferred
attribute to no) or deferred (by setting deferred attribute to yes). After starting the
Arbortext PE sub-process pools, the Arbortext PE Request Manager loads and invokes the
init method of every blocking initializer in the order specified in e3config.xml. Just
before returning to the servlet container, the Arbortext PE Request Manager starts a

48 Programmer’s Guide to Arbortext Publishing Engine

background thread that loads and invokes each deferred initializer in the order specified in
e3config.xml. You can circumvent this serial process by implementing a single
initializer that starts any number of background threads, with each thread performing
initialization tasks.

Request Processing
After com.arbortext.e3.E3servlet.init returns, the servlet container can start sending
incoming HTTP requests to the Arbortext PE Request Manager. As mandated by the Java
Servlet standard specification, the servlet container calls the routines doGet or doPost
(depending on the type specified in the HTTP request), and passes standard objects
representing the request and response as parameters.

Basic Flow of Control for Request Processing
Each time it receives an HTTP request from its servlet container, the Arbortext PE
Request Manager performs the following steps to process the request:

1. First, the Arbortext PE Request Manager assigns a transaction ID and creates a
transaction directory. Then it saves the request descriptor into the transaction
directory. If the request includes a body, the Arbortext PE Request Manager reads
the request body from the network and saves it to disk in the transaction directory.

2. Next, the Arbortext PE Request Manager iterates through the cache managers and
calls each cache manager's com.arbortext.e3.E3CacheManager.search method.
Possible results:

• If a cache manager returns a cached response, stop iterating and return the
response to the client.

• If a cache manager doesn't contain the response but wants to cache it,
remember that and continue the iteration.

If more than one cache manager is willing to store the response for a request,
once one is generated, the response will be placed in the first cache manager
willing to cache the response.

3. If no cache manager provides a response, the Arbortext PE Request Manager
iterates through every queue manager and calls each queue manager's com.
arbortext.e3.E3QueueManager.service method. Possible results:

• If a queue manager can't queue the request, continue the iteration.

• If a queue manager returns a response, stop the iteration and return the
response to the client.

Presumably, the response will state that the request was queued for execution
later and provide the Transaction ID so that the client can check for
completion and retrieve the transaction result. The Arbortext Queue Manager

Understanding the Internal Structure of Arbortext PE Request
Manager 49

that ships as part Arbortext Publishing Engine does this. Custom queue
managers must return something, but the content is up to the application.

Also, presumably, the queued transaction will execute at a later time, as
explained in Basic Flow of Control for Queued Requests on page 50.

4. If no cache manager or queue manager provided a response, the Arbortext PE
Request Manager iterates through every Request Handler and calls each request
handler's com.arbortext.e3.E3RequestHandler.service method.

If a request handler returns a response, the Arbortext PE Request Manager places
the response in a cache manager (if one indicated an interest), then stops the
iteration and returns the response to the client.

5. If no cache manager, queue manager, or request handler generated a response, the
Arbortext PE Request Manager generates an error response stating that it was
unable to process the request.

6. At any point in processing, when a response gets generated, the Arbortext PE
Request Manager writes the response descriptor and the response body (if any) to
the transaction directory.

If an error is detected during processing, the error is translated into a response and
saved to the transaction directory.

7. At the end of processing, the response descriptor and response body (if any) are
transmitted back to the client and the request is considered complete.

8. The Arbortext PE Request Manager then passes the completed request to its
Transaction Archive subsystem, which will optionally compress the transaction
directory into a single file and save the file in the transaction archive, and then
delete the transaction directory.

Basic Flow of Control for Queued Requests
This section is based on the behavior of the Arbortext Queue Manager and Arbortext
Queue that are shipped as part of Arbortext Publishing Engine. A custom queue might
implement an entirely different scheme for queuing and processing transactions. A queue
manager’s only required behavior is:

• returning a null response if it doesn’t queue a transaction

• returning some kind of response if it does queue the transaction

The basic flow of control for a queued transaction is identical to that of an immediate
transaction until the transaction is passed to a queue manager. The Basic Flow of Control
for Queued Requests describes what happens in step 3 of Basic Flow of Control for
Request Processing on page 49.

1. If the Queue Manager decides to queue the transaction, it passes the transaction to
each queue in the order they’re defined in e3config.xml, asking each queue
whether it is willing to queue the transaction.

50 Programmer’s Guide to Arbortext Publishing Engine

If no queue accepts the transaction, the Queue Manager returns an error response to
the Arbortext PE Request Manager and it continues to the Request Handlers
(picking up at step 4 of Basic Flow of Control for Request Processing on page 49).

If the Queue Manager finds a queue willing to accept the transaction, it places the
transaction on the queue and sets a response to be returned to the client.

2. Once a transaction is placed on a queue, the queue works with the Queued
Transaction Scheduler to determine when the transaction will be processed. The
Queued Transaction Scheduler is a daemon thread that awakens periodically and
asks each Arbortext PE sub-process pool to allocate an otherwise idle Arbortext PE
sub-process. If the allocation request succeeds, the Queued Transaction Scheduler
asks each queue whether it has a transaction ready to execute that can run in the
Arbortext PE sub-process pool of the allocated Arbortext PE sub-process. If so, the
Queued Transaction Scheduler starts the transaction execution. If not, the Queued
Transaction Scheduler releases the Arbortext PE sub-process and continues to the
next Arbortext PE sub-process pool.

3. To execute a queued transaction, the Queued Transaction Scheduler offers the
transaction to each Request Handler in the order they’re defined in e3config.
xml.

If a Request Handler accepts the transaction for processing, the request Handler
processes the request just as it would if it received a request for immediate
processing.

If no Request Handler is willing to take the queued request, the Queued Transaction
Scheduler generates an error response for the transaction.

After either of these events, the transaction is marked as complete.

4. Once a queued transaction has been completed, its Transaction Directory contains
the same response that would have been returned to the client had the transaction
not been queued (an immediate transaction). An HTTP client can retrieve the
response by using the web interface or issuing an f=qt-retrieve request. If the
response is retrieved, the Arbortext PE Request Manager notes the retrieval.

The transaction directory is deleted from the Arbortext PE server according to
which of the following occurs:

• If a client retrieves the transaction response, the transaction is deleted after
the time indicated by the global parameter com.arbortext.e3.
maxRetrievedTransactionAge set in e3config.xml.

• If no client retrieves the transaction response, the transaction is deleted after
the time indicated by the global parameter com.arbortext.e3.
maxCompletedTransactionAge set in e3config.xml.

Understanding the Internal Structure of Arbortext PE Request
Manager 51

More About Queues and the Queued Transaction
Scheduler
The operation of the Queued Transaction Scheduler is constrained by:

• the com.arbortext.e3.maxConcurrentQueuedTransactions global parameter,
which limits the number of queued transactions that can be executed
simultaneously.

• each Arbortext PE sub-process pool’s maxConcurrentQueuedTransactions
attribute, which limits the number of subprocesses from that pool that can be
allocated to executing queued transactions.

Each queue object determining whether transactions are eligible for execution and for
determining the order in which their transactions execute.

The Arbortext Queue shipped with the product can be configured to :

• allow transactions to execute only on specified days as well as during specified
times of day.

• require that a transaction does not start until transactions higher in the queue have
started or until transactions higher in the queue have finished executing.

• limit the number of transactions it contains that can execute simultaneously.

• sort transactions into priority order, either based upon an explicit parameter when
the transaction’s request is transmitted to Arbortext PE Request Manager or as
specified from a Queuing administration web page.

It is possible to configure several separate instances of the Arbortext Queue in
e3config.xml, each accepting different transactions and having different attributes, so
that different kinds of transactions are executed according to different rules. All the
queuing configuration parameters are explained in Configuration Guide for Arbortext
Publishing Engine.

Arbortext Publishing Engine Request Context
Object
The Arbortext Publishing Engine Request Context is an object that implements the Java
interface com.arbortext.e3.E3RequestContext. The Arbortext Publishing Engine
Request Context object is passed to the initialization method of every dynamic
component object. Dynamic Components should save the object for use during request
processing. The Arbortext Publishing Engine Request Context object offers the following
capabilities:

• scheduling deferred cleanup tasks

• allocating Arbortext PE sub-processes to requests

• creating mock HTTP requests for internal use

52 Programmer’s Guide to Arbortext Publishing Engine

• allocating temporary files

• accessing the allowed function list

• accessing global parameters

• accessing all Dynamic Components

• accessing all Arbortext PE sub-process pools

• accessing the Java Servlet configuration and context objects

• accessing version information for both the Arbortext PE Request Manager and
Arbortext PE sub-processes

• providing log status and debug information

Transaction Management
Transaction management allocates transaction IDs and transaction directories when the
Arbortext PE Request Manager receives a request to process, and it archives or deletes
transaction directories after a request is complete. The transaction configuration
parameters are described in detail in Configuration Guide for Arbortext Publishing
Engine.

Transaction IDs, Names, and Directories
When the Arbortext PE Request Manager receives a new request, it allocates a unique
transaction ID, creates a transaction directory (for active transactions), and saves the
request, including the request body, in the transaction directory. Transaction IDs are
positive integers that are not reused, even when Arbortext Publishing Engine is restarted.

Each transaction can have an optional name to specify descriptive text to aid in
identifying it. Arbortext Editor clients can specify a transaction name using the Queued
Transaction Names dialog box (available from Publishing Engine category of Tools ▶▶
Preferences) or the Transaction Name field on the File ▶▶Publish set of dialog boxes.
The query parameter, transaction-name, allows an application to provide a
transaction name as part of its HTTP request. The transaction-name value can
include a string $t, to be replaced by the unique transaction ID assigned on the Arbortext
PE server. Names can only be unique if they include the $t string, so descriptive text
alone is not a reliable way to make a name unique.

Each transaction has its own directory and contains only information associated with that
transaction. Transaction directories are all created as subdirectories of the location
specified by the parameter com.arbortext.e3.transactionDirectory. Each directory name
follows the format rq_n, where n is the transaction ID.

When the Arbortext PE Request Manager finishes processing an immediate transaction
and the transaction meets the criteria specified by the parameter com.arbortext.e3.

Understanding the Internal Structure of Arbortext PE Request
Manager 53

transactionArchive.selector, the transaction directory is copied (and compressed) into a
transaction archive entry. Then the transaction directory and its contents are deleted.

The transaction directory for a queued transaction is not deleted immediately to give the
client that submitted the transaction time to retrieve the result. The transaction is deleted
either upon explicit request by the user or when one of the following criteria is satisfied:

• If a client retrieves the transaction response, the transaction is deleted after the time
indicated by the global parameter com.arbortext.e3.
maxRetrievedTransactionAge set in e3config.xml. The default is 24 hours.

• If no client retrieves the transaction response, the transaction is deleted after the
time indicated by the global parameter com.arbortext.e3.
maxCompletedTransactionAge set in e3config.xml. The default is 7 days.

If the transaction is to be archived in either case, it is archived just before the transaction
directory is deleted.

Transaction States
Every transaction handled by Arbortext Publishing Engine has an associated transaction
state that describes its current status. The transaction lifecycles are as follows:

• An immediate request transaction follows the lifecycle:

Initializing → Waiting → Processing → Complete

• A queued request transaction follows the lifecycle:

Initializing → Queued → Processing → Complete or Cancelled

• initial

When Arbortext PE Request Manager receives a request and is creating the
transaction ID and transaction directory, it places the transaction in the
initializing state, where it remains while the Arbortext PE Request Manager
passes the transaction to each cache manager and queue manager.

• waiting

The transaction is waiting to be allocated to an Arbortext PE sub-process (for
immediate requests).

While a Request Handler attempts to find and allocate an Arbortext PE sub-process
willing to process the transaction, the transaction state is set to waiting.

A queued transaction will never enter the waiting state, because an Arbortext PE
sub-process is allocated before the transaction would start executing.

• queued

The transaction was placed in a queue and is waiting to be executed by the Queued
Transaction Scheduler.

54 Programmer’s Guide to Arbortext Publishing Engine

If a Queue Manager finds a queue that accepts an incoming request, the transaction
state is set to queued.

• processing

The transaction is expected to be handled by an Arbortext PE sub-process.

If no Cache manager or Queue Manager supplies a response, the transaction state is
set to processing and the transaction is passed to the Request Handlers.

While a Request Handler attempts to allocate an Arbortext PE sub-process, the
transaction state is set to waiting. Then it’s set back to processing when the
Arbortext PE sub-process, has been allocated.

For queued transactions, the Queued Transaction Scheduler decides when to
execute a transaction. When it decides a transaction can be processed, the
transaction state changes from queued to processing.

• complete

The transaction is finished. A completed transaction can be completed successfully
or completed with errors. Note that if the results is an error report rather than the
expected document, the transaction is still considered complete.

If a Cache Manager supplies a response to an incoming request, the transaction
state is set to complete.

If a Request Handler processes the transaction, or if no Request Handler is able to
do so, the transaction state is set to complete.

For a queued transaction, the transaction state changes to complete after it’s
processed. If a queued transaction is cancelled, either before execution starts or
during execution, its state is set to cancelled

A transaction can also expire while waiting for an Arbortext PE sub-process
allocation (if it’s an immediate transaction).

• cancelled

For queued transactions, the transaction has been cancelled.

Before or during the execution of a queued transaction, a transaction may be
cancelled by an Arbortext Publishing Engine administrator from the queuing web
page or by an f=qt-cancel request. In either case, the transaction state is set to
cancelled. If the transaction has not yet started execution, it will never start. If it
is running, then its Arbortext PE sub-process will be terminated and a new
Arbortext PE sub-process started, if necessary (to satisfy the minimum Arbortext
PE sub-process configured in the appropriate Arbortext PE sub-process pool) and
the transaction results, if any, will be discarded.

The Arbortext PE Request Manager will fabricate a response for the request and
send an HTML page stating that the transaction was cancelled. The cancelled
state is like the complete state in the sense that no further processing will be
performed.

Understanding the Internal Structure of Arbortext PE Request
Manager 55

The transaction state does not indicate success or failure of a transaction.

Holding Transactions
Normally, when a transaction is placed on a queue, it is eligible for execution as soon as
the Queued Transaction Scheduler is able to find an idle Arbortext PE sub-process in an
Arbortext PE sub-process pool that can accept the transaction. However, a transaction
may be marked hold, which makes it ineligible for execution until the hold flag is
cleared. A transaction may be held or released at any time by an Arbortext Publishing
Engine administrator using the Transaction List web page. A transaction may also be
automatically held by a queue that is configured to do so. If a transaction is executing,
setting its hold flag will have no effect unless the Arbortext Publishing Engine is
restarted before the transaction finishes executing. If the Arbortext Publishing Engine is
restarted, the hold flag will prevent the Queued Transaction Scheduler from executing
the transaction. Transaction configuration and administrative actions are explained in
Configuration Guide for Arbortext Publishing Engine.

Transaction Archive Entries
Each entry in the transaction archive is a zip archive that contains all of the files that were
in the transaction directory at the time the transaction was deleted from the active
transaction directory. Each entry has a name of the form rq_n.zip, where n is the
transaction ID. Transaction archive entries are all located in the directory specified by the
parameter com.arbortext.e3.transactionArchiveDirectory in e3config.xml.

Limiting the Size of the Transaction Archive
Even as a zip archive, a transaction archive entry may consume a substantial amount of
disk space. There are three mechanisms available to avoid filling the file system.

• Filter which transactions are stored in the archive by setting the com.arbortext.e3.
transactionArchive.selector parameter.

– none saves no entries

– error saves error entries

– log (the default) saves error entries, as well as requests with log entries or
intermediate files

– all saves all requests, including successful requests

• Control how long a transaction will remain in the archive by setting the com.
arbortext.e3.transactionArchive.maxAge. Transactions older than the specified
duration will be deleted.

• Specify the maximum amount of disk space that the archive can occupy by setting
the com.arbortext.e3.transactionArchive.maxSize parameter. If the archive

56 Programmer’s Guide to Arbortext Publishing Engine

grows larger than the specified limit, oldest transactions are deleted to bring the
spaced consumed within the maximum level.

Disabling the Transaction Archive
The transaction archive will contain request and response data for each transaction it
contains. If this poses a security risk, you should disable the archive entirely by setting the
com.arbortext.e3.transactionArchive.selector parameter to none.

Programming Considerations
Each time a transaction finishes executing, the transaction archive management thread
may try to copy all of the files in the transaction's directory to a transaction archive entry
(if configured to do so) and then tries to delete the transaction directory. If any file in the
transaction directory is open for writing or reading, the transaction archive management
thread will be unable to delete the transaction directory and unable to copy the file into
the transaction archive. An open, locked file means the management thread will be unable
to delete the transaction directory.

The most likely cause of a locked file is an application running in an Arbortext PE sub-
process that opens a file and fails to close it. When you develop a custom application, you
should check the Arbortext PE Request Manager's log for errors stating that files you
open could not be read or deleted as part of testing your application. The management
thread will keep trying to copy and delete the files in question at ten second intervals, and
the messages in the log will be repeated each time it does so, so the log entries should be
apparent.

Retrieving Information from the Transaction Archive
You can obtain summary information about the transaction archive using the Transaction
Archive link from the Arbortext Publishing Engine index page. From the summary page,
you can retrieve detailed information about any archived transaction, delete transactions,
and retrieve one or more transactions as zip archives to review.

Arbortext PE sub-process Pool
Management
A subprocess pool is a collection of identical Arbortext PE sub-processes. Each Arbortext
PE sub-process pool has a unique name, a collection of attributes that describe the pool's
behavior, a set of parameters that are passed to every Arbortext PE sub-process in the
pool, and a collection of rules that determine which HTTP requests can be processed by
Arbortext PE sub-processes in the pool.

Support for multiple Arbortext PE sub-process pools offer two major advantages:

Understanding the Internal Structure of Arbortext PE Request
Manager 57

• Pools of Arbortext PE sub-processes can have different parameters, making it
possible to have groups of Arbortext PE sub-processes with different behaviors.

• Arbortext PE sub-processes pools can be configured to reserve performance
capacity by ensuring that requests of a particular type don't consume all available
Arbortext PE sub-processes.

Each Arbortext PE sub-process pool provides the following capabilities:

• ensuring that a configured minimum number of Arbortext PE sub-processes are
running.

• starting additional Arbortext PE sub-processes (up to a configured maximum
number) upon request.

• limiting the number of Arbortext PE sub-processes that can be used to process
queued transactions.

• terminating any Arbortext PE sub-process that fails to respond to a request from the
Arbortext PE Request Manager after a configured period of time.

• terminating Arbortext PE sub-processes that have been idle for more than a
configured maximum period of time.

• terminating an Arbortext PE sub-process and starting a new one (between requests
to avoid disruption of processing) if an Arbortext PE sub-process has been running
for more than a configured maximum period of time.

Terminating an Arbortext PE sub-process avoids possible consumption of resources
that could accumulate over time.

• returning messages that a request has failed after a configured interval if all
Arbortext PE sub-processes are busy and the maximum number of Arbortext PE
sub-processes are running.

Arbortext PE sub-process Allocation
There are several ways to allocate an Arbortext PE sub-process. The most common way
to allocate an Arbortext PE sub-process follows:

1. A dynamic component makes a call to the com.arbortext.e3.E3RequestContext.
allocateE3Subprocess method; the call takes the HTTP request as a parameter.
The allocateE3Subprocess method queries every configured Arbortext PE sub-
process pool, calling each pool's com.arbortext.e3.E3SubprocessPool.
testRequest method. The testRequest determines whether the Arbortext PE sub-
processes in that pool are supposed to handle requests like the one specified in the
HTTP request.

If the response is true, the subprocess pool attempts to allocate an Arbortext PE
sub-process to service the request according to the next steps.

58 Programmer’s Guide to Arbortext Publishing Engine

If the answer is false, allocateE3Subprocess continues to query the next
Arbortext PE sub-process pool in the list.

2. If a true response is returned for testRequest, then allocateE3Subprocess calls
the Arbortext PE sub-process pool's allocate method. The allocate method
eventually either returns an Arbortext PE sub-process object or throws an exception
after processing the following:

a. The Arbortext PE sub-process pool begins the allocation process by checking
for any idle Arbortext PE sub-processes. If so, the one idle for the shortest time
is allocated. If not, the Arbortext PE sub-process pool checks whether the
configured maximum number of Arbortext PE sub-processes are running. If
not, it starts a new one and, when it is ready to accept requests, returns the
Arbortext PE sub-process object.

b. If all Arbortext PE sub-processes in the pool are busy and the pool is
configured to cascade to another pool, allocate returns the result of the
cascaded pool's allocate method.

c. If all Arbortext PE sub-processes in a pool (and its cascaded pools) are busy
and no additional ones can be started, the allocate method waits until either an
Arbortext PE sub-process is no longer busy or the waiting period expires
(explained in The maxSubprocessWait Attribute on page 66). If an Arbortext
PE sub-process is freed during the waiting period, allocate returns its object.

3. If, after this processing, no Arbortext PE sub-processes are found, allocate throws
an exception and transmits an “All Arbortext PE sub-processes are currently busy”
error.

Arbortext PE sub-processes are allocated to process queued transactions by the Queued
Transaction Scheduler.

1. The Queued Transaction Scheduler begins by asking an Arbortext PE sub-process
pool for an idle Arbortext PE sub-process. The Arbortext PE sub-process pool may
start a new Arbortext PE sub-process if there are fewer than the maximum set by
the maxSubprocesses parameter (see The minSubprocesses and maxSubprocesses
Attributes on page 64). However, the scheduler will not wait for an Arbortext PE
sub-process to become free if the maximum number of Arbortext PE sub-processes
are running and none are idle.

2. When the Queued Transaction Scheduler starts the execution of a queued
transaction, it associates the allocated Arbortext PE sub-process with the
transaction, so that any request to allocate an Arbortext PE sub-process by the
queued transaction is satisfied by the transaction that was just allocated. Any
attempts to acquire an Arbortext PE sub-process by a queued transaction are
ignored. The allocated Arbortext PE sub-process is released by the Queued
Transaction Scheduler after the queued transaction finishes executing.

An alternate way to allocate an Arbortext PE sub-process to an immediate request is by
using any dynamic component running in the Arbortext PE Request Manager to allocate
an Arbortext PE sub-process by querying the list of configured pools directly. The

Understanding the Internal Structure of Arbortext PE Request
Manager 59

dynamic component can call the pool's allocate method, which bypasses the check for
whether a pool should process a particular request. Use this approach with caution.

Matching Arbortext PE sub-processes with
Requests
Whenever a dynamic component needs an Arbortext PE sub-process to service a request,
it calls the com.arbortext.E3RequestContext.allocateE3Subprocess method, passing
the request as a parameter. allocateSubprocess in turn, calls the method com.arbortext.
e3.E3SubprocessPool.testRequest for each Arbortext PE sub-process pool until a pool
returns true, again passing the request as a parameter. The default Arbortext PE sub-
process pool can handle every request; its response to testRequest is always true. Every
other Arbortext PE sub-process pool evaluates the request against the Arbortext PE sub-
process pool's configured TestSet.

ATestSet is the equivalent of a parenthetical boolean expression containing any number
of Test elements grouped by And and Or operators. Each Test element refers to a
Request Selector. A Request Selector is a dynamic component that examines a request
and determines whether the request matches a predefined criteria.

Each Test element specification must include a name attribute that identifies a
RequestSelector. Several Test elements may reference the same RequestSelector.

Each RequestSelector is an object implementing the com.arbortext.e3.
E3RequestSelector interface, which has a single method called test. The test method
takes an HTTP request as a parameter and returns true or false.

When configuring a TestSet, keep in mind:

• ATestSet or And element returns true if every Test, And, and Or element it
contains returns true. Remember that And elements can be nested, so a true
response for a lower level test may be eventually superseded by a higher level
false response after all the And conditions are evaluated.

• An Or element returns true if any Test, And, or Or element returns true.

Given these assumptions, the testRequest method passes the current HTTP request to the
test structure built from the subprocess pool's TestSet element. The TestSet structure is
evaluated like a logical expression that returns the result from testRequest (true or
false).

Arbortext PE sub-process Pool Work Thread
Each Arbortext PE sub-process pool starts a background work thread that runs
periodically and attempts to perform routine maintenance. The interval between runs is
configured in the workThreadInterval attribute of each SubprocessPool element in
e3config.xml. The default is every 5 seconds. Each time it runs, a work thread
checks for the following items. Descriptions of each item follows.

60 Programmer’s Guide to Arbortext Publishing Engine

• unusable Arbortext PE sub-processes

• Arbortext PE sub-processes that should be terminated

• Arbortext PE sub-processes that have exceeded the allowed idle or lifetime period

• deferred requests to delete directories

• whether a new Arbortext PE sub-process should be started

Detecting Hung Arbortext PE sub-processes
Each time the Arbortext PE Request Manager makes a call to an Arbortext PE sub-
process, the pool records the time. The work thread checks every busy Arbortext PE sub-
process in its pool to see whether the time elapsed from the start of the operation has
exceeded the configured maxBusyInterval attribute value (explained in The
maxBusyInterval Attribute on page 65). If it has, the work thread sets a flag. Later, the
work thread notifies the operating system to terminate these flagged Arbortext PE sub-
processes. As a result, the Arbortext PE Request Manager request thread waiting for a
response from an unusable Arbortext PE sub-process receives an error.

Detecting unusable Arbortext PE sub-processes avoids Arbortext PE sub-process software
malfunctions that can:

• permanently consume Arbortext PE Request Manager capacity (infinite loops,
indefinite waits)

• result in no response being returned to a waiting client

However, it is possible that an Arbortext PE sub-process can't respond before the
maxBusyInterval elapses, because it is processing a request that takes a long time.
During your site setup, evaluate the requests likely to be submitted, and set the
maxBusyInterval to a value that will allow lengthy jobs to complete.

Terminating Unusable Arbortext PE sub-processes
Each Arbortext PE sub-process has a flag which is set any time it returns a fatal error.
When a work thread detects an unusable Arbortext PE sub-process, it sets a flag that
records the state of the Arbortext PE sub-process. At a later time, the work thread scans
all running Arbortext PE sub-processes and requests the operating system to terminate
any with the hung or fatal flag set to true.

Terminating Expired Arbortext PE sub-processes
Each time the work thread runs, it examines idle Arbortext PE sub-processes in its pool. If
any idle Arbortext PE sub-process is older than the configured maxLifetime period
(explained in The maxLifetime Attribute on page 66), the work thread terminates the
Arbortext PE sub-process.

Understanding the Internal Structure of Arbortext PE Request
Manager 61

In addition, if the longest idle Arbortext PE sub-process has been idle longer than the
configured maxIdleInterval period, the work thread terminates that one as well, provided
there are more than the minimum number of Arbortext PE sub-processes running.

In either case, if the number of activated Arbortext PE sub-processes drops below the
minimum configured number of Arbortext PE sub-processes (explained in The
minSubprocesses and maxSubprocesses Attributes on page 64), the work thread starts a
new Arbortext PE sub-process.

Deleting Temporary Directories
When a work thread terminates an Arbortext PE sub-process, the pool queues deletion of
its temporary directory. Each pool maintains a list of deferred directory deletion requests.
However, directory deletion is performed after the Arbortext PE sub-process has been
removed from the operating system. The deletion is attempted every time the work thread
runs until the deletion succeeds. Temporary directory deletion releases the disk space used
for processing requests that the Arbortext PE sub-process had consumed.

Starting New Arbortext PE sub-processes
A new Arbortext PE sub-process can be started when the request load increases and there
are fewer than the configured maximum number running. In addition, the pool work
thread checks whether the configured minimum number of Arbortext PE sub-processes
are running. If fewer than the minimum number are running, the work thread starts
another Arbortext PE sub-process.

Communicating with Arbortext PE sub-processes
When com.arbortext.e3.E3RequestContext.allocateE3Subprocess allocates an
Arbortext PE sub-process, it returns a reference to an object that implements the com.
arbortext.e3.E3Subprocess interface. This interface has three methods.

• deallocate returns the Arbortext PE sub-process to its pool for allocation to another
request.

• executeCommand(String cmd) method passes the ACL command cmd to the
Arbortext PE sub-process for execution by the ACL command interpreter. This
method does not return a value, but it will throw an exception if execution fails.

• evaluateFunction(String function) method passes the ACL expression function,
to the Arbortext PE sub-process for evaluation. This method returns a string
containing the result of the function. The function must include a function name
(including package name, if appropriate), parentheses, and parameters, all
expressed as strings.

62 Programmer’s Guide to Arbortext Publishing Engine

Arbortext PE sub-process Deallocation
Once it has been allocated to a dynamic component, an Arbortext PE sub-process can
only be used by the code that allocated it. To release the Arbortext PE sub-process, the
component that called the allocate method must subsequently call the com.arbortext.e3.
E3Subprocess.deallocate method. To ensure the Arbortext PE sub-process is released,
placing thedeallocate call inside the finally block, which releases it regardless of any
exceptions that might be thrown in the try block.

Deallocation is not optional. If a dynamic component fails to deallocate an Arbortext PE
sub-process, the Arbortext PE sub-process will never become usable for other purposes.

Arbortext PE sub-process Pool Attributes
The attributes that define the Arbortext PE sub-process pool's behavior are explained in
the following sections. The complete set of parameters and attributes for Arbortext PE
sub-process pools are documented in Configuration Guide for Arbortext Publishing
Engine.

The id Attribute
The id attribute of an Arbortext PE sub-process pool provides an optional unique
identifier. This attribute only needs to be specified if another Arbortext PE sub-process
pool refers to this one in its cascade attribute.

The cascade Attribute
This optional attribute specifies the value of the id attribute for another Arbortext PE sub-
process pool that can take overflow of processing requests. The cascade attribute allows
one pool to take the overflow from another to improve servicing requests. If the Arbortext
PE sub-process pool being queried determines that it can accept an HTTP request, but no
Arbortext PE sub-processes are available and no additional Arbortext PE sub-processes
can be started, the pool will pass the request to the pool identified by its cascade attribute.
You can configure a series of pools to cascade from one to another, where pool A can
cascade to pool B, pool B can cascade to pool C, and so on.

The enabled Attribute
This optional attribute specifies whether the Arbortext PE sub-process is available for
taking requests. The default value is yes. If enabled set to no, the Arbortext PE sub-
process pool is ignored and it doesn't start any Arbortext PE sub-processes regardless of
its parameter settings. You can set enabled to no to temporarily disable a pool without
needing to delete the pool entry from the e3config.xml configuration file.

Understanding the Internal Structure of Arbortext PE Request
Manager 63

The default Attribute
The default attribute has a default value of no. If set to yes, the Arbortext PE sub-
processes can service any HTTP request. If any TestSet elements are defined for this
Arbortext PE sub-process pool, they are ignored.

As described in Arbortext PE sub-process Allocation on page 58, when a request handler
calls E3RequestContext.allocateE3Subprocess, it passes the current HTTP request. The
Arbortext Publishing Engine Request Context passes the HTTP request to each Arbortext
PE sub-process pool defined in e3config.xml, asking whether it can fulfill the
request. The Arbortext PE sub-process pool with default set to yes always responds that
it can service the request.

Be sure to give only one Arbortext PE sub-process pool the yes value for the default
attribute. The pools are queried in the order they're configured in e3config.xml, so
make sure it's the last pool configured in the SubprocessPools section of e3config.
xml. Because the default pool handles all HTTP requests, any pool configured after it
will never be asked to handle a request.

The minSubprocesses and maxSubprocesses
Attributes
These attributes define the number of Arbortext PE sub-processes running in a pool. The
minSubprocesses attribute sets the minimum number of Arbortext PE sub-processes that
will be started and continue to run. The maxSubprocesses attribute sets the maximum
number of Arbortext PE sub-processes that can run in a pool when conditions controlled
by other configuration settings are met.

When an Arbortext PE sub-process pool initializes, it starts Arbortext PE sub-processes
until the minimum number have been started. If a pool terminates an Arbortext PE sub-
process and causes the number running to drop below the minimum number configured
(refer to The maxIdleInterval Attribute on page 65 and The maxLifetime Attribute on
page 66’ for information on configuring terminations), the pool will immediately start a
new Arbortext PE sub-process.

The maximum number of Arbortext PE sub-processes must be greater than the minimum
number to start additional Arbortext PE sub-processes if needed to satisfy requests. The
pool can't exceed the maximum number of Arbortext PE sub-processes, which counts
both allocated and idle Arbortext PE sub-processes in the pool.

The default value for both minSubprocesses and maxSubprocesses is 1. Specifying a
value less than zero or setting maxSubprocesses less than minSubprocesses is an error.

Ordinarily, set the minimum and maximum numbers of Arbortext PE sub-processes to the
same value to optimize performance. An extra Arbortext PE sub-process consumes a
certain amount of memory, but even if it is seldom or never asked to service a request, it's
a small penalty. If you specify starting a small number of Arbortext PE sub-processes and
allocate more as needed, consider the overhead associated with startup and initialization
that can delay fulfilling a request.

64 Programmer’s Guide to Arbortext Publishing Engine

The maxBusyInterval Attribute
This attribute specifies the number of seconds that the Arbortext PE sub-process pool
work thread (explained in Arbortext PE sub-process Pool Work Thread on page 60) will
wait for an Arbortext PE sub-process response to be returned to the Arbortext PE Request
Manager. The default value is 1800 seconds (30 minutes). If an Arbortext PE sub-
process does not respond with a result before this interval elapses, the Arbortext PE sub-
process pool assumes that the Arbortext PE sub-process is not usable and terminates it.
An error will be returned that is usually transmitted to the HTTP client making the
request.

If processing a request could take a significant amount of time, increase the value
accordingly to be sure the Arbortext PE sub-processes can produce the result in the
allotted time. For example, formatting a large document or one with many graphics could
take a long time, and if the wait period elapses, the Arbortext PE sub-process could
terminate before it finishes formatting and publishing the document.

If you want to disable the wait process because you know processing requests will take a
very long time, you can set this attribute to zero. In this case, the work thread will never
terminate an Arbortext PE sub-process for failing to respond.

The maxConcurrentQueuedTransactions Attribute
This attribute specifies the maximum number of Arbortext PE sub-processes that the
Queued Transaction Scheduler can use to execute queued transactions. By default, this
parameter is set to -1, meaning that every Arbortext PE sub-process in the pool can be
allocated to the Queued Transaction Scheduler. If this attribute is set to 0, then no
Arbortext PE sub-processes in the pool will ever be allocated to the Queued Transaction
Scheduler. You can set maxConcurrentQueuedTransactions to 0 to dedicate the
Arbortext PE sub-process pool to processing only immediate transactions.

The maxIdleInterval Attribute
This attribute specifies the number of seconds after which an Arbortext PE sub-process
will be terminated if it's not allocated to serving a request. Termination only occurs if
more than the minimum number of Arbortext PE sub-processes are running. The default
value 0 disables termination.

When the request load is sporadic, consider the delay associated with startup and
initialization each time the load increases. Disabling this attribute optimizes the ability to
service requests and avoids the overhead associated with repeated startups that can delay
fulfilling the request. Though an Arbortext PE sub-process consumes a certain amount of
memory, it's still a small penalty to have it running when it’s not in use.

Understanding the Internal Structure of Arbortext PE Request
Manager 65

The maxLifetime Attribute
This attribute specifies the duration in seconds that an Arbortext PE sub-process can run
in its lifetime. After an Arbortext PE sub-process finishes servicing a request, the
Arbortext PE sub-process pool checks the time elapsed since the Arbortext PE sub-
process was started. After the configured time period has elapsed, an Arbortext PE sub-
process will be terminated because it has exceeded this limit. If termination leaves fewer
than the configured minimum number of Arbortext PE sub-processes running, a new one
is started. The default value is 86400 seconds (one day).

Reaching the maximum lifetime duration won't interrupt a request being processed.
Checking the Arbortext PE sub-process elapsed time only happens between requests. The
purpose of having a lifetime limit is to release memory or other resources, especially if an
Arbortext PE sub-process encounters a problem. Because resource usage can creep over
time, setting maxLifetime recycles the resources and avoids having an Arbortext PE sub-
process that has grown too large to function properly or efficiently.

The pool work thread checks for Arbortext PE sub-processes at regular intervals; refer to
Arbortext PE sub-process Pool Work Thread on page 60 for more information. You can
disable checking the duration of Arbortext PE sub-processes by specifying 0.

The maxShutdownInterval Attribute
This attribute specifies the number of seconds that the Arbortext PE Request Manager
will wait for an Arbortext PE sub-processes to terminate when the Arbortext PE Request
Manager is ordered to terminate by the servlet container (for example, if Tomcat is shut
down). The default value is 20 seconds.

You would not want to reduce this value. If it's too small, there might be an interval after
Arbortext Publishing Engine termination when some Arbortext PE sub-processes remain
running on the system.

The maxSubprocessWait Attribute
This attribute specifies the number of seconds that a thread will wait for allocation of an
Arbortext PE sub-process. When a dynamic component calls com.arbortext.e3.
E3RequestContext.allocateE3Subprocess, it will return immediately if it finds a free
Arbortext PE sub-process in a pool that is configured to handle the HTTP request in
progress. If no idle Arbortext PE sub-process can be found, allocateE3Subprocess will
attempt to start a new Arbortext PE sub-process in the appropriate pool, provided the pool
has fewer Arbortext PE sub-processes running than allowed by the pool's
maxSubprocesses attribute. If no Arbortext PE sub-process can be started, then
allocateE3Subprocess will wait until either an Arbortext PE sub-process is idle and
available from the Arbortext PE sub-process pool or until the number of seconds specified
by the maxSubprocessWait attribute have elapsed.

66 Programmer’s Guide to Arbortext Publishing Engine

If the maximum number of seconds have elapsed and no Arbortext PE sub-process is idle,
allocateE3Subprocess will throw an exception that no Arbortext PE sub-process could
be allocated to serve the request. Processing at this point depends upon the dynamic
component, but the component should return an error message to the client indicating that
the request failed because no Arbortext PE sub-process could be allocated.

The default value is 300 seconds. You can set the value to 0 to disable the thread. Refer
to Arbortext PE sub-process Allocation on page 58 for a description of the allocation
process.

SubprocessContext Parameter
There is one parameter for the SubprocessContext of the SubprocessPool, com.
arbortext.e3.initialScript:

Parameter name="com.arbortext.e3.initialScript" value="filepath"

initialScript allows you to set environment variables in an ACL script before loading
information from the custom directory. For example, you could have different custom
directories for each Sub-process pool because initialScript is processed before the
custom directory.

You could use the ACL file specified by initialScript to set something like:

main::ENV['APTCUSTOM']='D:\special_custom'

The subprocessEnvironment Attribute
You can specify subprocessEnvironment to have Arbortext Publishing Engine set
the environment variables of the Arbortext PE sub-processes. To ensure that Arbortext PE
sub-processes have the expected values for environment variables, set them using the
subprocessEnvironment parameter for each Arbortext PE sub-process pool in the
e3config.xml.

If you are using the Tomcat servlet container, be aware that newer versions clear some
environment variables, such as CLASSPATH, and then set them to values needed by
Tomcat prior to starting the Tomcat servlet container.

Any other variables in the Arbortext Publishing Engine environment are passed to its
Arbortext PE sub-processes unchanged.

The workThreadInterval Attribute
This attribute specifies when to run the work thread in seconds (for more information on
the work thread, refer to Arbortext PE sub-process Pool Work Thread on page 60). The
default value is 5 seconds, which is adequate for most sites.

Understanding the Internal Structure of Arbortext PE Request
Manager 67

Arbortext PE sub-process Pool
Parameters
In addition to the Arbortext PE sub-process pool attributes, a pool may have parameters.
Each pool parameter is defined by the Parameter element, which is a descendant of the
SubprocessPoolContext element (which is a descendant of the SubprocessPool element)
in e3config.xml.

When an Arbortext PE sub-process pool starts an Arbortext PE sub-process, it passes the
Arbortext PE Request Manager global parameters and any Arbortext PE sub-process pool
parameters and their values to the Arbortext PE sub-process, making them available to its
Arbortext Publishing Engine applications.

Terminating the Arbortext PE Request
Manager
The Arbortext PE Request Manager servlet terminates when the servlet container calls the
method com.arbortext.e3.E3servlet.destroy. The Arbortext PE Request Manager passes
the termination request to each Arbortext PE sub-process pool, and each pool sends a
signal to every running Arbortext PE sub-process. Idle Arbortext PE sub-processes
terminate silently. Allocated busy Arbortext PE sub-processes return an error to the
calling thread in the Arbortext PE Request Manager, which is returned to the requesting
client. If an Arbortext PE sub-processes is allocated but not yet busy, an error is returned
immediately when it starts processing.

Each pool work thread waits for Arbortext PE sub-processes to terminate so it can delete
their temporary directories. If all Arbortext PE sub-processes have not terminated before
the time configured by the pool's maxShutdownInterval attribute (explained in The
maxShutdownInterval Attribute on page 66), the work thread terminates, leaving some
temporary storage still allocated.

68 Programmer’s Guide to Arbortext Publishing Engine

4
Predefined Dynamic Components

Predefined Request Selectors .. 70
Predefined Cache Managers... 71
Predefined Queue Managers .. 73
Predefined Request Handlers ... 74
Predefined Request Functions.. 75
Pre-Defined Queues.. 81
Arbortext Queue Request Functions... 85
Pre-Defined Notifiers ... 92

The Arbortext PE Request Manager ships with several Dynamic Components installed,
including request selectors, a cache manager, a queue manager, and request handlers.
While they are distributed as part of Arbortext Publishing Engine, they are built entirely
from public interfaces. They are loaded dynamically by the Arbortext PE Request
Manager as specified in the e3config.xml configuration file. You can safely delete
from e3config.xml any Dynamic Components that you do not need. If you do that,
however, keep a backup copy of the distributed e3config.xml file in case you
implement one or more of them later.

69

Predefined Request Selectors
Request selectors are referenced by the TestSet of a SubprocessPool to determine if an
Arbortext PE sub-process pool should service a request. They can be grouped by And and
Or elements within a TestSet to set up more complex acceptance criteria.

Individual Request Selectors are invoked when an Arbortext PE sub-process pool
evaluates a call to its testRequest method to determine whether its Arbortext PE sub-
processes should be allocated to a particular HTTP request. testRequest is normally
called by the Arbortext Publishing Engine Request Context as part of evaluating its
allocateE3Subprocess method.

The Test Header Match Request Selector
The Test Header Match request selector is implemented by the com.arbortext.e3.
TestHeaderMatch class. It evaluates an HTTP request and returns true if the request
includes an HTTP header with a specific value. It accepts two parameters, header-name,
which specifies the name of the HTTP header to test and header-pattern, which specifies
a pattern that the HTTP header value must match.

The Test Header Match request selector accepts standard Java patterns for its header-
pattern parameter. So, for example patterns like text/* or text/??? would both
match a header value of text/xml. You can specify a Java pattern without wildcards, so
specifying a pattern like text/html would test for a header value equal to text/
html.

The Test Query Match Request Selector
The Test Query Match request selector is implemented by the com.arbortext.e3.
TestQueryMatch class. It evaluates an HTTP request and returns true if the request
includes an HTTP query parameter with a specific value. It accepts two parameters,
query-name, which specifies the name of the query parameter to test, and query-
pattern, which specifies a pattern that the HTTP query parameter value must match. Any
standard Java pattern, including regular expressions, can be used for the query-pattern
parameter value. For compatibility with earlier releases of Arbortext Publishing Engine, if
the Arbortext PE Request Manager finds that the value of a query-pattern parameter is
not a valid Java regular expression and contains “*” or “?” characters, Arbortext PE
Request Manager will treat the pattern as a regular expression, converting “*” to “.*”
and “?” to “.”.

The Test URI Request Selector
The Test URI Match request selector is implemented by the com.arbortext.e3.
TestURIMatch class. It evaluates an HTTP reqeust and returns “true” if the URI has a
specific value. It accepts one parameter, uri-pattern. The Test URI Match request
selector returns true if the URI of the request matches the pattern specified by the value

70 Programmer’s Guide to Arbortext Publishing Engine

of uri-pattern. Any standard Java pattern can be used for the uri-pattern parameter
value.

Predefined Cache Managers
A cache manager can store the response to an HTTP request, in anticipation of returning
the same response to a later identical request.

The Publishing Configuration Cache, Initializer, and
Application
The publishing configuration cache contains information about the publishing-related
files installed on the Arbortext PE server. The cache stores an XML document listing the
document types, stylesheets, and related configuration information retrieved during
initialization. It also stores an HTML version of the XML document, a second XML
document containing more detail (which is retrieved by Arbortext Editor when
performing a publishing configuration comparison with the Arbortext PE server), and a
text log file of the scan process by which the information was discovered. The documents
are intended for debugging, and three of them can be retrieved from the Arbortext
Publishing Engine Index page.

Support for the cache is implemented in three parts.

1. the cache itself, which stores the documents so that they can be returned quickly.

2. the initializer, which generates the information in the cache when the Arbortext PE
Request Manager initializes by obtaining an Arbortext PE sub-process and running
the next component.

3. a Java Arbortext PE Application, com.arbortext.e3ci.Application, which is
running in the Arbortext PE sub-process.

These components provide useful functionality and offer an example of how to
implement a cache manager for other purposes. The publishing configuration cache is
implemented by the com.arbortext.e3.CompConfigCache class. It takes one parameter,
query-function-prefix, that has a default value of f.

When the Arbortext PE Request Manager calls the cache's init method, the cache
initializes itself to an empty state, and obtains and remembers the value of its query-
function-prefix parameter (if any).

When the Arbortext PE Request Manager calls the cache's search method, the cache
manager examines the HTTP request being processed.

• If the request has an HTTP parameter named bypass-cache with a value of
yes (not case sensitive), then search returns not cacheable.

• If the request has a parameter whose name is equal to the value of the query-
function-prefix parameter and with the value java, a parameter named class

Predefined Dynamic Components 71

with the value com.arbortext.e3ci.Application, and a parameter named type with
a value of xml, html, or log, then search returns either in cache or
cacheable, depending upon whether the requested document has been placed in
the cache yet.

• Otherwise search returns not cacheable.

When the Arbortext PE Request Manager calls the cache's search method and receives a
cacheable response, it calls the cache method to store the associated response as the
XML, detailed XML, HTML, or log document, which will be return for future calls to the
search method.

The publishing configuration initializer is implemented by the com.arbortext.e3.
CompConfigInit class. It runs as a deferred initializer so that the rather lengthy publishing
configuration scan will not unduly slow the launch of the Arbortext PE Request Manager.
When its init method is called by the Arbortext PE Request Manager, it uses services
provided by the Arbortext Publishing Engine Request Context to create and run the
dummy HTTP requests. These requests generate the XML, detailed XML, HTML, and
text log forms of the publishing configuration document. The three requests are:

• f=java&class=com.arbortext.e3ci.Application&type=xml

• f=java&class=com.arbortext.e3ci.Application&type=html

•

f=java&class=com.arbortext.e3ci.Application&
type=log&trace-level=2

Each request is processed by the Arbortext Publishing Engine Request Handler as if it
were received from the network. The Arbortext Publishing Engine Request Handler will
follow its normal request handling procedure, which will result in each request being
passed to:

• the publishing configuration cache manager (which will return cacheable)

• the predefined request handler (explained in Predefined Request Handlers on page
74) which will recognize each request as a request for an Arbortext PE Application
and allocate an Arbortext PE sub-process to do the work

• the publishing configuration cache manager (using the cache method) to store each
response in the cache.

The publishing configuration initializer takes one parameter, debug. If the debug
parameter has any value other than true, the initializer adds the HTTP query parameter
console-log=no to the type=log request. The console-log=no suppresses
writing the publishing configuration scan to the Arbortext Diagnostics window.

The Java Arbortext PE Application com.arbortext.e3ci.Application is an Arbortext PE
Application that scans the Arbortext Publishing Engine install tree for publishing
information and returns a report in an XML, HTML, or log file as requested. If the
application is subsequently invoked (for example, once for an XML document, then for

72 Programmer’s Guide to Arbortext Publishing Engine

an HTML document, and again for a log file), it does not repeat its scan, because it caches
the information it discovers the first time and simply reformats it on subsequent requests.

There are a couple of potential race conditions in the operation of the publishing
configuration cache, initializer, and application.

• a client might request any of the three documents before the initializer has time to
complete, which can result in two copies of the application running simultaneously
in separate Arbortext PE sub-processes.

• the Arbortext PE Request Manager cannot guarantee that all three of the requests
generated by the initializer will be allocated to the same Arbortext PE sub-process.
If each request runs in a different Arbortext PE sub-process, the application's ability
to cache the results of a prior scan won't come into play, and the scan will be
repeated several times, once in each Arbortext PE sub-process.

Both possibilities will result in slowing the Arbortext PE server startup but have no
otherwise harmful effects.

The Stylesheet Cache
The Arbortext PE Request Manager initializes the stylesheet cache. You can re-initialize
the Arbortext PE sub-process stylesheet cache to clear all previously cached stylesheets
without restarting the Arbortext PE Request Manager by performing one of the following
actions:

• clicking the Reload Subprocesses link from the Arbortext Publishing Engine web
page (http://server:port/e3/).

• submitting an http://server:port/e3/servlet/e3?f=init request.

Refer to The f=init Request on page 77 for information.

Predefined Queue Managers
Arbortext Publishing Engine ships with a Queue Manager implemented by the class com.
arbortext.e3.QueueManager. It may be configured with a TestSet so that it can filter
queued transactions that match the test set. If no test set is configured, it queues
transactions that include the HTTP query parameter queue=yes.

If the Queue Manager decides to queue a transaction, it iterates over each queue in the
order defined in e3config.xml. It passes the transaction to each queue and asks the
queue to accept the transaction. The Queue Manager continues the iteration from queue to
queue until a queue accepts the transaction. If no queue is willing to store the transaction,
the Queue Manager returns an error to the client; otherwise it generates a response stating
that the transaction was queued.

When the Queue Manager queues a transaction, it will generate either an HTML or XML
response, as determined by the HTTP request parameter response-format, which

Predefined Dynamic Components 73

may be set to htmlor xml. An HTML response is a redirect to a web page that displays
the status of the queued transaction and allows the user to retrieve the transaction
response after the transaction has completed. An XML response is an XML document
that lists information about the transaction and the request.

The key piece of information in the response-format=xml response document is
the Transaction element, which is a descendant of the FunctionOutput element, which
is a descendant of the root-level PEFunctionResult element. The Transaction element
has the attribute id, which specifies the transaction ID; use this ID to submit requests to
determine the status of the transaction and retrieve its response after it completes
execution. Other Transaction attributes include queueId, which specifies the queue
which has stored the transaction, held indicating whether the transaction was
automatically held or allowed to execute, queuePositionwhich gives the transaction’s
location on the queue, and priority, which specifies the transaction’s priority.

Predefined Request Handlers
Arbortext Publishing Engine ships with a predefined Request Handler implemented by
the Java class com.arbortext.e3.RequestHandler. It processes HTTP requests by
invoking one of a set of predefined Java objects called Request Functions. For each HTTP
request, the Request Handler looks for a query parameter named f and invokes a Request
Function corresponding to the f parameter value. For example, to handle a request with
parameter f=status it invokes the request function com.arbortext.e3.FunctionStatus.

At initialization, the Arbortext Publishing Engine Request Handler reads parameters from
the e3config.xml configuration file. It looks for two parameters, query-function-
name and function-prefix. The query-function-name parameter tells the Request
Handler the query parameter to search for when it is offered an HTTP request to process.
The default value is f. The function-prefix specifies an initial substring for other
initialization parameters. Its default value is f-. Initialization parameter names beginning
with the function-prefix string specify the function name as the rest of the initialization
parameter name and the corresponding Request Function as the parameter value.

For example, an initialization parameter named f-status has a value of com.
arbortext.e3.FunctionStatus. The parameter name begins with f-, so the Request
Handler binds the remaining part of the parameter name, status, to the com.arbortext.
e3c.FunctionStatus class during request processing.

You can extend the Arbortext PE Request Manager by developing your own Request
Handlers, as already discussed. However, to avoid implementing a complete Request
Handler, you can implement your own Request Functions and configure the predefined
Request Handler to invoke them.

74 Programmer’s Guide to Arbortext Publishing Engine

Predefined Request Functions
A request function is a Java class that implements the interface com.arbortext.e3.
E3RequestFunction. In particular, such an object must provide a method named execute
that takes an HttpServletRequest object, which contains an HTTP request as a
parameter, and returns an HTTP response (encoded as an HttpRequestResponse object).

You can extend the Arbortext PE Request Manager by writing either a request handler or
a request function. Writing a request function is easier than writing a complete request
handler. Consult Writing a Custom Request Handler on page 98 and Writing a custom
Request Function on page 98 for more information.

In the sections that follow, the HTTP request parameters follow the format for HTTP
requests described in Web Clients and the HTTP Protocol on page 15. You can use the
Arbortext Publishing Engine Testing HTML page to issue most of these request functions.

The f=status Request
This request function is implemented by the Java class com.arbortext.e3.
FunctionStatus.. It returns an HTTP response containing an HTML page describing the
configuration and status of the Arbortext PE Request Manager and its Dynamic
Components. Almost everything that can be configured in e3config.xml is reflected
in the status page. If you make changes to e3config.xml, you should always check
the Status report page to make sure that the change you made is applied as you expect.

Each of the interfaces that Dynamic Components must implement include a method
named getStatus which is called by the f=status code. If you implement custom Dynamic
Components, write a getStatus method to place information about your component in the
status page.

. The f=status request can take one parameter, page. The page parameter can take one
of several values to request a subset of information from the status report:

• compconfig returns an HTML version of the publishing configuration report
from the publishing configuration cache.

• compconfiglog returns the text log of the publishing configuration report from
the publishing configuration cache.

• compconfigdetail returns an XML version of the publishing configuration
report from the publishing configuration cache.

• java-properties returns a list of all system properties of the JVM in which
the servlet container and Arbortext PE Request Manager is running.

If page is omitted, then FunctionStatus returns the entire status page describing all
components.

For example, if the request specifies f=status&page=java-properties, then
FunctionStatus returns the JVM system properties page. If f=status&page=

Predefined Dynamic Components 75

compconfiglog, then FunctionStatus returns the log of the publishing configuration
scan report.

The PE Publishing Configuration report lists all the document types, document type
configuration files, and stylesheets available from the Arbortext PE server. You can
review stylesheet names by both their paths and their names in separate entries. The
report warns of any duplicate stylesheet names on the server. If a stylesheet name is not
unique on the server, Arbortext Publishing Engine uses the first one it finds.

If Arbortext Publishing Engine is restarted, an Arbortext Editor client is not aware of any
changes. An Arbortext Editor client can retrieve updated publishing configuration data
from the Arbortext PE Request Manager. Arbortext Editor users must perform one of the
following to automatically obtain the latest Arbortext Publishing Engine publishing
configuration information:

• Disable and then enable Use Publishing Engine in the Publishing Engine panel
of Tools ▶▶Preferences.

• Turn peservices off and then on again in Tools ▶▶Preferences ▶▶Advanced.

• Exit and restart Arbortext Editor.

Arbortext Editor can also compare its publishing configuration with Arbortext Publishing
Engine publishing configuration using the Tools ▶▶Compare Config with PE menu item.
In the Compare Publishing Configuration with PE dialog box, Arbortext Editor users
can generate the Publishing Configuration Comparison report, which notes the differences
between the publishing environment on the client and on the server. This report is helpful
in troubleshooting publishing processing, and you should include it with the data you
submit when reporting a problem to Technical Support.

An f=init request clears the stylesheet cache, allowing you to update stylesheets on the
Arbortext PE server without restarting it. Refer to The f=init Request on page 77 for more
information.

The f=compconfig-rescan Request
This request allocates an Arbortext PE sub-process to regenerate the publishing
configuration scan report. This request refreshes the publishing configuration report and
updates the cache used by Arbortext Editor clients when making publishing requests.

The HTML version of the publishing configuration report is updated in the publishing
configuration cache. After the scan operation replaces the publishing cache entries,
Arbortext Publishing Engine returns an HTML page stating that the operation completed
successfully. You can submit a re-scan request from the Rescan Publishing
Configuration link under the section Administer Arbortext Publishing Engine on the
Arbortext Publishing Engine HTML page.

The HTML version of the publishing configuration report is available from the Short link
under the section View Arbortext Publishing Engine Information on the Arbortext

76 Programmer’s Guide to Arbortext Publishing Engine

Publishing Engine index page. Refer to Monitoring and Reporting Using a Web Browser
on page 26 for information about the Arbortext Publishing Engine index page.

The f=license Request
This request function returns an HTTP response containing an HTML page with
information about the session configuration and optional components being used by the
first Arbortext PE sub-process started by the Arbortext PE Request Manager. It is
implemented by the Java class com.arbortext.e3.FunctionLicense

The information is similar to what is displayed by the Session and Components tabs of
the Session dialog box in Arbortext Publishing Engine Interactive or Arbortext Editor
(Help ▶▶About Arbortext Publishing Engine Interactive ▶▶Session or Help ▶▶About
Arbortext Editor ▶▶Session).

The f=version Request
This request function is implemented by the Java class com.arbortext.e3.
FunctionVersion. It returns an HTTP response containing an HTML page that provides
version information about Arbortext Publishing Engine, including build number and date,
as well as information about any applications installed on the server and running in an
Arbortext PE sub-process.

The f=init Request
This request function is implemented by Java class com.arbortext.e3.FunctionInit. It
directs every Arbortext PE sub-process in every Arbortext PE sub-process pool to re-
initialize and reload all ACL, JavasScript, and VBScript packages. The request sets a flag
on each Arbortext PE sub-process, but the initialization takes place the next time the
Arbortext PE sub-process is allocated to an Arbortext Publishing Engine dynamic
component. That means that any allocated Arbortext PE sub-processes won't re-initialize
until they are deallocated and subsequently allocated to another request.

You can submit an f=init request from the Reload Applications link on the Arbortext
Publishing Engine index page. Refer to Monitoring and Reporting Using a Web Browser
on page 26 for information.

You can load new or updated ACL, JavaScript, or VBScript scripts by using Reload
Applications or f=init to instruct the Arbortext PE sub-processes to reload these types
of programs, without restarting the Arbortext PE Request Manager.

You can also update Arbortext PE sub-process stylesheets using Reload Applications or
f=init to clear all previously cached stylesheets without restarting the Arbortext PE
Request Manager. By clearing the stylesheet cache, Arbortext PE sub-processes will use
the updated stylesheet for the next request that uses it.

Predefined Dynamic Components 77

Note
The init function does not reload Java code. If you need to update Java code in either the
Arbortext PE Request Manager or in the Arbortext PE sub-processes, you must stop and
restart the Arbortext Publishing Engine.

The init function does not re-initialize some other resources that Arbortext PE sub-
processes might be using, such as repository connections, open documents, and cached
document types.

The f=acl Request
This request function is implemented by the Java class com.arbortext.e3.FunctionAcl. It
allocates an Arbortext PE sub-process and invokes an Arbortext PE Application written in
ACL. It returns whatever HTTP response the Arbortext PE Application generates. The
ACL function must be configured in the Allowed Function List (see The Allowed
Functions List on page 47) in e3config.xml or the Arbortext PE Request Manager
will return an error message.

The entire HTTP request, including the request line, headers, query parameters, and
request body are made available to the ACL Arbortext PE Application. The Arbortext PE
Application uses routines closely modeled on those available to Java, JavaScript, and
VBScript Arbortext PE Applications in retrieving request information and constructing
the response. The request is structured like the following (without the line breaks):

f=acl&function=package-name::function-name
¶meter1=value1
¶meter2=value2
¶meterN=valueN

The f=java Request
This request function is mapped to the Java class com.arbortext.e3.FunctionJava. It
allocates an Arbortext PE sub-process and invokes an Arbortext PE Application written in
Java, returning whatever response the Arbortext PE Application generates.

The Java Arbortext PE Application is identified by the class parameter, which must
specify the name of the Java class to be invoked. All other query parameters, along with
the rest of the HTTP request, are passed to the Arbortext PE Application for processing.
The Java class must be configured in the Allowed Function List (see The Allowed
Functions List on page 47) in e3config.xml or the Arbortext PE Request Manager
will return an error message. The request is structured like the following:

f=java&class=classname¶meter1=value1¶meter2=value2

For more information, refer to 7 Writing Arbortext PE Applications in Java on page 115.

78 Programmer’s Guide to Arbortext Publishing Engine

The f=javascript Request
This request function is mapped to the Java class com.arbortext.e3.FunctionJavascript.
It allocates an Arbortext PE sub-process and invokes an Arbortext PE Application written
in JavaScript, returning whatever response the Arbortext PE Application generates.

The JavaScript Arbortext PE Application to be run is identified by the function
parameter, which must specify the name of the JavaScript function to be invoked. All
other query parameters, along with the rest of the HTTP request, are passed to the
Arbortext PE Application for processing. The JavaScript function must be listed in the
Allowed Function List (see The Allowed Functions List on page 47) in e3config.xml
or the Arbortext PE Request Manager will return an error message.

f=javascript&function=functionname¶meter1=value1¶meter2=value2

For more information, refer to 8 Writing Arbortext PE Applications in JavaScript on page
127.

The f=vbscript Request
This request function is mapped to the Java class com.arbortext.e3.FunctionVbscript. .
It allocates an Arbortext PE sub-process and invokes an Arbortext PE Application written
in VBScript, returning the response generated by the Arbortext PE Application. VBScript
is specifically for Windows platforms.

The VBScript Arbortext PE Application to be run is identified by the function parameter,
which must specify the name of the VBScript function to be invoked. All other query
parameters, along with the rest of the HTTP request, are passed to the Arbortext PE
Application for processing. The VBScript function must be listed in the Allowed Function
List (see The Allowed Functions List on page 47) in e3config.xml or the Arbortext
PE Request Manager will return an error message instead.

For more information, refer to 9 Writing Arbortext PE Applications in VBScript on page
135.

The f=convert Request
This request function is mapped to the Java class com.arbortext.e3.
FunctionNewConvert. It provides built-in document conversion capabilities to HTTP
clients. The conversion is performed by an Arbortext PE sub-process; HTTP query
parameters specify conversion parameters: output format, stylesheet, and other inputs to
the conversion. The file to be converted may be specified by a query parameter or as the
body of a POST request. The request is structured like the following:

type=outputtype&file=pathandfilename&f=convert

Predefined Dynamic Components 79

Note
To avoid web browser problems, don’t put type=outputtype at the end of the
request. For example, web browsers might try to render a request ending in type=pdf
or type=html.

For more information, refer to 11 Arbortext Publishing Engine Document Conversion on
page 163.

The f=app Request
This request function is mapped to the Java class com.arbortext.e3.FunctionApp. It
allocates an Arbortext PE sub-process and allow users of Arbortext Publishing Engine to
use an HTTP request to pass a job file containing a list of Arbortext Advanced Print
Publisher (APP) commands for execution by the APP sub-process.

The f=app request takes two parameters.

• file=<path>— An absolute path and file name of an APP activation file on the
Arbortext PE server. If a value is omitted, Arbortext Publishing Engine will return
an HTML error page stating the path is missing. The path to the activation file must
be listed in the Arbortext Publishing Engine allowed functions list. If the path is not
listed there, Arbortext Publishing Engine will return an HTML error page stating
that the request cannot be executed. The entry in the table must specify a pattern of
type “app”.

• destroy— (Optional.) When set to yes (the default), specifies that the
Arbortext PE sub-process that executes the f=app request be terminated at the end
of the operation. Doing so will prevent the Arbortext PE sub-process from being
left in a state that may produce unexpected results for a subsequent application.
Setting destroy to no allows the Arbortext PE sub-process to remain running.

A GET request is accompanied by only parameters. A POST request may include a data
(body) file. The Arbortext PE Request Manager will store the body file and pass its its
location to the APP sub-process. Any other parameters on an f=app request will be
ignored with the following exceptions.

• Some parameters, such as queue=yes to direct that a request be queued, are used
by the Arbortext PE Request Manager.

• All parameters will be listed in the request data file passed to the APP sub-process.

The f=app request will always return a response containing an HTML web page with
content-type of "text/html". This page may be generated by the APP sub-process or by
Arbortext Publishing Engine if an error occurs.

Refer to Automated Publishing with APP and Arbortext Publishing Engine in the
Reference Documents area of support.ptc.com and in the Arbortext Advanced Print

80 Programmer’s Guide to Arbortext Publishing Engine

https://support.ptc.com/appserver/cs/doc/refdoc.jsp
https://support.ptc.com/appserver/cs/doc/refdoc.jsp

Publisher online help for details on configuring and using APP to publish with Arbortext
Publishing Engine.

Pre-Defined Queues
Arbortext Publishing Engine ships with one Queue object, a Java object named com.
arbortext.e3.ArbortextQueue. The Arbortext Queue implements an ordered container of
transactions, sorted according to priority. It provides a number of features for managing
transactions and determining the order in which they will execute, as specified in
e3config.xml. It is possible to configure several distinct queues in e3config.xml,
each accepting a different kind of transaction, and each having different behaviors.

The features in the following sections are implemented as part of the Arbortext Queue. If
you implement your own queue object, you won’t get the capabilities offered by the
Arbortext Queue unless you implement them in your own code. These sections will focus
on the behavior of a single instance of the Arbortext Queue object.

Selecting Transactions for Queuing
The Arbortext Queue may be configured in e3config.xml with a TestSet element that
specifies which transactions the instance of Arbortext Queue will accept for storage. If the
TestSet is omitted, the queue instance will accept any transaction the Queue Manager
offers it. Since queue managers offer transactions to the queues in the order configured in
e3config.xml, this means that each queue except the last one should be configured
with a TestSet.

It is important to note the distinction between a Queue Manager selecting transactions and
a Queue selecting transactions. The Queue Manager determines whether a given
transaction should be queued. If not, the Arbortext PE Request Manager treats the
transaction as an immediate transaction. Once the Queue Manager selects a transaction
for queuing (in the Arbortext implementation, by detecting queue=yes in the request),
the Queue Manager offers the transaction to each configured Queue. Each Queue then
determines, according to its configured criteria in e3config.xml, whether it is willing
to accept the transaction.

If a Queue Manager determines that a transaction should be queued, but no queue is
configured to accept transactions of that type, the situation is treated as a configuration
error. The Queue Manager will return an error page to the Arbortext Publishing Engine
Request Handler, which will return it to the client, and the transaction will not execute.

Transaction Priorities
Once a Queue Manager has determined that a transaction should be queued and an
instance of the Arbortext Queue has accepted the transaction, the queue instance places
the transaction on its internal list of transactions in order of priority. Priority is determined
by the value of the queue-priority query parameter, which specifies the priority of

Predefined Dynamic Components 81

the request when placing the transaction on a queue. 1 is the highest priority and 5 is the
lowest. If the parameter is not present or its value is not numeric, the priority defaults to
3. If the priority is less than 1, it is adjusted to 1; if the priority is greater than 5, it is
adjusted to 5.

The Arbortext Queue maintains its list of transactions in priority order. When a new
transaction is inserted, it is placed as the last transaction of its priority. For example, a
queue list contains transactions Awith priority 1, B with priority 2, C with priority 3, and
D with priority 4. A new transaction E with priority 3 would be inserted after C. The new
order would be A, B, C, E, D. Awould execute first, B second, C third, E fourth, and D
last.

The Arbortext Queue allows an administrator to move a transaction up or down in the list
from the Queued Transactions List (available from the Queue List page retrieved from
the Queue List link on the Arbortext Publishing Engine HTML index page). The move
actions are available under Actions. When a transaction is moved, its priority may be
adjusted to keep the list in priority order. Refer to Configuration Guide for Arbortext
Publishing Engine for information on queue management.

Selecting a Transaction for Execution
Like all Arbortext Publishing Engine Queues, the Arbortext Queue will periodically be
called by the Queued Transaction Scheduler to identify a transaction to execute. The
Arbortext Queue will offer the first transaction on the list that is not already executing and
not being held, subject to the conditions described in the next sections.

Enabling and Disabling a Queue
An Arbortext Queue may be enabled or disabled. When disabled, a queue will never
supply a transaction to the Queued Transaction Scheduler for execution. Whether a queue
is enabled or disabled, it will always accept transactions from Queue Managers if the
transaction meets its configured criteria.

A queue can be enabled or disabled from the Queue List page retrieved from the Queue
List link on the Arbortext Publishing Engine HTML index page or by an f=q-enable
request from a client. Refer to Arbortext Queue Request Functions on page 85 for more
information.

When the Arbortext PE Request Manager starts, the queue parameter initial-
statespecifies the state of the queue and has the following values:

• enabled

specifies that the queue should always be enabled.

• disabled

specifies that the queue should always be disabled.

• saved (the default)

82 Programmer’s Guide to Arbortext Publishing Engine

specifies that the state should be set to what it was the last time the Arbortext PE
server was shut down.

If this parameter is not specified, the queue will start out enabled.

Holding and Releasing Transactions
A queued transaction may be held or released. When held, no Arbortext queue will
present the transaction to the Queued Transaction Scheduler for execution. By default, a
transaction is not held when it is placed on a queue. However, a transaction may be
marked hold, which makes it ineligible for execution until the hold flag is cleared. A
transaction may be held or released at any time by an Arbortext Publishing Engine
administrator using the Transaction List web page.

If the queue parameter hold-all is set to yes in e3config.xml, then the Arbortext
Queue it controls will hold each transaction it accepts.

Active and Inactive States and the Active Interval
An Arbortext Queue may be active or inactive. When inactive, the queue does not supply
any transactions to the Queued Transaction Scheduler for execution. Whether the queue is
active or inactive, it will always accept transactions from Queue Managers.

The queue parameter active-interval can be specified in e3config.xml to configure
an Arbortext Queue to be active during certain periods; outside those periods, the queue is
inactive. The active-interval parameter value consists of a list of time periods separated
by semicolons specifying when the queue is active, following the format p1;p2;p3;pn.

• Each period consists of the following: sunday, monday, tuesday,
wednesday, thursday, friday, saturday, sunday, weekday, or
weekend.

• You can also further specify an optional time frame by appending a comma and a
time range. A time range consists of a 24–hour HH:MM-HH:MM specification. If
the second HH:MM is omitted, it defaults to 23:59 of the same day. If the second
HH:MM specification is earlier than the first, it specifies a time on the following
day.

Examples of active-interval specifications:

• Parameter name="active-interval" value="weekday"

The queue is active all day Monday through Friday but not on weekends.

• Parameter name="active-interval" value="weekday,20:00–
06:00;weekend"

The queue is active Monday through Friday from 8 p.m. to 6 a.m. the next morning
and all day on weekends.

Predefined Dynamic Components 83

• Parameter name="active-interval" value="monday,12:00–
16:00;wednesday,17:00"

The queue is active on Mondays from 12 p.m. to 4 p.m. and on Wednesdays from 5
PM to midnight (23:59 is assumed for the end period when no end time is
specified).

If a queue does not have an active-interval parameter or it’s set to an empty string "",
then it is always active.

An active queue must also be enabled to process its transactions. When a queue is
disabled, it can still accept transaction requests, but no transactions can be executed by
the Queued Transaction Scheduler, even if the queue is active. An administrator can
enable or disable a queue from the Queue List page retrieved from the Queue List link
on the Arbortext Publishing Engine HTML index page. However, an administrator can’t
make a queue active or inactive from the Queue List page. Refer to Configuration Guide
for Arbortext Publishing Engine for more information on queue management.

Limiting a Queue’s Resource Consumption
You can configure queue parameter max-concurrent-transactions to limit the number of
transactions from a single queue that can be performed simultaneously. If max-
concurrent-transactions is omitted, it defaults to 0, which means there is no limit. After
the number of transactions set by this parameter have started executing, the Arbortext
Queue will not present another transaction to the Queued Transaction Scheduler for
execution until one of the executing transactions completes.

Transaction Scheduling Options
You can configure the queue parameter scheduling-option in e3config.xml to one of
the following values

• strict-complete

No transaction shall start executing until all previous transactions on the queue
have finished executing, including held transactions. Note that choosing this value
means that transactions from this queue will never execute in parallel.

• strict-parallel

No transaction shall start executing until all previous transactions on the queue
have started executing, including held transactions.

• relaxed (the default)

A transaction can start execution after every previous transaction on the queue that
is not held has started executing.

This value allows a transaction to start executing even if earlier transactions on the
queue are held or are unable to execute for some reason.

84 Programmer’s Guide to Arbortext Publishing Engine

Waiting for Transactions on Previous Queues
You can set the queue parameter previous-queues in e3config.xml to specify one or
more queues on which the current queue must wait before executing transactions. The
Arbortext Queue will not present transactions to the Queued Transaction Scheduler for
execution until the queues in the previous-queues list contain no transactions except
those being held. Specify previous-queues by providing a list of queue IDs separated by
commas, following the format:

Parameter name="previous-queues" value="queue1,queue2,queue3"

If this parameter is not specified, then there is no previous queue dependency.

Forcing a Transaction to Execute Next
Each of the previous sections describes circumstances that might make a transaction
ineligible for execution. It is possible to bypass many of these restrictions and force a
transaction to execute before any other transactions on any queue.

Aweb client can issue an f=qt-execute request to designate a transaction to be the next to
execute. This transaction is then identified by a marker stored in the Queued Transaction
Scheduler. Only one transaction can be designated in this way. If transaction A is marked
and then transaction B is also marked, transaction B becomes the next transaction to
execute. Transaction A returns to its normal course of processing without special
handling.

The designation ignores the queue’s enabled and active states, and it also ignores the
transaction’s hold status and scheduling options. However, it will obey the global
maxConcurrentQueuedTransactions parameter setting, the
maxConcurrentQueuedTransactions setting on any Arbortext PE sub-process pool, and
the max-concurrent-transactions setting on the queue containing the transaction.

Arbortext Queue Request Functions
The queue management functions (f=q-queue-function)) and the queued transaction
management functions (f=qt-queued-transaction-function)) can be used by a custom
application to send requests to a Queue Manager. To request a queue action, the
application would construct a request specifying parameters supported by the queue
request function. For example, to disable a queue with the ID queue23, you would
submit an f=q-enable request with the parameters:

f=q-enable&id=queue23&enable=no

If any function detects an error (incorrect or missing required parameters), it will return
an HTML or XML response (as determined by the response-format parameter)
describing the error. The HTTP response code will be 500 when an error is returned.

Predefined Dynamic Components 85

Queue Management Functions
Each of the queue management functions begins with q- and accepts two parameters.

• id (required)

Specifies the ID of the queue as configured in e3config.xml. If a request
specifies id=*, then the request applies to every queue defined in e3config.
xml.

If the id parameter is missing or does not match the id attribute of any queue
defined in e3config.xml, this function will return an error.

• response-format (optional)

Specifies whether the function returns either an HTML or an XML response. The
value of response-format may be xml or html, and it is not case sensitive.
The default value is html. By default, the queue functions assume that their caller
is a web browser and return an HTML page suitable for display. If the function
specifies response-format=xml, the function returns an XML document
suitable for parsing by a client program (that is, not a web browser).

The f=q-enable Request
This function enables or disables a queue. Enabling a queue allows transactions on the
queue to become available for execution, but the Queued Transaction Scheduler
determines when the transactions can be executed. Disabling a queue has no impact on
any transactions on the queue that are already executing.

In addition to id and response-format, this function takes the parameter enable.
If the request specifies enable=yes, the queue is enabled. If the request specifies
enable=no, the queue is disabled. If the request specifies enable=yes and the queue
is already enabled, or enable=no and the queue is already disabled, this request returns
successfully.

The f=q-holdall Request
This function sets or clears the hold flag on all of the transactions on a queue. A
transaction with the hold flag is not eligible for execution. Setting the hold flag on a
transaction that's already executing has no effect (unless Arbortext Publishing Engine
stops before the transaction completes, and after it restarts, the transaction will not
execute until the hold is removed).

In addition to id and response-format, this function takes the parameter hold. If
the request specifies hold=yes, all transactions on the queue are held. If the request
specifies hold=no, all transactions on the queue have their hold flag removed.

86 Programmer’s Guide to Arbortext Publishing Engine

The f=q-list Request
This function returns information about queues. For a queue specified by id (or for all of
them if id=*), the function returns the ID, whether the queue is enabled, whether the
queue is active, and the number of transactions on the queue that are waiting, executing,
and complete. The complete count includes transactions that have finished normally (with
or without error) and transactions that have been cancelled.

Queued Transaction Management Functions
Most of the queued transaction management functions begins with qt- and accepts two
parameters.

• id (required)

Specifies the ID of the transaction as assigned by the Arbortext PE Request
Manager.

• response-format (optional)

Specifies whether the function returns either an HTML or an XML response. The
value of response-format may be xml or html, and it is not case sensitive.
The default value is html. By default, the queue functions assume that their caller
is a web browser and return an HTML page suitable for display. If the function
specifies response-format=xml, the function returns an XML document
suitable for parsing by a client program (that is, not a web browser).

The f=qt-list request function takes a different set of parameters.

The f=qt-cancel Request
This function cancels a queued transaction. For a transaction that has not started
executing or is currently executing, this function will generate an XHTML document
showing that the transaction was cancelled. That document is also stored as the result of
the transaction. This cancellation document will be in the same format as the report that is
produced if the Arbortext PE sub-process terminates or there is some other serious error
preventing a transaction to finish.

If this function is applied to an executing transaction, the Arbortext PE sub-process used
by the transaction will be terminated.

If this request specifies an immediate request, a queued transaction that has completed, or
does not identify an active transaction, this function will return an error.

The f=qt-discard Request
This function causes a transaction directory of a completed queued transaction to be
placed in the transaction archive (according to com.arbortext.e3.transactionArchive.
enable and com.arbortext.e3.transactionArchive.selector global parameters in

Predefined Dynamic Components 87

e3config.xml). Immediately after copying the transaction directory to the archive, it’s
deleted from the Active Transaction Directory and the transaction is no longer an active
transaction. This intent of this function is to allow an application to clean up the directory
after retrieving the result of a queued transaction.

Consider a user consulting a list of completed transactions using a web browser or some
other client application. As transactions finish, they appear on the list. The user can then
retrieves the results of each transaction. This function would prevent the list from
becoming mostly transactions for which the user has already retrieved the results.
Transactions are removed after a configured interval (as set by the com.arbortext.e3.
transaction.maxRetrievedTransactionAge global parameter in e3config.xml).

This function acts on the transaction regardless whether the results from a transaction
have been retrieved or not. This action allows users to clear the list of unwanted
transactions without retrieving unwanted results.

If this request specifies an immediate request, a queued transaction that has not executed,
or if the id parameter does not identify an active transaction, this function will return an
error.

The f=qt-execute Request
This function forces the queued transaction indicated by the id parameter to be executed
as soon as possible. The Queued Transaction Scheduler will ignore the enabled and active
states of the queue containing the transaction, as well as the transaction's hold state. It
will make the transaction next in line by ignoring any transactions ahead of the target
transaction.

The Queued Transaction Scheduler will not ignore the global com.arbortext.e3.
transaction.maxConcurrentQueuedTransactions parameter or the
maxConcurrentQueuedTransactions attribute on the Arbortext PE sub-process pool
that will allocate an Arbortext PE sub-process to process this transaction.

There can be only one transaction designated to be next in line. If an f=qt-execute request
specifies transaction A and then another f=qt-execute request specifies Transaction B
before transaction A starts executing, transaction Awill lose its special next-in-line status.
The next transaction to execute would be B. Transaction A returns to its prior state and
continues to follow the normal course of transaction scheduling.

If this request specifies an immediate request, a queued transaction that is executing or
has finished, or if the id parameter does not identify an active transaction, this function
will return an error.

The f=qt-hold Function
This function sets or clears the hold flag on the specified transaction. Setting the hold
flag on an executing transaction has no effect, with the exception that if Arbortext
Publishing Engine terminates before the transaction completes, the hold will be applied
after Arbortext Publishing Engine restarts.

88 Programmer’s Guide to Arbortext Publishing Engine

In addition to id and response-format, this function takes the parameter hold. If
the request specifies hold=yes, the transaction is held. If the request specifies hold=
no, the hold flag is removed.

If this request specifies an immediate request or does not identify an active transaction,
this function will return an error.

f=qt-move
This function moves a queued transaction up or down in its queue. The move may result
in changing the transaction's priority.

In addition to id and response-format, this request requires two parameters:

• direction (required)

Specifies either up or down (not case sensitive). up moves the transaction toward
the top of the queue, and down moves the transaction toward the bottom of the
queue.

• places (required)

Specifies either all or a positive integer to represent the number of transactions to
bypass.

This function moves the transaction past the number of transactions specified by places
in the direction specified by direction.

After the transaction is moved, the transaction's priority is adjusted as follows:

• If the transaction was moved up, its priority is set to the priority of the transaction
behind it.

• If the transaction was moved down, its priority is set to the priority of the
transaction ahead of it.

If the value of the places parameter is greater than the number of transactions the
specified transaction can bypass, then the transaction is moved to either the head or end of
the queue as specified by direction.

If this request specifies an immediate request, a queued transaction that has finished, or if
the id parameter does not identify an active transaction, this function will return an error.

The f=qt-retrieve Request
This function returns the result of a completed queued transaction.

Note
For f=qt-retrieve only, the response-format parameter supports a different value
than the other qt- functions, zip.

Predefined Dynamic Components 89

If the f=qt-retrieve request includes response-format=zip , which will return a zip
archive containing two entries:

• response.xml will contain the HTTP result code, message, and HTTP headers.

• body.dat will contain the response body. If processing the transaction did not
generate a response body, then the archive will not contain body.dat.

If response-format=zip is not included, then the result will be the HTTP response
that would have been returned if the response had been an immediate transaction. The
response will include the HTTP status code, HTTP headers, and HTTP response body (if
any).

If this request specifies an immediate request, a queued transaction that has not
completed, or if the id parameter does not identify an active transaction, this function
will return an error.

The f=qt-setpriority Request
This function changes the priority of a queued transaction and, if necessary, moves the
transaction to a new location in its queue.

In addition to id and response-format, this function requires the priority
parameter, which takes an integer value from 1 to 5 inclusive. There is no default. If its
value is specified as less than 1, it is adjusted to 1. If its value is specified as greater than
5, it is adjusted to 5.

If this function raises a transaction's priority, the transaction is moved so that it becomes
the last transaction of the set of transactions with its new priority. If this function lowers a
transaction's priority, the transaction is moved so that it becomes the first transaction of
the set of transactions with its new priority. (The principle is to move a transaction the
minimum number of places necessary to keep the queue sorted in priority order.)

If this request specifies an immediate request, a queued transaction that has finished, or if
the id parameter does not identify an active transaction, this function will return an error.

The f=qt-status Request
This function returns the status of a queued transaction. The returned XML or HTML
page shows the request status as explained in Arbortext Publishing Engine as a
Transaction Processor on page 18.

For an incomplete transaction, the response will include the transaction status and
information about the request: HTTP headers, query parameters, body size. For a
complete transaction, this function will also supply the HTTP response code, response
headers, and size of response body.

The information returned will also include the name of the Arbortext PE sub-process pool
and its process ID if the transaction is executing. If the transaction is executing or
awaiting execution, the information returned will also include the name of the queue, the

90 Programmer’s Guide to Arbortext Publishing Engine

transaction priority, whether the queue is disabled, whether the transaction is held, and the
number of transactions ahead of the transaction in the queue.

Other differences depend on whether XML or HTML is the format returned for a qt-
status request:

• For HTML, additional information about whether the queue is active or inactive.
For a completed transaction, we won't return the body file size or response headers;
instead we'll provide a button that the user can use to retrieve the body file, which
will be transmitted using the headers.

• For the XML, no information about whether a queue is enabled or active, because
the XML data is intended for use by programs. An application would submit an f=
q-list request for information about the queue.

The f=qt-list Function
This function returns information about queued transactions. By default, the report returns
information about all queued transactions and about every queue, and it can filter for
transactions that are queued, executing, cancelled, or complete.

Note
This function is different from the rest of the queued transaction management functions
beginning with qt- in the set of parameters it supports.

It takes the following parameters:

• hostname

Specifies the host name of the client that submitted the transaction

• ip

Specifies the IP address of the client that submitted the transaction

• userid

Specifies the ID of user who submitted the transaction

• id

Specifies the name of the queue for the transaction

You may specify all queues id=*or by omitting the id parameter.

• state

Specifies the state of the transaction, queued, executing, cancelled or
complete.

Each parameter may be omitted, specified once, or specified more than once. If a
parameter is omitted, then transactions are not filtered with regard to that parameter. If a

Predefined Dynamic Components 91

parameter is specified, then only transactions that match that parameter value are
returned. If a parameter is specified more than once, then transactions that match either of
the parameter specification are returned.

For example, if the state parameter is not specified, then all transactions are not filtered
for their state. If state=complete is specified, then only completed transactions are
returned. If state=complete and state=queued are both specified, then queued
and completed transactions are returned.

If two different parameters are specified more than once each, then transactions matching
the combinations of both parameter values are returned. For example, request specifies:

f=qt-list&id=queue1&id=queue2&state=complete&state=queued

Only transactions on either queue1 or queue2 and with a state of either queued or
complete are returned.

Pre-Defined Notifiers
Arbortext Publishing Engine ships with one Notifier object, a Java object named com.
arbortext.e3.queue.MailNotifier.

The Mail Notifier can send email when a transaction changes state. The Mail Notifier
may be configured to use a TestSet element in e3config.xml to identify the
transactions for which it will send email. If no TestSet is configured, the Mail Notifier
will send email for every transaction.

Refer to the Configuration Guide for Arbortext Publishing Engine for information on
configuring a notifier.

92 Programmer’s Guide to Arbortext Publishing Engine

5
Customizing the Arbortext PE

Request Manager

Writing a Custom Cache Manager .. 95
Writing a Custom Queue Manager.. 97
Writing a Custom Request Handler... 98
Writing a custom Request Function .. 98
Writing a Custom Initializer.. 98
Writing a Custom Request Selector .. 99
Writing a Custom Queue ... 100
Writing a Custom Notifier... 103

If you want to write your own Dynamic Components to run in the Arbortext PE Request
Manager, you need to:

• develop and compile your Java code. When you compile your Java code, you'll
need to include the file e3\e3\WEB-INF\lib\e3servlet.jar in your class
path. e3servlet.jar contains the definitions of the interfaces that you must
implement.

• place the class files in PE_HOME\e3\e3\WEB-INF\classes or place the
classes in a JAR file and put the JAR in e3\e3\WEB-INF\lib.

• update e3config.xml to define your components so that Arbortext PE Request
Manager will load them when Arbortext Publishing Engine initializes.

As a Java servlet, the Arbortext PE Request Manager may be called to process more than
one HTTP request at a time. Each request is handled by a separate thread, so all custom
code must be thread-safe. Consult a good programming resource if you need to learn
more about thread-safe code before developing a dynamic component. In general:

• Avoid the use of global variables.

93

• Guard accesses to any global variables you do use by using synchronized blocks or
routines.

• For performance, keep synchronized blocks or routines as small as possible so that
one thread blocks others as briefly and infrequently as is safe.

• Allocate working storage at the start of each request.

• Make sure the name of every disk file you create or write to is unique.

• Test your dynamic component by transmitting many simultaneous requests to the
server, to make sure that your code really is thread-safe.

94 Programmer’s Guide to Arbortext Publishing Engine

Writing a Custom Cache Manager
To write a cache manager, you need to develop a Java class that implements the interface
com.arbortext.e3.E3CacheEntry and update e3config.xml to define it. You need to
provide cache, init, and search methods. You'll also need to develop one or more objects
that implement the interface com.arbortext.e3.E3CacheEntry, because that's what the
search method returns.

Cache Entry Object
A cache entry object encapsulates a response that was returned to a client which can also
safely be returned to another client making the same request. The cache entry object also
contains a locked or unlocked flag and a state code. Though a state code doesn't belong in
a cache entry object, it allows the Cache Manager's search method to return a single
result for the cache entry, rather than a cache entry and a separate state code.

There are three possible state code values, however, two of them indicate that the cache
entry does not contain any content.

• NOT_CACHEABLE

The cache manager is not willing to cache responses for the request being
processed.

• CACHEABLE

The cache manager would be willing to cache a response for the active request, but
the cache manager does not currently contain a response.

• IN_CACHE

The cache entry contains a valid response that could be returned to the client.

An entry may be locked by a call to E3CacheManager.search. If a cache entry is locked,
the cache manager refrains from deallocating the cache entry object. A cache entry should
always be locked during transmission to the client. The caller requesting the lock is
responsible for calling E3CacheEntry.unlock.

Implementing a Cache Manager
There are several methods that must be implemented by a cache manager. Because the
Arbortext PE Request Manager can receive simultaneous requests, every method except
the init and destroy methods must be thread-safe .

The init Method
The Arbortext PE Request Manager calls the init method when it initializes. It takes an
E3RequestContext object (described in Arbortext Publishing Engine Request Context

Customizing the Arbortext PE Request Manager 95

Object on page 52) and a com.arbortext.e3cf.E3CacheManagerDescriptor as
parameters.

The init method performs initialization for the cache manager object. If a cache manager
can't initialize, it should throw an exception (using the class com.arbortext.e3.
E3RequestException) with an error message explaining the circumstances causing the
error.

The init method runs before the Arbortext PE sub-processes start, so it can't retrieve data
from an Arbortext PE sub-process to cache. To retrieve and cache data from an Arbortext
PE sub-process, you need to develop and load an Arbortext PE sub-process Initializer
(explained in Writing a Custom Initializer on page 98).

The destroy Method
The Arbortext PE Request Manager calls the destroy method after the servlet container
has ordered the Arbortext Publishing Engine servlet to terminate. According to the Java
servlet standard, the servlet container will pass no more requests to the servlet once the
destroy method has been called. Use the destroy method to deallocate any resources that
will not be cleaned up automatically by terminating the servlet.

The getid Method
The getid method must return a unique string that identifies the cache manager. It should
return the value of the id attribute from the E3CacheManagerDescriptor that was
passed to the init method.

The getStatus Method
The f=status function from an HTTP request calls the getStatus method, which takes a
PrintWriter as a parameter. Use it to display information about your cache manager in
the Arbortext Publishing Engine status HTML page (from the Arbortext Publishing
Engine Testing page, find the status link). Structure the portion of your status report in
HTML suitable to include in an HTML document body.

The search Method
The most important method for a cache manager is the search method. It takes two
parameters, the HTTP request received from a client and a flag indicating whether the
cache entry matching the request (if one exists) should be locked. It must return a cache
entry. If there is no entry in the cache that can fulfill the request for the client, it should
create a substitute cache entry with a status code of NOT_CACHEABLE or CACHEABLE.
The cache manager should return CACHEABLE to direct the Arbortext PE Request
Manager to call the cache method to pass in the response for the request when one is
produced.

The cache manager must lock the cache entry if it contains an IN_CACHE status and
caller set the doLock parameter.

96 Programmer’s Guide to Arbortext Publishing Engine

The cache Method
The Arbortext PE Request Manager calls the cache method if these conditions are met:

• A response to a request has been produced by a request handler and the response is
not an error.

• The search method returned a cache entry with a status of CACHEABLE.

The cache method takes an HTTP request and an HTTP response as parameters. The
cache manager should copy the response and store it in its data structures, with as much
data from the request as necessary, so that it can return a cache entry that contains the
HTTP response and status IN_CACHE next time the search method receives a similar
request.

The cache method should make a copy of the HTTP response object; it should not retain
a reference to the response object itself, because the response object is allocated by the
servlet container and might, depending upon implementation, be reused after transmission
to the client. Similarly, if the response object refers to a file on disk, the cache method
should make a copy of the file in question; there's no way for the cache method to be sure
that the file won't be deleted or reused while the cache manager references it.

Writing a Custom Queue Manager
To write a queue manager, you must develop a Java class that implements the interface
com.arbortext.e3.E3QueueManager and update e3config.xml to define it. The most
efficient approach also includes implementing either a request handler or several request
functions, as described in Writing a Custom Request Handler on page 98 and Writing a
custom Request Function on page 98.

A queue manager must provide the same init, destroy, getId, and getStatus methods as
described for a cache manager. In addition, your class must provide a service method
which takes an HTTP request as a parameter. Use the service method to examine the
HTTP request and determine whether you want to save it to fulfill at a later time. If so,
you should construct an HTTP response and return it as the return value for the service
method. If the request should not be saved for later processing, the service method should
return null.

To queue a request, you should consider the following:

• Developing a mechanism for storing requests that guards against Arbortext PE
Request Manager restarts, such as saving them to disk.

• Implementing additional requests that allow users to inquire whether a queued
request has been completed.

• Obtaining the results

• Administering requests and responses in the queue.

Customizing the Arbortext PE Request Manager 97

Writing a Custom Request Handler
To write a Request Handler, you must develop a Java class that implements the interface
com.arbortext.e3.RequestHandler and update e3config.xml to define it. The Java
class must provide the same init, destroy, getId, and getStatus methods used by a cache
manager or queue manager. In addition, your class must provide a service method that
takes an HTTP request as a parameter . It should return either an HTTP response that
Arbortext PE Request Manager will return to the client or null.

Arbortext Publishing Engine has a built-in Request Handler that examines and dispatches
HTTP requests according to its request functions. The source code for the Arbortext
Publishing Engine Request Handler uses the com.arbortext.e3.RequestHandler
interface.

Writing a custom Request Function
Request functions are Dynamic Components loaded by the Arbortext Publishing Engine
Request Handler. You can avoid the overhead of implementing a complete request
handler by implementing a request function instead.

To write a request function, you need to develop a Java class that implements the
interface com.arbortext.e3.RequestFunction and provides two public methods, init and
execute. The init method is called by the request handler when it initializes. The execute
method takes an HTTP request as a parameter and returns an HTTP response.

After compiling your Java class, put it in PE_HOME\e3\e3\WEB-INF\classes or
place the classes in a JAR file and put the JAR in e3\e3\WEB-INF\lib. Remember to
update e3config.xml to add a RequestFunction element to load the request function.

Writing a Custom Initializer
To write an initializer, you need to develop a Java class that implements the interface
com.arbortext.e3.E3Initializer. Your Java class must provide the same getId and
getStatus methods as described for cache managers. The Java class must also implement
an init method that will be called after all other dynamic objects are loaded and
initialized, and after the Arbortext PE sub-process pools are initialized. As a result, your
init code can obtain an Arbortext PE sub-process and execute ACL commands and
evaluate ACL functions. Your init code can also create a simulated Arbortext Publishing
Engine request and send the request to a cache manager, queue manager, or request
handler for processing. Make sure that your initializer is thread-safe, as it could be
running at the same time as any number of client requests.

98 Programmer’s Guide to Arbortext Publishing Engine

Note
In addition, an Initializer must also provide a destroy method, which currently will not be
called (this is a known problem).

After compiling your Java class, put it in PE_HOME\e3\e3\WEB-INF\classes or
place the classes in a JAR file and put the JAR in e3\e3\WEB-INF\lib. Remember to
update e3config.xml to add an Initializer element to load it and determine when it
should run.

You have the option of making your initializer a blocking or deferred initializer.

• If you specify it as a blocking initializer (defer=no), your init method will be
called before the Arbortext PE Request Manager init method returns to the servlet
container. That means that the Arbortext PE Request Manager will not start
accepting requests from clients until after your initializer completes its operation.

• If you specify that your object is a deferred initializer (defer=yes), then the
Arbortext PE Request Manager init method creates a background thread to run
your init method (and any other deferred initializers) asynchronously after the
Arbortext PE Request Manager init method returns to the servlet container. That
means that the Arbortext PE Request Manager may start accepting client requests
before your initializer is called or before it completes its operation and returns.

The drawback to waiting for a blocking initializer to completes before the Arbortext PE
Request Manager starts processing client requests is that you could substantially lengthen
the time it takes for the Arbortext PE Request Manager to start. This wait time is directly
related to the amount of work your initializer performs. The drawback to deferring the
initializer is that you must be certain the Arbortext PE Request Manager can properly
process requests before your initializer starts or finishes.

Writing a Custom Request Selector
To develop a request selector, you must create a Java class that implements the interface
com.arbortext.e3.E3RequestSelector. In addition to the getId, init , destroy and
getStatus methods, a request selector must implement a test method. The test method
takes an HTTP request as a parameter and returns true or false to indicate whether
the request meets its configured criteria.

After compiling your request selector, place the class file in PE_HOME\e3\e3\WEB-
INF\classes or place the classes in a JAR file and put the JAR in e3\e3\WEB-INF
\lib.

Update e3config.xml to define your request selector. Add a RequestSelector element
to load and initialize the request selector, and then add it to a TestSet associated with an
Arbortext PE sub-process pool.

Customizing the Arbortext PE Request Manager 99

Writing a Custom Queue
To develop a Queue object, you must create a Java class that implements the interface
com.arbortext.e3.E3Queue. In addition to the getId, init, destroy, and getStatus
methods, a queue must implement a number of additional methods that allow the Queue
object to store transactions upon request by a Queue Manager and offer transactions to be
executed by the Queued Transaction Scheduler.

Fundamental Queue Methods
Every queue object must implement the following methods, which support placing a
transaction on a queue, removing a transaction after it finishes executing, and determining
which transactions to execute next

The dequeue Method
This method is called by the Queued Transaction Scheduler after it selects a transaction
for processing. The queue should delete the transaction from its list and return true. If
the transaction is not on its list, the queue should return false.

The enqueue Method
This method is called by a Queue Manager with the afterRestart parameter set to
false to determine whether the queue is willing to store the indicated transaction . This
method is called by the Arbortext PE Request Manager with afterRestart set to
true after the Arbortext PE Request Manager restarts, to restore a transaction that was
queued but not executed to completion prior to the restart.

The queue should respond whether it is willing to store the transaction. If it is, it should
add the transaction to its list and return true. If it is not, then it should return false.

The queue can assume that if afterRestart is set to true, its sort method will be
called after all transactions have been inserted.

The findTransaction Method
This method is called by the Queued Transaction Scheduler to determine whether the
queue has a transaction that should be executed. If so, the method returns the transaction
object. Otherwise, it returns null. The method should only return a transaction if the
Arbortext PE sub-process pool is willing to execute transactions of the same type. The
method can call the testRequest method of com.arbortext.e3.E3SubprocessPool to
make the determination.

Queue Management Methods
The following methods set or return information about the queue itself.

100 Programmer’s Guide to Arbortext Publishing Engine

The getEnabled Method
This method returns true or false to indicate whether the queue is enabled. When it
returns true, the Queued Transaction Scheduler should call the queue’s
findTransaction method to find the next eligible transaction.

The isActive Method
This method should return true or false to indicate whether the queue is active. When
it returns true, the Queued Transaction Scheduler should call the queue’s
findTransaction method to find the next eligible transaction.

The setEnabled Method
This method should be called to enable or disable a queue. Set the parameter flag to
true for enabled or false for disabled. If flag is set to false, the queue can assume
that the Queued Transaction Scheduler will not call the findTransaction method.

Transaction Management Methods
The following methods manage the transactions stored on the queue.

The contains Method
This method determines whether the transaction is on the queue’s transaction list. The
queue should return true or false.

The getCompletedTransactionCount and
getExecutingTransactionCount Methods
These methods are called to obtain the number of completed or executing transactions
that were queued by this queue. Since transactions are deleted from the queue before they
start executing, the queue will need to iterate through all known transactions using an
iterator obtained by the com.arbortext.e3.RMTransaction.list method looking for
executing or completed transactions with the appropriate queue ID.

The getTransactionIndex Method
This method returns the position of the transaction specified by target in the queue. It
specifies the number of transactions ahead of target. It returns 0 if the transaction is at
the top of the queue, and -1 if target is not on the queue.

The getWaitingTransactionCount Method
This method returns the number of transactions on the queue.

Customizing the Arbortext PE Request Manager 101

The isEmpty Method
This method should return trueif there are no transactions on the queue, and false if
there are transactions on the queue.

Iterator
This method should return an iterator over the transactions on the queue.

The move Method
This method moves a transaction in the queue. The parameter steps specifies the
number of transactions to bypass. The parameter isUp should specify true to move the
transaction toward the top of the queue or false to move toward the bottom of the
queue.

After the transaction is moved, the transaction's priority is adjusted as follows:

• If the transaction was moved up, its priority is set to the priority of the transaction
behind it.

• If the transaction was moved down, its priority is set to the priority of the
transaction ahead of it.

The setTransactionPriority Method
This method should set the transaction’s priority to the value specified by
newPriority, which takes an integer value from 1 to 5 inclusive, highest to lowest.
The transaction moves to the appropriate position within the queue’s transactions, which
are sorted in priority order.

The sort Method
This method is called by the Arbortext PE Request Manager after it restarts. As it restarts,
it will find the transaction directories of all queued transactions that did not complete
before the Arbortext PE Request Manager terminated, and place them on queues by
calling each queue’s enqueue method. When all enqueue calls are done, the Arbortext PE
Request Manager will call each queue’s sort method to put the transactions in order of
priority.

The Queued Transaction Scheduler will not start until after each queue’s sort method has
been called.

102 Programmer’s Guide to Arbortext Publishing Engine

Writing a Custom Notifier
To develop a Notifier object, you must create a Java class that implements the interface
com.arbortext.e3.E3Notifier. In addition to the getId, init, destroy, and getStatus
methods, a notifier must implement the method changeState.

The Arbortext Publishing Engine Request Handler calls the changeState method of every
notifier, in the order defined in e3config.xml, each time a transaction changes state.
The action that the notifier takes when its changeState method is called is entirely up to
the notifier. The changeState has an oldState parameter (the previous state of the
transaction) and a newState parameter (the new state of the transaction).

Unlike other Dynamic Components, where the cache manager, queue manager, request
handler, or queue that accepts a request ends the iteration, the changeState method is
called for every configured notifier.

Customizing the Arbortext PE Request Manager 103

III
The Arbortext PE sub-process

105

6
Implementing Arbortext PE

Applications

Concurrency .. 108
Installing an Arbortext PE Application ... 108
Sample Applications.. 109
The Allowed Functions List ..110
The Arbortext PE sub-process Application Context...111
Support for Custom Applications with the APP Engine..111

An Arbortext PE Application is custom code that runs in an Arbortext PE sub-process. An
application is invoked by the Arbortext PE Request Manager in response to an HTTP
request that specifies a class or function name. The purpose of the application is to
process the request, generate an appropriate HTTP response, and return the response to
the Arbortext PE Request Manager for transmission to the requesting client.

An Arbortext PE Application can use any of the AOM interfaces and ACL functions
within an Arbortext PE sub-process to manipulate documents. Because Arbortext PE sub-
processes run in batch mode, you can only use interfaces or functions that are not related
to the graphical user interface.

107

Concurrency
An Arbortext PE Application does not need to be thread-safe. An Arbortext PE sub-
process only handles one request at a time; therefore, it can only run one Arbortext PE
Application at a time. However, an Arbortext PE Application does need to be safe for
multi-processing, because the Arbortext PE Request Manager could ask two or more
Arbortext PE sub-processes to run the same Arbortext PE Application at the same time.

For example, if an Arbortext PE Application attempts to write temporary data using an
absolute path and file name (e:\tempdata\tempdatafile.txt), two instances of
the Arbortext PE Application might run at the same time and overwrite each other’s file.
If an Arbortext PE Application stores data to the Windows clipboard, two instances of the
operation might run simultaneously and interfere with each other.

Every Arbortext PE Application needs to be serially reusable. An Arbortext PE
Application should not attempt to maintain any state from one call to the next. The
Arbortext PE Request Manager could ask a particular Arbortext PE sub-process to
execute any Arbortext PE Application repeatedly, so the Arbortext PE Application must
not assume any prior state each time it is invoked. If a particular client submits several
Arbortext PE Application requests to an Arbortext PE server, the Arbortext PE Request
Manager might allocate a different Arbortext PE sub-process to serve each request. If the
second request expects to find information left behind by the first request (for example, a
value stored in a global variable), the application would only work if the Arbortext PE
Request Manager happened to allocate the same Arbortext PE sub-process to serve both
requests.

Installing an Arbortext PE Application
Place your custom Arbortext PE Application in the appropriate PE_HOME\custom
directory to make it accessible to Arbortext PE sub-processes (refer to Overview of
Custom Programs and Scripts on page 280 for information). A Java application must be
either a set of class files or a Java Archive (JAR file) containing class files. You would
place the .class or .jar files in custom\classes. ACL, JavaScript, and VBScript
applications (.acl, .js, and .vbs files) would be placed in custom\init.

If you use the same install tree to run Arbortext Editor and Arbortext Publishing Engine,
the presence of ACL, JavaScript, and VBScript applications in custom\init can
prevent Arbortext Editor from loading without error. These applications may be relying
on the presence of scripts that are available to Arbortext PE sub-processes and Arbortext
Publishing Engine Interactive but not to Arbortext Editor.

As a workaround, you can place your ACL, JavaScript, and VBScript applications in PE_
HOME\custom\scripts, and place a companion ACL script that loads the application
files in PE_HOME\custom\init. The ACL script specifies the condition to run only
under an Arbortext PE sub-process or Arbortext Publishing Engine Interactive.

108 Programmer’s Guide to Arbortext Publishing Engine

For example, you can use the ACL predefined variables, $is_e3 and $is_e3_
interactive, to determine the mode in which Arbortext Publishing Engine is running.

• $is_e3 determines if the Arbortext Publishing Engine is running in server-mode
(no user interface). If true, it returns any value other than zero.

• $is_e3_interactive determines if the Arbortext Publishing Engine is running in
Arbortext Publishing Engine Interactive mode (running the user interface). If true,
it returns any value other than zero.

The following example illustrates how to use these variables in an ACL script:

if (main::is_e3) {
I’m running in PE server mode.

}
else if (main::is_e3_interactive) {

I’m running in PE Interactive.
}

else {
I’m running in Editor.

}

Sample Applications
The Arbortext Publishing Engine install tree contains a number of sample Arbortext
Publishing Engine applications available under PE_HOME\e3\samples. You can
compile and run the Java sample, and you can install and run the other sample
applications. Because Arbortext Publishing Engine ships with the sample applications
enabled, you would make copies and change the class or function names of the samples to
distinguish between the test applications you install and the versions that ship with the
product. You would also need to add the class or function names to the allowed functions
list in e3config.xml.

Additional samples are provided for ACL and JavaScript applications. You can copy the
sample files from PE_HOME\e3\samples\acl or e3\samples\javascript to
\custom\init and change the function names. You'll also need to add your functions
to the allowed functions list to run the sample applications.

You can run Arbortext Publishing Engine sample test applications which return basic
information about server configuration using links on the Arbortext Publishing Engine
HTML web page. The source code for these sample applications is also available from e3
\samples. The Arbortext Publishing Engine Testing HTML page is available using a
URL like the following:

http://hostname:port/e3

Click on one of the programming language links under Test Arbortext Publishing
Engine by choosing ACL, Java, JavaScript, or VBScript next to Run a test PE

Implementing Arbortext PE Applications 109

application. These samples report the request headers, Arbortext PE sub-process
environment variables and (for Java only) JVM properties.

The samples Directory
Arbortext Publishing Engine handles log information using Log4j. Arbortext Publishing
Engine developers need to be familiar with Log4j before using Arbortext PE server
sample logging code. Arbortext Publishing Engine provides sample logging code in ACL,
Java, VBScript and JavaScript languages that can be implemented as part of a custom
application of the same type. The logging code in the application can capture and report
log information.

• Java

e3\samples\java\com\arbortext\e3\testapp\E3Sample2.java

• JavaScript

e3\samples\javascript\e3samples2.js

• VBScript

e3\samples\vbscript\e3samples2.vbs

• ACL

e3\samples\acl\e3samples2.acl

In the set of Arbortext Publishing Engine samples, there is a test_log example function
for each supported programming language that you can incorporate into your code.

General instructions for using the functions in the sample files:

1. Set the logging level using the global parameter com.arbortext.e3.
transactionArchive.selector in e3config.xml. (Refer to Managing the
Transaction Archive in Global Arbortext PE Request Manager Parameters on page
41 for information.)

2. Add the function to the Allowed Functions list in e3config.xml.

3. See specific instructions in the comments of the sample code files.

Refer to Configuration Guide for Arbortext Publishing Engine for information about
application logging and how to set configuration parameters in e3config.xml.

The Allowed Functions List
The allowed function list prevents the Arbortext PE Request Manager from executing
applications that are not authorized to run. Each time you create an application, you must
add an entry to the AllowedFunctions list in e3config.xml. The entry gives
Arbortext Publishing Engine permission to execute the application when it's called from a

110 Programmer’s Guide to Arbortext Publishing Engine

request. Insert a ClientFunction element under the AllowedFunctions element, and then
specify the pattern and type attributes.

Each ClientFunction entry specifies a pattern that's used to check incoming application
names for a match. When the Arbortext PE Request Manager receives a request
containing an f=acl, f=java, f=javascript, or f=vbscript query parameter, it
compares the application name specified by the application query parameter (class for f=
java and function for f=acl, f=javascript and f=vbscript) against each entry
of the appropriate language type in the AllowedFunctions list.

The pattern attribute can use wildcard characters to expand matching capabilities for a
set of applications with similar names. Use the wildcards * to match zero or more
characters and ? to match one character. The ClientFunction entry also has a type to
specify the application’s programming language, acl, java, javascript, or
vbscript. A match occurs if the application name matches any pattern for its particular
function type.

The Arbortext PE sub-process
Application Context
Every Arbortext PE sub-process contains a Java object called the Arbortext PE
Application Context. The Arbortext PE Application Context is responsible for loading
and executing Arbortext PE Applications upon request from the Arbortext PE Request
Manager. The Arbortext PE Application Context starts when the Arbortext PE sub-
process launches. Before the Arbortext PE Request Manager asks an Arbortext PE sub-
process to run an Arbortext PE Application, the Arbortext PE Request Manager passes
parameter information to the Arbortext PE Application Context. The parameter
information includes all global parameters defined in e3config.xml, plus all of the
parameters defined for the Arbortext PE sub-process pool in which the Arbortext PE sub-
process will run.

The Arbortext PE Application Context stores the parameter information it receives from
the Arbortext PE Request Manager in an object called the Application Configuration. An
instance of this object, which implements the Java class com.arbortext.e3.
E3ApplicationConfig, is passed to the init method of every Arbortext PE Application
written in Java. The information is also available to JavaScript, VBScript, and ACL
applications, as described in later sections.

Support for Custom Applications with the
APP Engine
When integrating custom Arbortext Publishing Engine application code with the APP
formatting engine, be aware of the following options and limitations:

Implementing Arbortext PE Applications 111

• Formatting hooks

The following hooks will not be called when formatting a document using APP:

– formatcompletehook

– formatcontinuehook

– formatpagestatushook

– formaterrorhook

• Input and configuration files

– Layout file

The APP formatting engine does not generate or interact with the layout file.
The locations listed in the layout file represent OIDs in the document open in
the Edit window. APP does not have access to that document during formatting.

The layout file was created to support the line numbering application, and it is
used in other applications to draw constructs such as gutter rules. The same
functionality can be achieved in APP in an Arbortext Styler stylesheet or using
custom source edits.

– TMX files

.tmx files include Tex macro customizations that can be included in your
custom/inputs directory. These will not have any effect on formatting
when using the APP engine.

– EXC and PAT files

.exc and .pat files provide custom hyphenation rules. These are not used by
the APP engine.

– DCF files

APP does not interact with .dcf files.

– PDF configuration files

The APP and FOSI engines use separate PDF configuration files. Refer to Print
and PDF Configuration Files for further information.

• Script interaction

The FOSI engine can complete certain actions outside of the stylesheet using
system functions that call custom ACL code directly during the e-i-c processing of
the stylesheet. The APP engine does not use system functions.

• Command line differences

Command line functions do not cause the APP engine to format the document.
They only work with the FOSI engine.

– Printing using startup commands

epic -c "print noformat wait" testfile.xml

112 Programmer’s Guide to Arbortext Publishing Engine

– Formatting using startup commands (allpasses, onepass, wait)

– no format

– allpasses

– onepass

– wait

– force

– format and all its modifiers: continue, onepass, allpasses, layout, quit, stop

– The -v flag for starting up Arbortext Editor.

Passes any valid window arguments to the Print Preview window.

– linenum

Note
linenum will run using the FOSI engine even if APP is the effective print engine
for the environment. It embellishes the document and shows line numbers in the
Edit view. If you subsequently preview using menus, however, APP will run as
expected and the line numbers do not show.

Implementing Arbortext PE Applications 113

7
Writing Arbortext PE Applications

in Java

Initialization...116
Request Processing ...116
Termination ...118
Creating a Java Arbortext PE Application ..118
The E3ApplicationRequest Class.. 120
The E3ApplicationResponse Class... 120
The E3ApplicationConfig Class... 121
Calling the Conversion Processor From a Java Arbortext PE

Application .. 122
Sample Java Arbortext PE Application ... 124
Troubleshooting Java Applications for Arbortext Publishing Engine 124

An Arbortext Publishing Engine Java application is an object which implements the
interface com.arbortext.e3.E3Application. It is loaded and invoked by the Arbortext PE
Application Context (described in The Arbortext PE sub-process Application Context on
page 111).

The Arbortext PE Request Manager invokes a Java application when it receives a request
with the f query parameter set to java and the class parameter specifying the full Java
class name of the application. When it receives such a request, the Arbortext PE Request
Manager, by way of the predefined Request Handler and Java request function, allocates
an Arbortext PE sub-process and passes the request to the Arbortext PE Application
Context.

115

Initialization
When an Arbortext PE Application Context receives a request, it first determines that the
request specifies f=java, then examines the class parameter to see if this is the first
time the class has been invoked since the Arbortext PE sub-process started. If so, the
Arbortext PE Application Context loads the Java class into the Arbortext PE sub-process's
embedded Java Virtual Machine. In order for this to happen, the Arbortext PE Application
class must be present in a custom\classes directory either as a .class file or as a
member of a .jar file. After loading the application, the Arbortext PE Application
Context calls its init method and passes a parameter specifying an instance of com.
arbortext.e3.E3ApplicationConfig, allowing the Arbortext Publishing Engine
application to access configuration information from e3config.xml. The
configuration parameters include the global parameters plus any other parameters defined
for the Arbortext PE sub-process pool, both defined in e3config.xml.

If initialization succeeds and the init method returns normally, then the Arbortext PE
Application Context passes the request to the Java application's doGet or doPost method.

If any error is detected, the init should throw an exception. In that case, the Arbortext PE
Application Context will return an error to the Arbortext PE Request Manager.

If a Java Arbortext PE Application initializes successfully, the Arbortext PE
ApplicationContext will retain a reference to the application object. If the Arbortext PE
Request Manager sends another request for the same application, the Arbortext PE
Application Context will again invoke the doGet or doPost method. The Arbortext PE
Application Context will not create another instance of the application object, nor will it
call the application’s init method again.

If a Java application fails to initialize (meaning its init method throws an exception), the
Arbortext PE Application Context will discard the application object. It will not call the
object's destroy method. If the Arbortext PE Request Manager sends another request for
the same application, the Arbortext PE Application Context will allocate another new
object and call its init method. Depending on the condition which caused the first call to
throw an exception, this attempt could succeed or throw another exception.

Request Processing
After loading and initializing the Java application, if necessary, the Arbortext PE
Application Context calls the application’s doGet or doPost method to handle the HTTP
request. The parameters for both methods are a request object and a response object. The
request object contains all available information about the request. The response object,
which is empty initially, is a location in which the Java application can build the response.
After doGet or doPost returns, the Arbortext PE Application Context returns the response
object to the Arbortext PE Request Manager, which transmits the response to the client
using the same protocol as the request, either HTTP.

116 Programmer’s Guide to Arbortext Publishing Engine

The request and response objects, which implement the interfaces com.arbortext.e3.
E3ApplicationRequest and com.arbortext.e3.E3ApplicationResponse, are modeled
upon the Java Servlet standard request and response interfaces. Developers familiar with a
Java Servlet implementation will find only minor differences. For requests, the only
difference is that the E3ApplicationRequest object lacks the methods associated with
authentication support.

The response object, E3ApplicationResponse, has more significant differences. In a
standard Java servlet, the Java code generates a response body by obtaining an output
stream from the response object and writing to it; the data is transmitted to the client as it
is written. In a PE Java application, it is necessary to construct the entire response before
transmitting it to the client. A PE Java application should write the response data to either
a file on disk or a string variable. The application must then call setOutputFile or
setOutputPage to add the response file or string to the response object for eventual return
to the Arbortext PE Request Manager.

An Arbortext Publishing Engine Java application begins processing a request when the
Arbortext PE Application Context calls the doGet or doPost method. Processing finishes
when doGet or doPost returns or throws an exception. For a normal return, the content of
the response object passed to doGet or doPost is returned to the client. If the doGet or
doPost methods throw an exception, the content of the response object (if any) is
discarded and an error page describing the exception is returned instead.

The Arbortext PE Application Context calls the doGet or doPost methods only after a
call to the init method has successfully returned. Request processing within a single
Arbortext PE sub-process is serial, so there's no parallel request processing within a single
Arbortext PE sub-process. The Arbortext PE Application Context never calls doGet or
doPost to process a second request while a previous call to doGet or doPost is in
progress.

However, Arbortext Publishing Engine Java application developers do need to consider
two concurrency issues:

• It's possible that several Arbortext PE sub-processes might receive simultaneous
requests for the same Arbortext PE Application from the Arbortext PE Request
Manager on behalf of different clients. Therefore, it's possible that multiple
instances of the same Arbortext PE Application might be running simultaneously in
different Arbortext PE sub-processes. To prevent interference with one another, the
Arbortext PE Application must use unique files, directories, and other resources.

• An Arbortext PE Application must be serially reusable to handle requests from
different clients. An Arbortext PE Application must be prepared to accept calls to
doGet or doPost, one after another. Before returning a response or throwing an
exception for doGet or doPost, the Arbortext PE Application must clean up files
and resources, and leave its internal data in a state suitable for a subsequent call to
doGet or doPost.

Note that Arbortext Publishing Engine Java developers do not need to worry about
overlapping temporary file name spaces. As described earlier, each Arbortext PE sub-
process has its own unique temporary directory. When an Arbortext PE sub-process starts

Writing Arbortext PE Applications in Java 117

an embedded JVM, it sets the java.io.tmpdir system property to this value. Java
programmers who create temporary files and allow the JVM to pick the location are safe
from having their temporary files overwritten by other JVMs.

Termination
When the Arbortext PE sub-process terminates, it will attempt to inform its embedded
JVM. The JVM will then inform the Arbortext PE Application Context, which will call
the destroy method of each loaded Arbortext Publishing Engine Java application. The
destroy method should release resources, delete scratch files, and so forth.

An Arbortext PE sub-process can terminate without calling each Java Arbortext PE
Application's destroy method. This might happen if the Arbortext PE sub-process crashes
suddenly or is forced to terminate by the operating system. In these situations, system
resources (open files, network resources, and so on) are deallocated by the system.

Creating a Java Arbortext PE Application
Your Java Arbortext PE Application must implement the com.arbortext.e3.
E3Application interface, which is modeled on the Java Servlet 2.3 specification.

The Arbortext Publishing Engine interface is located in the install tree at PE_HOME\lib
\classes\pecommon.jar. This JAR file contains the following interface
definitions:

• com.arbortext.e3.E3Application

• com.arbortext.e3.E3ApplicationConfig

Passed to the init method.

• com.arbortext.e3.E3ApplicationRequest

Passed to doGet and doPost methods

• com.arbortext.e3.E3ApplicationResponse

Passed to the doGet and doPost methods

All Javadoc for the Arbortext Editor and Arbortext Publishing Engine interfaces is
available in the Programming ▶▶Javadoc ▶▶Arbortext Publishing Engine section of Help
Center.

A Java Arbortext PE Application must define the methods init, doGet, doPost, and
destroy. The doGet and doPost methods take the request object E3ApplicationRequest
and response object E3ApplicationResponse as parameters. The request and response
objects are passed by the Arbortext PE Request Manager to an Arbortext PE sub-process
for processing. The Arbortext PE sub-process passes the request and response objects to
the Arbortext PE Application.

118 Programmer’s Guide to Arbortext Publishing Engine

The E3ApplicationConfig interface provides configuration information from the
Arbortext Publishing Engine e3config.xml file. Use this interface to retrieve the
configuration parameters and their values. The configuration information is passed to the
init method (explained in later in this section), which should retain it for possible
subsequent use by doGet or doPost methods.

In Arbortext Publishing Engine, exceptions are handled in the following ways:

• Errors in E3ApplicationRequest and E3ApplicationResponse methods called by
user code will be handled as exceptions. Any exceptions not handled by the user's
code will be caught by Arbortext Publishing Engine.

• Arbortext Publishing Engine also catches any unhandled exceptions thrown by
user-written Arbortext PE Application methods.

For any exceptions not caught by the custom application, an HTML page is returned to
the client describing the error in as much detail as possible.

Note
The f=java function can specify a custom application that returns a file of any type. It can
also set the HTTP status code, reason phrase, and headers to any requested value.

The init Method
The init method is called by the Arbortext PE sub-process to allow the Arbortext PE
Application to initialize before the first call to either doGet or doPost.

The config parameter passes information to the Arbortext PE Application through the
Arbortext PE sub-process.

The destroy Method
The destroy method is called by the Arbortext PE sub-process before it terminates,
allowing the Arbortext PE Application to remove files and free resources. No calls to
doGet or doPost will be made after the Arbortext PE sub-process calls destroy.

The doGet Method
The doGet method is called by the Arbortext PE sub-process to handle an Arbortext
Publishing Engine HTTP GET request. Its request parameter is an object containing all
available information about the HTTP request.

The doGet method builds an HTTP response by calling methods of the response object.

Writing Arbortext PE Applications in Java 119

The doPost Method
The doPost method is called by the Arbortext PE sub-process to handle an Arbortext
Publishing Engine HTTP POST client request. Its request parameter is an object
containing all available information about the HTTP request.

The doPost method builds an HTTP response by calling methods of the response object.

The E3ApplicationRequest Class
This class defines an object that conveys information about an HTTP request to an
Arbortext PE Application. The Arbortext PE sub-process creates an
E3ApplicationRequest object and passes it as a parameter to the doGet and doPost
methods.

An E3ApplicationRequest object provides parameter names and values, HTTP headers,
and in HTTP POST requests, a File object representing the posted file to the Arbortext PE
Application.

The E3ApplicationRequest class has a set of methods for accessing the parameters in the
request object.

The E3ApplicationResponse Class
This class defines an object that collects the elements of the HTTP response that
Arbortext Publishing Engine sends to the client making the request. The Arbortext PE
sub-process creates an E3ApplicationResponse object and passes it as a parameter to the
doGet or doPost method. When doGet or doPost returns, the Arbortext PE sub-process
passes the information in the E3ApplicationResponse object to the Arbortext PE
Request Manager to return to the client.

The doGet and doPost methods can use the E3ApplicationResponse object to control
every element of an HTTP response, including the HTTP result code, any HTTP headers,
and, optionally, a file to be returned to the HTTP client.

The E3ApplicationResponse object contains the following:

• the state code

• the HTTP status code

• a collection of HTTP headers

• a string containing either an error message, an HTML page, or a redirect target

• a file, if one was requested

• the archive flag, which determines whether the transaction will be archived

120 Programmer’s Guide to Arbortext Publishing Engine

• The alternate archive flag, which determines whether the transaction will be
archived in an alternate location

The state code directs the Arbortext PE Request Manager to use this data in constructing a
response to the client in one of the following ways:

• return a fabricated HTML page based on the status code

• return a fabricated HTML page based on the status code and string error message

• return the status code, HTTP headers, and string HTML page

• return the status code, HTTP headers, and file

• return the status code, HTTP headers, and file, deleting the file after transmission to
the client

• redirect the client to another URL

The archive flag determines whether the transaction will be archived. If the flag is set to
true, the transaction will be archived, provided the transaction archive is enabled. If the
flag is set to false, the transaction won’t be archived unless one of the following
overrides it:

• The com.arbortext.e3.transactionArchive.selector parameter is set to all

• The com.arbortext.e3.transactionArchive.selector parameter is set to error or
log and the transaction has failed to publish.

If the transaction will be archived, the alternate archive flag determines whether the
transaction will be stored in the alternate transaction archive location. If the alternate
archive flag is not set, the transaction is archived to the standard transaction archive.

The standard transaction archive is accessible from the Transaction Archive link on the
Arbortext Publishing Engine index page. The alternate transaction archive is not available
from this web page, which allows transactions with sensitive data to be stored in another
location which is only accessible to a user with permission to log on to the server or read
the network share location.

The E3ApplicationConfig Class
This class permits Arbortext Publishing Engine to pass configuration information to an
Arbortext PE Application. An instance of this class is passed to the Arbortext PE
Application in conjunction with the call to its init method.

Writing Arbortext PE Applications in Java 121

Note
If repository credentials or other sensitive information is stored in web.xml or
e3config.xml, you should remove permission to access the ACL, JavaScript,
VBScript and Java sample applications from the Allowed Functions list in the
e3config.xml configuration file. These sample applications display the global
parameters, which would be a security issue if the parameters contain confidential
information.

This interface supports the following methods:

• getInitParameter returns the value of its initialization parameter name as a string.
Returns null if there is no such parameter.

• getInitParameterNames returns an Enumeration of String objects listing the name
of every initialization parameter.

• addIntermediateFile copies the file whose absolute path is provided by the
source parameter into the transaction directory as an intermediate file. The
contentType and description parameters are included as comments. This
method allows the Arbortext PE Application to save a temporary file that contains
information useful in debugging that can be retrieved from the transaction archive.

• getApplicationLogger returns a Java Log4j Logger object that can be used to write
to the servlet log. The log level will be set as indicated by the set of com.arbortext.
e3.applicationLog parameters in e3config.xml. (Refer to Parameters that
Control Application Logging in Global Arbortext PE Request Manager Parameters
on page 41 for more information.)

• getTransactionDir returns a string containing the absolute path to the transaction
directory of the request currently being processed.

Calling the Conversion Processor From a
Java Arbortext PE Application
You can write a Java application that can call the conversion processor (explained in 11
Arbortext Publishing Engine Document Conversion on page 163) by importing the
following packages from PE_HOME\lib\classes\peclient.jar:

com.arbortext.e3.DocumentConverter
com.arbortext.e3.DocumentConverterException

Call the conversion processor by calling the static method:

com.arbortext.e3.DocumentConverter.doConvert(
String inFile,
String outFile,

122 Programmer’s Guide to Arbortext Publishing Engine

Map params
);

The parameter inFile must specify the absolute path to a document to be converted. The
com.arbortext.e3.DocumentConverter.doConvert method does not process open
documents. If your application creates or modifies a document that will be converted, you
must save the document to disk and close it before invoking doConvert. After
doConvert returns, you can open your document again if you need to make further
modifications.

The parameter outFile must specify the absolute path to the output file that doConvert
will produce. If this file already exists, it will be overwritten during conversion
processing.

The parameter params must be a Java map with String keys and values. Each parameter
entry must correspond to a supported conversion parameter (refer to Document
Conversion Parameters on page 165 for a list and descriptions).

For example, to specify a stylesheet:
params.put("stylesheet", "c:\absolute\path\to\stylesheet.style");

The doConvert method has no return value. If an error occurs during processing, it
throws a com.arbortext.e3.subprocess.DocumentConverterException, which has two
methods:

• getReason returns the HTML reason code (400, 500, or some other valid code)

• getPage returns the XHTML page describing the error (the same page an f=
convert request would return to an HTTP client)

The following is an example of Java code that calls com.arbortext.e3.
DocumentConverter.doConvert:
import com.arbortext.e3.subprocess.DocumentConverter;
import com.arbortext.e3.subprocess.DocumentConverterException;
…
String inFile = "c:\absolute\path\to\input\file.xml";
String outFile = "c:\absolute\path\to\output\file.pdf";
Map params = new HashMap();

params.put("type","pdf");
params.put("stylesheet" , "d:\absolute\path\to\stylesheet.style");

try {
DocumentConverter.doConvert(inFile, outFile, params);
// Conversion succeeded

}
catch(DocumentConverterException e) {

String reason = e.getReason();
String page = e.getPage();
// Log the failure and exit.

}

Writing Arbortext PE Applications in Java 123

Sample Java Arbortext PE Application
Basic sample applications are included in the PE_HOME\e3\samples subdirectory,
one each for Java, JavaScript,VBScript, and ACL. These samples applications reside on
the Arbortext PE server and are loaded into an Arbortext PE sub-process when it starts.
The source code for the Java sample application is located in:
PE_HOME\e3\samples\java\com\arbortext\e3\testapp\E3AppTest.java
PE_HOME\e3\samples\java\com\arbortext\e3\testapp\E3Sample2.java

The E3AppTest sample is compiled internally when you test it from the Arbortext
Publishing Engine index HTML page, so you don't need to compile it beforehand. The
sample application reports information about the Arbortext Publishing Engine
environment. Document manipulation, such as opening, closing, and changing content, is
accomplished using the AOM DOM interfaces. For complete information about the
Arbortext Publishing Engine Testing HTML page, see Monitoring and Reporting Using a
Web Browser on page 26. For information on the AOM, refer to the Programmer's
Reference.

For information on E3Sample2.java, see Sample Applications on page 109.

Troubleshooting Java Applications for
Arbortext Publishing Engine
Reloading Java Applications
The f=init function does not affect Java applications as it only reloads JavaScript,
VBScript, and ACL custom applications. After an Arbortext PE sub-process has started,
its JVM can't reload a .class or .jar file from the PE_HOME\custom directory.
You need to restart the servlet container to reload .class or .jar files in the Arbortext
PE sub-process. For example, if you were using Tomcat, you would stop and restart it to
reload your Java file.

Logging
Your application can obtain a Logger object and write to the servlet log by calling the
getApplicationLogger method of the E3ApplicationConfig interface. The logger level
will be set as indicated by the parameters com.arbortext.e3.applicationLog.java.
classname (classname is the Java class that implements the application), com.arbortext.
e3.applicationLog.java, or com.arbortext.e3.applicationLog in e3config.xml.
Refer to Parameters that Control Application Logging in Global Arbortext PE Request
Manager Parameters on page 41 for more information.

124 Programmer’s Guide to Arbortext Publishing Engine

Examining Transaction Files
After your application successfully finishes processing a request, the request, the
generated response returned to the client, and any other information generated during
processing could be stored in the transaction archive, if the transaction archive is
configured to save all transactions.

When debugging an application, you can configure the transaction archive to save all
transactions by setting com.arbortext.e3.transactionArchive.selector to all in
e3config.xml. Then retrieve the transactions that your application fulfilled, and
inspect the data passed to your application by the HTTP request and the response returned
by your application for those inputs.

Saving Intermediate Files
If your application creates any temporary files or documents as part of generating its the
response that is returned to the client, you can save those files to the transaction archive
using the addIntermediateFile method of the E3ApplicationConfig interface (see The
E3ApplicationConfig Class on page 121). The intermediate files will accompany the
transaction if you use addIntermediateFile. They will be placed in the transaction
directory, provided the transaction is placed in the transaction archive, and you can
examine them by retrieving the transaction from the archive.

Using the Arbortext Publishing Engine Test Utility
Arbortext Publishing Engine offers an interactive testing utility called Arbortext
Publishing Engine Test Utility to validate and test your Java, JavaScript, VBScript, and
ACL applications as well as document conversion (f=convert) parameters. You can test
your custom applications without having an Arbortext Publishing Engine production
environment in place.

You can launch the Arbortext Publishing Engine Test Utility as a standalone program or
from the Arbortext Publishing Engine Interactive Tools menu. You choose the test type
and set all the parameters and their values for the custom application. The utility
constructs the query string from your specifications and validates it. You can also run the
test and report the results as though it had been handled by Arbortext Publishing Engine.
If errors occur, they're included in the report. The Arbortext Publishing Engine Test
Utility is documented in the Test Utility User's Guide manual, which you can find in the
/docs on the Arbortext Publishing Engine distribution archive or CD-ROM, as well as
in the PE_HOME/e3/docs directory after you install Arbortext Publishing Engine. The
Arbortext Publishing Engine Test Utility standalone executable is located in:

PE_HOME\e3\bin\e3test.cmd

Writing Arbortext PE Applications in Java 125

Avoiding Content Type Problems in the Arbortext
Publishing Engine HTTP Request
You may experience problems with a returned file if you submit an HTTP or HTTPS
request that ends with a file extension. The web browser can interpret the request
improperly. If Arbortext Publishing Engine passes the content-type header correctly (for
instance, application/pdf) in its response to the browser, the web browser may
ignore the content-type header and try to render the response based on a file extension
occurring at the end of the URL. To avoid this problem, you may want to structure an
HTTP request so that file extensions do not appear at the end.

In the following example, the first request may cause a problem. By reordering the
parameters in the same request, as in the second example, the request will succeed. The
best practice is to place the f=java, f=javascript, f=vbscript, f=acl, or f=convert
specification at the end of the URL.

The following HTTP f=acl request may cause a problem because the request ends in .
xml. The web browser may try to interpret XML as the content-type, rather than the PDF
content-type which is specified and is the content-type that will be returned. Ignore the
line breaks in the examples:

http://www.myserver.com:8000/e3/servlet/e3
?f=acl&function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml

The following HTTP request will succeed because the URL ends with the f=acl
specification, which won't confuse the web browser:

http://www.myserver.com:8000/e3/servlet/e3
?function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml&f=acl

You may also want to take advantage of the fact that the web browser can interpret
content-type from a URL that ends in a file extension. You can include a dummy
parameter at the end of the URL to specify a file extension, for example, dummy=file.
pdf for a PDF file. The dummy parameter will be ignored by Arbortext Publishing
Engine, but the web browser may try to render the response based on the file extension .
pdf occurring at the end of the URL.

126 Programmer’s Guide to Arbortext Publishing Engine

8
Writing Arbortext PE Applications

in JavaScript

Creating a JavaScript Arbortext PE Application.. 129
Testing JavaScript Syntax in Arbortext Publishing Engine Interactive................ 129
Calling the Conversion Processor from a JavaScript Arbortext PE

Application .. 130
Sample JavaScript Arbortext PE Application .. 131
Troubleshooting JavaScript Arbortext PE Applications 131

An Arbortext Publishing Engine JavaScript application is a subroutine function which
takes two parameters, a Java request object and a Java response object. The Arbortext PE
sub-process uses the Rhino JavaScript package to make Java objects accessible to
JavaScript programs. Essentially, this means that JavasScript Arbortext Publishing Engine
applications run in the same programming environment as Arbortext Publishing Engine
Java applications. For more information on making Java available to JavaScript using
LiveConnect, refer to the Calling Java from JavaSctipt section of the Programmer's
Reference.

The Arbortext PE Request Manager processes requests for Arbortext Publishing Engine
JavaScript applications by passing requests with the f query parameter with the value
javascript to the request function com.arbortext.e3.FunctionJavascript. The
request function allocates an Arbortext PE sub-process and passes the request to the
Arbortext PE Application Context (described in The Arbortext PE sub-process
Application Context on page 111). The Arbortext PE Application Context creates the
request and response objects. Then, it directs the Arbortext PE sub-process JavaScript
interpreter to evaluate the function specified in the function parameter of the HTTP
request. The function must be defined in a .js file in a custom\init directory or in a
.js file in custom\scripts which is loaded from custom\init. The returned
value for the JavaScript function is ignored because the data must be transmitted to the
client in the response object.

127

A JavaScript Arbortext PE Application can access information about the request and set
information to be returned as part of the response using the same interface as an Arbortext
PE Application written in Java. Unlike a Java Arbortext PE Application, a JavaScript
Arbortext PE Application has no initialization or termination component.

128 Programmer’s Guide to Arbortext Publishing Engine

Creating a JavaScript Arbortext PE
Application
An Arbortext PE Application runs within an Arbortext PE sub-process and responds to
HTTP requests routed to it from the Arbortext PE Request Manager.

The f=javascript function has a function=function-name parameter where function-
name specifies the JavaScript function to handle the request.

The Arbortext PE sub-process calls the JavaScript function specified by function-name
and passes LiveConnect JavaObject references to the E3ApplicationRequest and
E3ApplicationResponse objects. The JavaScript Arbortext PE Application must specify
two parameters to represent the E3ApplicationRequest and E3ApplicationResponse
objects. When the JavaScript function returns, the Arbortext PE sub-process transmits the
response information in the E3ApplicationResponse object back to the Arbortext PE
Request Manager.

Note
For an Arbortext Publishing Engine installation, only one type of JavaScript is supported.
To be sure your JavaScript Arbortext PE Application is compatible, you need to specify
the JavaScript interpreter for your .js file. At the top of the script, place the following
statement:

//<script type="text/javascript">

The JScript language is not supported for Arbortext Publishing Engine.

Note
The f=javascript function can specify a custom application that returns a file of any type.
It can also set the HTTP status code, reason phrase, and headers to any requested value.

Testing JavaScript Syntax in Arbortext
Publishing Engine Interactive
You can launch Arbortext Publishing Engine Interactive to test the syntax of the code in
your custom JavaScript applications. When you source your JavaScript file, be aware that
Arbortext Publishing Engine Interactive will not actually run the application.

Writing Arbortext PE Applications in JavaScript 129

To test JavaScript applications using Arbortext Publishing Engine
Interactive

1. Your JavaScript file should be in the PE_HOME\custom\init directory.

2. Launch Arbortext Publishing Engine Interactive by choosing it from its shortcut on
your Arbortext Publishing Engine program group.

Any scripts in PE_HOME\custom\init are automatically sourced at startup. If
the JavaScript application contains syntax or other errors, you'll automatically
receive a message explaining the nature of the error.

3. If you wish to leave Arbortext Publishing Engine Interactive running, you can
make a change to the JavaScript file and source it manually using the Arbortext
Publishing Engine Interactive command line prompt. You would use the source
command and specify the path, like the following example:

source path-and-script-name.js

Note
If the command line is not enabled at the bottom of the interface, choose Options ▶▶
Preferences. If you want to change the default setting, select the Preferences
button. If you want to change the setting for the current session only, select the
Current Settings button. Then, on theWindow tab, select the Command Line
option. You can exit by choosing the save option of your choice.

Calling the Conversion Processor from a
JavaScript Arbortext PE Application
You can write a JavaScript application that can call the conversion processor (explained
in 11 Arbortext Publishing Engine Document Conversion on page 163). The Arbortext PE
sub-processes use the Rhino package to allow JavaScript to access Java objects. Refer to
the Calling the Conversion Processor From a Java Arbortext PE Application on page 122
for an explanation of the Java objects used to invoke the conversion processor. Each
parameter entry must correspond to a valid conversion parameter (see Document
Conversion Parameters on page 165 for a list and descriptions).

The following is an example of JavaScript code that calls com.arbortext.e3.
DocumentConverter.doConvert:
var inFile = "c:\absolute\path\to\input\file.xml";
var outFile = "c:\absolute\path\to\output\file.pdf";
var params = new java.util.HashMap();

params.put("type", "pdf");
params.put("stylesheet" , "d:\absolute\path\to\stylessheet.style");

try {
com.arbortext.e3.subprocess.DocumentConverter.doConvert(

130 Programmer’s Guide to Arbortext Publishing Engine

inFile, outFile, params);
// Conversion succeeded

}
catch(e) {

var reason = e.getReason();
var page = e.getPage();
// Log the failure and exit.

}

Sample JavaScript Arbortext PE
Application
The sample JavaScript applications are included in Arbortext Publishing Engine
installation. These applications are on the server and loaded into an Arbortext PE sub-
process when it starts. The JavaScript sample applications are:
PE_HOME\e3\samples\javascript\E3AppTest.js
PE_HOME\e3\samples\javascript\e3samples2.js

The E3AppTest.js sample is available for testing from the Arbortext Publishing
Engine HTML web page (for information, see Monitoring and Reporting Using a Web
Browser on page 26). It is handled by the Arbortext PE Request Manager, so you don't
need to place it in the PE_HOME\custom\init directory. The E3AppTest.js
sample application reports information about the Arbortext Publishing Engine
environment. Document manipulation, such as opening, closing, and changing content, is
accomplished using the AOM and DOM interfaces (refer to the Programmer's
Reference). For information on e3samples2.js, see Sample Applications on page
109.

Troubleshooting JavaScript Arbortext PE
Applications
Reloading JavaScript Applications
During the development and testing phase, you can make changes to JavaScript
applications and then reload them from custom\init. You can issue an Arbortext
Publishing Engine HTTP request specifying f=init to reload your JavaScript application.
It’s not necessary to stop and restart the servlet container.

If there is a syntax error in your custom application, the error is returned in an HTML
page in response to the first Arbortext PE sub-process request to perform work (usually
from a request containing a f=java, f=javascript, f=vbscript, or f=acl function).

Writing Arbortext PE Applications in JavaScript 131

Logging
Your application can obtain a Logger object and write to the servlet log by calling the
getApplicationLogger method of the E3ApplicationConfig interface. The logger level
will be set as indicated by the parameters com.arbortext.e3.applicationLog.javascript.
functionname (functionname is the JavaScript function that implements the application),
com.arbortext.e3.applicationLog.javascript, or com.arbortext.e3.applicationLog in
e3config.xml. Refer to Parameters that Control Application Logging in Global
Arbortext PE Request Manager Parameters on page 41 for more information.

Examining Transaction Files
After your application successfully finishes processing a request, the request, the
generated response returned to the client, and any other information generated during
processing could be stored in the transaction archive, if the transaction archive is
configured to save all transactions.

When debugging an application, you can configure the transaction archive to save all
transactions by setting com.arbortext.e3.transactionArchive.selector to all in
e3config.xml. Then retrieve the transactions that your application fulfilled, and
inspect the data passed to your application by the HTTP request and the response returned
by your application for those inputs.

Saving Intermediate Files
If your application creates any temporary files or documents as part of generating its the
response that is returned to the client, you can save those files to the transaction archive
using the addIntermediateFile method of the E3ApplicationConfig interface (see The
E3ApplicationConfig Class on page 121). The intermediate files will accompany the
transaction if you use addIntermediateFile. They will be placed in the transaction
directory, provided the transaction is placed in the transaction archive, and you can
examine them by retrieving the transaction from the archive.

Using the Arbortext Publishing Engine Test Utility
Arbortext Publishing Engine offers an interactive testing utility called Arbortext
Publishing Engine Test Utility to validate and test your Java, JavaScript, VBScript, and
ACL applications as well as document conversion (f=convert) parameters. You can test
your custom applications without having an Arbortext Publishing Engine production
environment in place.

You can launch the Arbortext Publishing Engine Test Utility as a standalone program or
from the Arbortext Publishing Engine Interactive Tools menu. You choose the test type
and set all the parameters and their values for the custom application. The utility
constructs the query string from your specifications and validates it. You can also run the
test and report the results as though it had been handled by Arbortext Publishing Engine.

132 Programmer’s Guide to Arbortext Publishing Engine

If errors occur, they're included in the report. The Arbortext Publishing Engine Test
Utility is documented in the Test Utility User's Guide manual, which you can find in the
/docs on the Arbortext Publishing Engine distribution archive or CD-ROM, as well as
in the PE_HOME/e3/docs directory after you install Arbortext Publishing Engine. The
Arbortext Publishing Engine Test Utility standalone executable is located in:

PE_HOME\e3\bin\e3test.cmd

Avoiding Content Type Problems in the Arbortext
Publishing Engine HTTP Request
You may experience problems with a returned file if you submit an HTTP or HTTPS
request that ends with a file extension. The web browser can interpret the request
improperly. If Arbortext Publishing Engine passes the content-type header correctly (for
instance, application/pdf) in its response to the browser, the web browser may
ignore the content-type header and try to render the response based on a file extension
occurring at the end of the URL. To avoid this problem, you may want to structure an
HTTP request so that file extensions do not appear at the end.

In the following example, the first request may cause a problem. By reordering the
parameters in the same request, as in the second example, the request will succeed. The
best practice is to place the f=java, f=javascript, f=vbscript, f=acl, or f=convert
specification at the end of the URL.

The following HTTP f=acl request may cause a problem because the request ends in .
xml. The web browser may try to interpret XML as the content-type, rather than the PDF
content-type which is specified and is the content-type that will be returned. Ignore the
line breaks in the examples:

http://www.myserver.com:8000/e3/servlet/e3
?f=acl&function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml

The following HTTP request will succeed because the URL ends with the f=acl
specification, which won't confuse the web browser:

http://www.myserver.com:8000/e3/servlet/e3
?function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml&f=acl

You may also want to take advantage of the fact that the web browser can interpret
content-type from a URL that ends in a file extension. You can include a dummy
parameter at the end of the URL to specify a file extension, for example, dummy=file.
pdf for a PDF file. The dummy parameter will be ignored by Arbortext Publishing
Engine, but the web browser may try to render the response based on the file extension .
pdf occurring at the end of the URL.

Writing Arbortext PE Applications in JavaScript 133

9
Writing Arbortext PE Applications

in VBScript

Passing Parameters .. 137
Constructing a Response .. 139
Retrieving the Configuration Parameters.. 142
Testing VBScript Syntax in Arbortext Publishing Engine Interactive 143
Calling the Conversion Processor from a VBScript Arbortext PE

Application .. 144
Sample VBScript Arbortext PE Applications ... 144
Troubleshooting VBScript Arbortext PE Applications ... 145

An Arbortext PE Application written in VBScript is a VBScript subroutine which takes
no parameters. The Arbortext PE Request Manager processes requests for VBScript
applications by passing requests whose f parameters have the value vbscript to the
Request Function com.arbortext.e3.FunctionVbscript. The request function allocates an
Arbortext PE sub-process and passes the request to the Arbortext PE Application Context
(described in The Arbortext PE sub-process Application Context on page 111). The
Arbortext PE Application Context allocates request and response objects, as for a Java
application, and stores references to them in global variables. Then it calls the VBScript
function indicated by the request's function parameter. The function must have been
defined in a .vbs file in a custom\init directory or in a .vbs file in custom
\scripts which is loaded from custom\init.

VBScript Arbortext PE Applications are specifically for Windows systems. The VBScript
Arbortext PE Application is called without any parameters. It obtains request and sets
response information by invoking methods in the packages PEAppRequest and
PEAppResponse, which access the request and response objects allocated by the
Arbortext PE Application Context.

135

The return value of the VBScript Arbortext PE Application function is ignored. Whether
it succeeds or produces an error response, everything to be returned to the client must be
stored in the response object.

Unlike a Java Arbortext PE Application, a VBScript application has no initialization or
termination components.

136 Programmer’s Guide to Arbortext Publishing Engine

Passing Parameters
The entire HTTP request, including all information about the request provided by the Java
Servlet interface, is passed to the Arbortext PE sub-process and made available to the
VBScript Arbortext PE Application. This includes the HTTP request headers, query
parameters, and request body. The client can pass an arbitrary number of HTTP query
parameters to control the behavior of the application.

The VBScript Arbortext PE Application can call the following VBScript functions to
retrieve information about the request.

VBScript Functions for Accessing the Request

Function Purpose
PEAppRequest::getAuthType
()

Returns the name of the authentication scheme used
to protect the Arbortext PE Request Manager servlet;
for example, BASIC, SSL, or an empty string if the
servlet is not protected.

PEAppRequest::
getCharacterEncoding()

Returns the name of the character encoding used in
the body of this request or an empty string if the
request does not specify a character encoding.

PEAppRequest::
getContentLength()

Returns the length, in bytes, of the request body or
-1 if the length is not known.

PEAppRequest::
getContentType()

Returns the MIME type of the body of the request, or
an empty string if the type is not known.

PEAppRequest::
getContextPath()

Returns the portion of the request URI that indicates
the context of the request.

PEAppRequest::
getDateHeader(name)

Returns the value of the specified request header as
the number of milliseconds since 0:00 January 1,
1970.

PEAppRequest::getHeader(
name)

Returns the value of the specified request header or
an empty string if the header was not specified on the
request. If the header has more than one value, only
the first is returned.

PEAppRequest::
getHeaderNames()

Returns an array of the names of each request header.

PEAppRequest::getHeaders(
name)

Returns an array of all values of header name.

PEAppRequest::getInputFile
()

Returns the absolute path to the disk file containing
the message body of the HTTP POST request;
returns an empty string if there is no message body

Writing Arbortext PE Applications in VBScript 137

Function Purpose

(HTTP GET request, HTTP POST request with a null
body).

PEAppRequest::
getIntHeader(name)

Included for completeness; identical to
PEAppRequest::getHeader().

PEAppRequest::getLocale() Returns the preferred locale for the content being
sent to the client, based on the request’s Accept-
Language header

PEAppRequest::getLocales(
array[])

Returns an array of the name of each locale the client
will accept.

PEAppRequest::getMethod() Returns the name of the HTTP method for this
request, either GET or POST.

PEAppRequest::
getParameter(name)

Returns the value of a request parameter as a String,
or an empty string if the parameter does not exist. If
the parameter has more than one value, the first is
returned.

PEAppRequest::
getParameterNames(array[]
)

Returns an array of the name of each request
parameter specified on the request.

PEAppRequest::
getParameterValues(name)

Returns an array of each value of request parameter
name

PEAppRequest::getPathInfo(
)

Returns any extra path information associated with
the URL the client sent when it made the request.

PEAppRequest::
getPathTranslated()

Returns the extra path information after the servlet
name but before the query string, translated to a real
path.

PEAppRequest::getProtocol(
)

Returns the name and version of the protocol the
request uses in the form protocol/major
version.minor version, for example HTTP/
1.1.

PEAppRequest::
getQueryString()

Returns the query string that is contained in the
request URL after the path, or an empty string if the
URL does not have a query string.

PEAppRequest::
getRemoteAddr()

Returns the Internet Protocol (IP) address of the
client that sent the request.

PEAppRequest::
getRemoteHost()

Returns the fully-qualified name of the client that
sent the request, or the IP address of the client if the
name cannot be determined.

138 Programmer’s Guide to Arbortext Publishing Engine

Function Purpose
PEAppRequest::
getRemoteUser()

Returns the login of the user making the request, if
the user has been authenticated. Returns an empty
string otherwise.

PEAppRequest::
getRequestURI()

Returns the part of the request's URL from the
protocol name to the query string.

PEAppRequest::getScheme() Returns the name of the scheme used to make this
request, for example http or https.

PEAppRequest::
getServerName()

Returns the host name of the server that is processing
the request.

PEAppRequest::
getServerPort()

Returns the port number on which this request was
received.

PEAppRequest::
getServletPath()

Returns the part of this request’s URL that resulted in
the Arbortext PE Request Manager being invoked.

PEAppRequest::isSecure() Returns true or false showing whether this
request was made using a secure channel, such as
HTTPS.

Constructing a Response
The VBScript Arbortext PE Application can call the following VBScript subroutines to
build the HTTP response that will be returned to the client.

VBScript Functions for Building a Response

Function Purpose
PEAppResponse::
addDateHeader(name, date)

Adds a response header with the given name. The
value must be the number of milliseconds since 0:00,
January 1, 1970 or a time/date string that the Java
layer can convert.

PEAppResponse::addHeader(
name, value)

Adds a response header with the given name and
value.

PEAppResponse::
addIntHeader(name, value)

Included for completeness; identical to
PEAppResponse::addHeader().

PEAppResponse::
containsHeader(name)

Returns true or false showing whether the
named response header has already been set.

PEAppResponse::
getArchiveFlag

Returns the value of the archive flag, which
determines whether the transaction will be archived.
When set to true, the transaction will be archived.

Writing Arbortext PE Applications in VBScript 139

Function Purpose

If it’s set to false, the transaction will not be
archived.

PEAppResponse::
getAlternateArchiveFlag

Returns the value of the alternate archive flag, which
determines whether the transaction will be archived
in an alternate location. When set to 1, the
transaction will be archived, provided the alternate
location is set up in e3config.xml. If it’s set to
0, the transaction will not be archived in an alternate
location.

PEAppResponse::
getCharacterEncoding()

Returns the name of the character encoding used for
the MIME body to be sent in this response.

PEAppResponse::getCode() Returns the HTTP response code that will be
transmitted to the client.

PEAppResponse::
getHeaderNames(array[])

Returns an array of a list of all response headers that
have been set.

PEAppResponse::
getHeaderValues(name)

Returns an array of a list of all header values stored
for header name.

PEAppResponse::getLocale() Returns the name of the locale assigned to this
response.

PEAppResponse::
getOutputFile()

Returns the absolute path to the file that's currently
defined for transmission to the client. It returns an
empty string if PEAppResponse::setOutputFile()
hasn't been called.

PEAppResponse::getState() Returns a code indicating what will be returned to
the client. States are as follows:

1: Returns a fabricated HTML page based upon the
status code

2: Returns a fabricated HTML page based upon the
status code and error message

3: Returns the status code, HTTP headers, and
HTML page set using PEAppRequest::
setOutputPage()

4: Returns the status code, HTTP headers, and
output file specified using PEAppRequest::
setOutputFile(). The output file will not be
deleted after transmission to the client.

5: Same as state 4, but after transmitting the output
file, it's deleted.

140 Programmer’s Guide to Arbortext Publishing Engine

Function Purpose

6: Sends a temporary redirect to the client.

PEAppResponse::getString() Returns the response string buffer, or an empty
string if the buffer is empty.

PEAppResponse::
hasResultFile()

Returns true or false showing whether this
response will or will not return a file (i.e., state is 4
or 5).

PEAppResponse::
hasStringResult()

Returns true or false showing whether this
response has or does not have a string to return (i.e.,
state is 3).

PEAppResponse::reset() Clears the string buffer and output file, and sets the
state to 1.

PEAppResponse::sendError(
code)

Resets the response, then stores status code code and
sets state to 1.

PEAppResponse::
sendErrorMsg(code, message
)

Resets the response, then stores the status code and
error message, and sets state to 2.

PEAppResponse ::
sendRedirect(location)

Resets the response, sets state to 6, and then saves
location as the URL to which the client should be
redirected.

PEAppResponse::
setArchiveFlag

Returns the value of the archive flag. When set to
true, the transaction can be archived. If it’s set to
false, the transaction will not be archived.

PEAppResponse::
setAlternateArchiveFlag

Returns the value of the alternate archive flag. When
set to 1, the transaction will be archived, provided
the alternate location is set up in e3config.xml.
If it’s set to 0, the transaction will not be archived in
an alternate location.

PEAppResponse::
setContentLength(length)

Sets the HTTP Content-Length response header.

PEAppResponse::
setContentType(type)

Sets the HTTP Content-Type response header.

PEAppResponse::
setDateheader(name, value)

Sets the HTTP response header name to value,
which should be a time/date expressed as the number
of milliseconds since 0:00, January 1, 1970 or a
time/date string the Java layer can convert.

PEAppResponse::setHeader(
name, value)

Sets the HTTP response header name to value.

Writing Arbortext PE Applications in VBScript 141

Function Purpose
PEAppResponse::
setIntHeader(name, value)

Included for completeness; same as
PEAppResponse::setHeader

PEAppResponse::setLocale(
name)

Sets the response locale, updating HTTP headers as
appropriate.

PEAppResponse::
setOutputFile(path, delete)

Configures the response to return the file path
(which should be absolute). If delete is 0, the file is
not deleted after transmission; otherwise the file is
deleted after transmission. Sets the response state to
4 or 5, depending upon the value of delete.

PEAppResponse::
setOutputPage(page)

Configures the response to return the string page as
the response body. Sets the response state to 3.

PEAppResponse::setStatus(
value)

Sets the status to be returned with the response to
value.

Retrieving the Configuration Parameters
The VBScript Arbortext PE Application can call the following routines to retrieve the
names and values of the configuration parameters maintained by the Arbortext PE sub-
process Application Context.

VBScript Functions for Obtaining Configuration Parameters

Function Purpose
PEAppConfig::addIntermediateFile(
fileName, contentType, description)

copies the file whose absolute path is
provided by the fileName parameter into
the transaction directory as an
intermediate file. The contentType and
description parameters are included as
comments.

PEAppConfig :: getInitParameter(
name)

Returns the value of parameter name or
the null string if there is no such
parameter.

PEAppConfig ::
getInitParameterNames(names[])

Places the name of each defined parameter
in the ACL array names and returns the
number of parameters defined.

PEAppConfig::debug(message) Places messages in the servlet log if the
application log level is set to display
messages of this severity.

142 Programmer’s Guide to Arbortext Publishing Engine

Function Purpose
PEAppConfig::error(message) Places messages in the servlet log if the

application log level is set to display
messages of this severity.

PEAppConfig::fatal(message) Places messages in the servlet log if the
application log level is set to display
messages of this severity.

PEAppConfig::info(message) Places messages in the servlet log if the
application log level is set to display
messages of this severity.

PEAppConfig::trace(message) Places messages in the servlet log if the
application log level is set to display
messages of this severity.

PEAppConfig::isDebugEnabled() Returns1 if the specified log level is
enabled, 0 if it’s not.

PEAppConfig::isInfoEnabled() Returns1 if the specified log level is
enabled, 0 if it’s not.

PEAppConfig::.isTraceEnabled() Returns1 if the specified log level is
enabled, 0 if it’s not.

Testing VBScript Syntax in Arbortext
Publishing Engine Interactive
You can launch Arbortext Publishing Engine Interactive to test the syntax of the code in
your custom VBScript applications. When you source your VBScript file, be aware that
Arbortext Publishing Engine Interactive will not actually run the application.

To test VBScript applications using Arbortext Publishing Engine
Interactive

1. Your VBScript file should be in the PE_HOME\custom\init directory.

2. Launch Arbortext Publishing Engine Interactive by choosing it from its shortcut on
your Arbortext Publishing Engine program group.

Any scripts in PE_HOME\custom\init are automatically sourced at startup. If
the VBScript application contains syntax or other errors, you'll automatically
receive a message explaining the nature of the error.

3. If you wish to leave Arbortext Publishing Engine Interactive running, you can
make a change to the VBScript file and source it manually using the Arbortext

Writing Arbortext PE Applications in VBScript 143

Publishing Engine Interactive command line prompt. You would use the source
command and specify the path, like the following example:

source path-and-script-name.vbs

Note
If the command line is not enabled at the bottom of the interface, choose Options ▶▶
Preferences. If you want to change the default setting, select the Preferences
button. If you want to change the setting for the current session only, select the
Current Settings button. Then, on theWindow tab, select the Command Line
option. You can exit by choosing the save option of your choice.

Calling the Conversion Processor from a
VBScript Arbortext PE Application

Note
Writing a VBScript application to call the conversion processor is not currently
supported.

Sample VBScript Arbortext PE
Applications
The sample VBScript applications are included in the Arbortext Publishing Engine
installation. These applications are on the server and loaded into an Arbortext PE sub-
process when it starts. The VBScript sample applications are:
PE_HOME\e3\samples\vbscript\E3AppTest.vbs
PE_HOME\e3\samples\vbscript\e3samples2.vbs

The E3AppTest.vbs sample is available for testing from the Arbortext Publishing
Engine HTML web page (for information, see Monitoring and Reporting Using a Web
Browser on page 26). It is handled by the Arbortext PE Request Manager, so you don't
need to place it in the PE_HOME\custom\init directory. The E3AppTest.vbs
sample application reports information about the Arbortext Publishing Engine
environment. Document manipulation, such as opening, closing, and changing content, is
accomplished using the AOM and DOM interfaces (refer to the Programmer's
Reference). For information about e3samples2.vbs, see Sample Applications on page
109.

144 Programmer’s Guide to Arbortext Publishing Engine

Troubleshooting VBScript Arbortext PE
Applications
Reloading VBScript Applications
During the development and testing phase, you can make changes to VBScript
applications and then reload them from custom\init. You can issue an Arbortext
Publishing Engine HTTP request specifying f=init to reload your VBScript application;
it's not necessary to stop and restart the servlet container.

If there is a syntax error in your custom application, the error is returned in an HTML
page in response to the first Arbortext PE sub-process request to perform work (usually
from a request containing a f=java, f=javascript, f=vbscript, or f=acl function).

Logging
Your application can obtain a Logger object and write to the servlet log by calling the
getApplicationLogger method of the E3ApplicationConfig interface. The logger level
will be set as indicated by the parameters com.arbortext.e3.applicationLog.vbscript.
functionname (functionname is the VBScript function that implements the application),
com.arbortext.e3.applicationLog.vbscript, or com.arbortext.e3.applicationLog in
e3config.xml. Refer to Parameters that Control Application Logging in Global
Arbortext PE Request Manager Parameters on page 41 for more information.

Examining Transaction Files
After your application successfully finishes processing a request, the request, the
generated response returned to the client, and any other information generated during
processing could be stored in the transaction archive, if the transaction archive is
configured to save all transactions.

When debugging an application, you can configure the transaction archive to save all
transactions by setting com.arbortext.e3.transactionArchive.selector to all in
e3config.xml. Then retrieve the transactions that your application fulfilled, and
inspect the data passed to your application by the HTTP request and the response returned
by your application for those inputs.

Saving Intermediate Files
If your application creates any temporary files or documents as part of generating its the
response that is returned to the client, you can save those files to the transaction archive
using the PEAppConfig::addIntermediateFile function. The intermediate files will
accompany the transaction if you use addIntermediateFile. They will be placed in the
transaction directory, provided the transaction is placed in the transaction archive, and
you can examine them by retrieving the transaction from the archive.

Writing Arbortext PE Applications in VBScript 145

Using the Arbortext Publishing Engine Test Utility
Arbortext Publishing Engine offers an interactive testing utility called Arbortext
Publishing Engine Test Utility to validate and test your Java, JavaScript, VBScript, and
ACL applications as well as document conversion (f=convert) parameters. You can test
your custom applications without having an Arbortext Publishing Engine production
environment in place.

You can launch the Arbortext Publishing Engine Test Utility as a standalone program or
from the Arbortext Publishing Engine Interactive Tools menu. You choose the test type
and set all the parameters and their values for the custom application. The utility
constructs the query string from your specifications and validates it. You can also run the
test and report the results as though it had been handled by Arbortext Publishing Engine.
If errors occur, they're included in the report. The Arbortext Publishing Engine Test
Utility is documented in the Test Utility User's Guide manual, which you can find in the
/docs on the Arbortext Publishing Engine distribution archive or CD-ROM, as well as
in the PE_HOME/e3/docs directory after you install Arbortext Publishing Engine. The
Arbortext Publishing Engine Test Utility standalone executable is located in:

PE_HOME\e3\bin\e3test.cmd

Avoiding Content Type Problems in the Arbortext
Publishing Engine HTTP Request
You may experience problems with a returned file if you submit an HTTP or HTTPS
request that ends with a file extension. The web browser can interpret the request
improperly. If Arbortext Publishing Engine passes the content-type header correctly (for
instance, application/pdf) in its response to the browser, the web browser may
ignore the content-type header and try to render the response based on a file extension
occurring at the end of the URL. To avoid this problem, you may want to structure an
HTTP request so that file extensions do not appear at the end.

In the following example, the first request may cause a problem. By reordering the
parameters in the same request, as in the second example, the request will succeed. The
best practice is to place the f=java, f=javascript, f=vbscript, f=acl, or f=convert
specification at the end of the URL.

The following HTTP f=acl request may cause a problem because the request ends in .
xml. The web browser may try to interpret XML as the content-type, rather than the PDF
content-type which is specified and is the content-type that will be returned. Ignore the
line breaks in the examples:

http://www.myserver.com:8000/e3/servlet/e3
?f=acl&function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml

The following HTTP request will succeed because the URL ends with the f=acl
specification, which won't confuse the web browser:

146 Programmer’s Guide to Arbortext Publishing Engine

http://www.myserver.com:8000/e3/servlet/e3
?function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml&f=acl

You may also want to take advantage of the fact that the web browser can interpret
content-type from a URL that ends in a file extension. You can include a dummy
parameter at the end of the URL to specify a file extension, for example, dummy=file.
pdf for a PDF file. The dummy parameter will be ignored by Arbortext Publishing
Engine, but the web browser may try to render the response based on the file extension .
pdf occurring at the end of the URL.

Writing Arbortext PE Applications in VBScript 147

10
Writing Arbortext PE Applications

in ACL

Passing Parameters .. 151
Constructing a Response .. 153
Retrieving the Configuration Parameters.. 156
Testing ACL Syntax with Arbortext Publishing Engine Interactive 157
Calling the Conversion Processor from an ACL Arbortext PE

Application .. 158
Sample ACL Arbortext PE Applications .. 159
Troubleshooting ACL Arbortext PE Applications .. 160

An Arbortext PE Application written in ACL is an ACL subroutine which takes no
parameters. The Arbortext PE Request Manager processes requests for ACL applications
by passing requests whose f parameters have the value acl to the Request Function
com.arbortext.e3.FunctionAcl. The request function allocates an Arbortext PE sub-
process and passes the request to the Arbortext PE Application Context The Arbortext PE
sub-process Application Context on page 111). The Arbortext PE Application context
allocates request and response objects, as for a Java application, and stores references to
them in global variables. Then it calls the ACL function indicated by the query’s function
parameter. The function must have been defined in a .acl file in a custom\init
directory or in an .acl file in a custom\scripts directory which is loaded from
custom\init. For example, to invoke the ACL function test::abc, the HTTP query
would include the parameter function=test::abc.

The ACL Arbortext PE Application is called without any parameters. It obtains request
and sets response information by invoking methods in the packages PEAppRequest and
PEAppResponse, which access the request and response objects allocated by the
Arbortext PE Application Context.

149

The return value of the ACL Arbortext PE Application function is ignored. Whether it
succeeds or produces an error response, everything to be returned to the client must be
stored in the response object.

Unlike Java Arbortext PE Applications, ACL applications have no initialization or
termination components.

150 Programmer’s Guide to Arbortext Publishing Engine

Passing Parameters
The entire HTTP request, including all information about the request provided by the Java
Servlet interface, is passed to the Arbortext PE sub-process and made available to the
ACL Arbortext PE Application. This includes the HTTP request headers, query
parameters, and request body. The client can pass an arbitrary number of HTTP query
parameters to control the behavior of the application.

The ACL Arbortext PE Application can call the following ACL functions to retrieve
information about the request.

ACL Functions for Accessing the Request

Function Purpose
PEAppRequest::getAuthType
()

Returns the name of the authentication scheme used
to protect the Arbortext PE Request Manager servlet;
for example, BASIC, SSL, or an empty string if the
servlet is not protected.

PEAppRequest::
getCharacterEncoding()

Returns the name of the character encoding used in
the body of this request or an empty string if the
request does not specify a character encoding.

PEAppRequest::
getContentLength()

Returns the length, in bytes, of the request body or
-1 if the length is not known.

PEAppRequest::
getContentType()

Returns the MIME type of the body of the request, or
an empty string if the type is not known.

PEAppRequest::
getContextPath()

Returns the portion of the request URI that indicates
the context of the request.

PEAppRequest::
getDateHeader(name)

Returns the value of the specified request header as
the number of milliseconds since 0:00 January 1,
1970.

PEAppRequest::getHeader(
name)

Returns the value of the specified request header or
an empty string if the header was not specified on the
request. If the header has more than one value, only
the first is returned.

PEAppRequest::
getHeaderNames(array[])

Returns an array of the names of each request header.

PEAppRequest::getHeaders(
name, array[])

Returns an array of all values of header name.

PEAppRequest::getInputFile
()

Returns the absolute path to the file on disk
containing the message body of the HTTP POST
request. It returns an empty string if there is no

Writing Arbortext PE Applications in ACL 151

Function Purpose

message body (HTTP GET request, HTTP POST
request with a null body).

PEAppRequest::
getIntHeader(name)

Included for completeness; identical to
PEAppRequest::getHeader().

PEAppRequest::getLocale() Returns the preferred locale for the content being
sent to the client, based on the request’s Accept-
Language header

PEAppRequest::getLocales(
array[])

Returns an array of the name of each locale the client
will accept..

PEAppRequest::getMethod() Returns the name of the HTTP method for this
request, either GET or POST.

PEAppRequest::
getParameter(name)

Returns the value of a request parameter as a String,
or an empty string if the parameter does not exist. If
the parameter has more than one value, the first is
returned.

PEAppRequest::
getParameterNames(array[]
)

Returns an array of the name of each request
parameter specified on the request, and returns the
number of names specified.

PEAppRequest::
getParameterValues(name,
array[])

Returns an array of each value of request parameter
name

PEAppRequest::getPathInfo(
)

Returns any extra path information associated with
the URL the client sent when it made the request.

PEAppRequest::
getPathTranslated()

Returns the extra path information after the servlet
name but before the query string, translated to a real
path.

PEAppRequest::getProtocol(
)

Returns the name and version of the protocol used by
the request, in the form protocol/major
version.minor version, for example HTTP/
1.1.

PEAppRequest::
getQueryString()

Returns the query string that is contained in the
request URL after the path, or an empty string if the
URL does not have a query string.

PEAppRequest::
getRemoteAddr()

Returns the Internet Protocol (IP) address of the
client that sent the request.

PEAppRequest::
getRemoteHost()

Returns the fully-qualified name of the client that
sent the request, or the IP address of the client if the
name cannot be determined.

152 Programmer’s Guide to Arbortext Publishing Engine

Function Purpose
PEAppRequest::
getRemoteUser()

Returns the login of the user making the request, if
the user has been authenticated. Returns an empty
string otherwise.

PEAppRequest::
getRequestURI()

Returns the part of this request's URL from the
protocol name up to the query string.

PEAppRequest::getScheme() Returns the name of the scheme used to make this
request, for example http or https.

PEAppRequest::
getServerName()

Returns the host name of the server that is processing
the request.

PEAppRequest::
getServerPort()

Returns the port number on which this request was
received.

PEAppRequest::
getServletPath()

Returns the part of this request’s URL that resulted in
the Arbortext PE Request Manager being invoked.

PEAppRequest::isSecure() Returns 0 for false or 1 for true indicating whether
this request was made using a secure channel, such as
HTTPS.

Constructing a Response
The ACL Arbortext PE Application can call the following subroutines to build the HTTP
response that will be returned to the client.

ACL Functions for Building a Response

Function Purpose
PEAppResponse::
addDateHeader(name, date)

Adds a response header with the given name. The
value must be the number of milliseconds since 0:00,
January 1, 1970 or a time/date string that the Java
layer can convert.

PEAppResponse::addHeader(
name, value)

Adds a response header with the given name and
value.

PEAppResponse::
addIntHeader(name, value)

Included for completeness; identical to
PEAppResponse::addHeader().

PEAppResponse::
containsHeader(name)

Returns 0 for false or 1 for true showing whether the
named response header has already been set.

PEAppResponse::
getArchiveFlag

Returns the value of the archive flag, which
determines whether the transaction can be archived.
When set to true, the transaction can be archived.

Writing Arbortext PE Applications in ACL 153

Function Purpose

If it’s set to false, the transaction will not be
archived.

PEAppResponse::
getAlternateArchiveFlag

Returns the value of the alternate archive flag, which
determines whether the transaction can be archived
in an alternate location. When set to 1, the
transaction will be archived, provided the alternate
location is set up in e3config.xml. If it’s set to
0, the transaction will not be archived in an alternate
location.

PEAppResponse::
getCharacterEncoding()

Returns the name of the character encoding used for
the MIME body to be sent in this response.

PEAppResponse::getCode() Returns the HTTP response code that will be
transmitted to the client.

PEAppResponse::
getHeaderNames(array[])

Returns an array of a list of all response headers that
have been set.

PEAppResponse::
getHeaderValues(name, array
[])

Returns an array of a list of all header values stored
for header name.

PEAppResponse::getLocale() Returns the name of the locale assigned to this
response.

PEAppResponse::
getOutputFile()

Returns the absolute path to the file that's currently
defined for transmission to the client. It returns an
empty string if PEAppResponse::setOutputFile()
hasn't been called.

PEAppResponse::getState() Returns a code indicating what will be returned to
the client. States are as follows:

1: Returns a fabricated HTML page based upon the
status code

2: Returns a fabricated HTML page based upon the
status code and error message

3: Returns the status code, HTTP headers, and
HTML page set using PEAppRequest::
setOutputPage()

4: Returns the status code, HTTP headers, and
output file specified using PEAppRequest::
setOutputFile(). The output file will not be
deleted after transmission to the client.

5: Same as state 4, but after transmitting the output
file, it's deleted.

154 Programmer’s Guide to Arbortext Publishing Engine

Function Purpose

6: Sends a temporary redirect to the client.

PEAppResponse::getString() Returns the response string buffer, or an empty
string if the buffer is empty.

PEAppResponse::
hasResultFile()

Returns 0 if this response will not return a file
(meaning the state is not 4 or 5). Returns 1 if this
response will return a file (meaning state is 4 or 5).

PEAppResponse::
hasStringResult()

Returns 0 if this response does not have a string to
return (i.e., state is not 3). Returns 1 if this response
has a string to return (i.e., state is 3).

PEAppResponse::reset() Clears the string buffer and output file, and sets the
state to 1.

PEAppResponse::sendError(
code)

Resets the response, then stores status code code and
sets state to 1.

PEAppResponse::
sendErrorMsg(code, message
)

Resets the response, then stores the status code and
error message, and sets state to 2.

PEAppResponse ::
sendRedirect(location)

Resets the response, sets state to 6, and then saves
location as the URL to which the client should be
redirected.

PEAppResponse::
setArchiveFlag

Returns the value of the archive flag. When set to
true, the transaction can be archived. If it’s set to
false, the transaction will not be archived.

PEAppResponse::
setAlternateArchiveFlag

Returns the value of the alternate archive flag. When
set to 1, the transaction can be archived, provided
the alternate location is set up in e3config.xml.
If it’s set to 0, the transaction will not be archived in
an alternate location.

PEAppResponse::
setContentLength(length)

Sets the HTTP Content-Length response header.

PEAppResponse::
setContentType(type)

Sets the HTTP Content-Type response header.

PEAppResponse::
setDateheader(name, value)

Sets the HTTP response header name to value,
which should be a time/date expressed as the number
of milliseconds since 0:00, January 1, 1970 or a
time/date string the Java layer can convert.

PEAppResponse::setHeader(
name, value)

Sets the HTTP response headername to value.

Writing Arbortext PE Applications in ACL 155

Function Purpose
PEAppResponse::
setIntHeader(name, value)

Included for completeness; same as
PEAppResponse::setHeader

PEAppResponse::setLocale(
name)

Sets the response locale, updating HTTP headers as
appropriate.

PEAppResponse::
setOutputFile(path, delete)

Configures the response to return the file path
(which should be absolute). If delete is 0, the file is
not deleted after transmission; otherwise the file is
deleted after transmission. Sets the response state to
4 or 5, depending upon the value of delete.

PEAppResponse::
setOutputPage(page)

Configures the response to return the string page as
the response body. Sets the response state to 3.

PEAppResponse::setStatus(
value)

Sets the status to be returned with the response to
value.

Retrieving the Configuration Parameters
The ACL Arbortext PE Application can call the following routines to retrieve the names
and values of the configuration parameters maintained by the Arbortext PE sub-process
Application Context.

ACL Functions for Obtaining Configuration Parameters

Function Purpose
PEAppConfig::addIntermediateFile(
fileName, contentType, description)

copies the file whose absolute path is
provided by the fileName parameter into
the transaction directory as an
intermediate file. The contentType and
description parameters are included as
comments.

PEAppConfig :: getInitParameter(
name)

Returns the value of parameter name or
the null string if there is no such
parameter.

PEAppConfig ::
getInitParameterNames(names[])

Places the name of each defined parameter
in the ACL array names and returns the
number of parameters defined.

PEAppConfig::debug(message) Places messages in the servlet log if the
application log level is set to display
messages of this severity.

156 Programmer’s Guide to Arbortext Publishing Engine

Function Purpose
PEAppConfig::error(message) Places messages in the servlet log if the

application log level is set to display
messages of this severity.

PEAppConfig::fatal(message) Places messages in the servlet log if the
application log level is set to display
messages of this severity.

PEAppConfig::info(message) Places messages in the servlet log if the
application log level is set to display
messages of this severity.

PEAppConfig::trace(message) Places messages in the servlet log if the
application log level is set to display
messages of this severity.

PEAppConfig::isDebugEnabled() Returns1 if the specified log level is
enabled, 0 if it’s not.

PEAppConfig::isInfoEnabled() Returns1 if the specified log level is
enabled, 0 if it’s not.

PEAppConfig::.isTraceEnabled() Returns1 if the specified log level is
enabled, 0 if it’s not.

Testing ACL Syntax with Arbortext
Publishing Engine Interactive
If you create custom ACL scripts in the custom\init or custom\scripts
directories, you can test them using an Arbortext Publishing Engine Interactive session.

To test ACL applications using Arbortext Publishing Engine
Interactive

1. Your ACL file should be in the PE_HOME\custom\init directory.

2. Launch Arbortext Publishing Engine Interactive from its shortcut on your
Arbortext Publishing Engine program group.

Any scripts in PE_HOME\custom\init are automatically sourced at startup. If
the ACL application contains syntax or other errors, you'll automatically receive a
message explaining the nature of the error.

3. If you wish to leave Arbortext Publishing Engine Interactive running, you can
make a change to the ACL file and source it manually using the Arbortext
Publishing Engine Interactive command line prompt. You would use the source
command and specify the path, like the following example:

Writing Arbortext PE Applications in ACL 157

source path-and-script-name.acl

Note
If the command line is not enabled at the bottom of the interface, choose Tools ▶▶
Preferences. Then, on theWindow panel, select the Command Line option.

Calling the Conversion Processor from an
ACL Arbortext PE Application
You can write an ACL application that can call the conversion processor (explained in 11
Arbortext Publishing Engine Document Conversion on page 163) by invoking the
following function:

e3::convert2(inFile, outFile, parameter[])

• inFile must specify the absolute path to a document to be converted. The e3::
convert2 function can not process open documents. If your application creates or
modifies a document that will be converted, you must save the document to disk
and close it before invoking e3::convert2. After e3::convert2 returns, you can
open your document again if you need to make further modifications.

• outFile must specify the absolute path to the output file that e3::convert2 will
produce. If this file already exists, it will be overwritten during conversion
processing.

• parameter must be an ACL associative array. Each array entry must correspond to
a valid conversion parameter (see Document Conversion Parameters on page 165
for a list and descriptions).

For example, to specify a stylesheet:
parameter["stylesheet"] = "d:\absolute\path\to\stylesheet.style";

The e3::convert2 function returns an associative array encoded as a string. Extract the
array content by invoking the function e3::string_to_array(inString, outArray). The
resulting array will contain three elements:

• result: will be either ok or error

• reason: HTTP reason code (400, 500, or some other valid code)

• page: an XHTML page describing the error (the same page an f=convert request
would return to an HTTP client)

Example of ACL code that calls the e3::convert2 function:
local inFile = "c:\absolute\path\to\input\file.xml";
local outFile = "c:\absolute\path\to\output\file.pdf";
local parameters[];

158 Programmer’s Guide to Arbortext Publishing Engine

local resultArray[];

parameters["type"] = "pdf";
parameters["stylesheet"] = "d:\absolute\path\to\stylesheet.style";

local resultString = e3::convert2(inFile, outFile, parameters);

e3::stringToArray(resultString, resultArray);

if (resultArray["result"] == "ok") {
conversion succeeded: continue processing
}
else {
conversion failed: error page is in resultArray["page"]
}

Sample ACL Arbortext PE Applications
The sample ACL applications are included in the Arbortext Publishing Engine
installation. These applications are on the server and loaded into an Arbortext PE sub-
process when it starts. The sample ACL applications are:
PE_HOME\e3\samples\acl\E3AppTest2.acl
PE_HOME\e3\samples\acl\e3samples2.acl

The E3AppTest2.acl sample is available for testing from the Arbortext Publishing
Engine HTML web page (for information, see Monitoring and Reporting Using a Web
Browser on page 26). It is handled by the Arbortext PE Request Manager, so you don't
need to place it in the PE_HOME\custom\init directory. The E3AppTest2.acl
sample application reports information about the Arbortext Publishing Engine
environment. Document manipulation, such as opening, closing, and changing content, is
accomplished using ACL commands and functions (refer to the Programmer's
Reference). For information about e3samples2.acl, see Sample Applications on page
109.

To be able to use the functions in e3samples2.acl, you need to copy it the PE_HOME
\custom\init directory. Be sure that you add the ACL package and its functions
(e3samples2::*) to the allowed ACL function list (refer to The Allowed Functions List on
page 110 for information). Then issue an f=init request, go to the Arbortext Publishing
Engine web page and click Reload Subprocesses, or stop and restart the servlet
container for Arbortext Publishing Engine to make them available.

Writing Arbortext PE Applications in ACL 159

Troubleshooting ACL Arbortext PE
Applications
Reloading ACL Applications
During the development and testing phase, you can make changes to ACL applications
and then issue an Arbortext Publishing Engine HTTP request specifying f=init or click
Reload Subprocesses on the Arbortext Publishing Engine web page to reload them from
the PE_HOME\custom\init directory.

If there is a syntax error in your custom application, the error is returned in an HTML
page in response to the first Arbortext PE sub-process request to perform work (usually
from a request containing a f=java, f=javascript, f=vbscript, or f=acl function).

Logging
Your application can obtain a Logger object and write to the servlet log by calling the
getApplicationLogger method of the E3ApplicationConfig interface. The logger level
will be set as indicated by the parameters com.arbortext.e3.applicationLog.acl.
functionname (functionname is the ACL function that implements the application),
com.arbortext.e3.applicationLog.acl, or com.arbortext.e3.applicationLog in
e3config.xml. Refer to Parameters that Control Application Logging in Global
Arbortext PE Request Manager Parameters on page 41 for more information.

Examining Transaction Files
After your application successfully finishes processing a request, the request, the
generated response returned to the client, and any other information generated during
processing could be stored in the transaction archive, if the transaction archive is
configured to save all transactions.

When debugging an application, you can configure the transaction archive to save all
transactions by setting com.arbortext.e3.transactionArchive.selector to all in
e3config.xml. Then retrieve the transactions that your application fulfilled, and
inspect the data passed to your application by the HTTP request and the response returned
by your application for those inputs.

Saving Intermediate Files
If your application creates any temporary files or documents as part of generating its the
response that is returned to the client, you can save those files to the transaction archive
using the PEAppConfig::addIntermediateFile function. The intermediate files will
accompany the transaction if you use addIntermediateFile. They will be placed in the
transaction directory, provided the transaction is placed in the transaction archive, and
you can examine them by retrieving the transaction from the archive.

160 Programmer’s Guide to Arbortext Publishing Engine

Using the Arbortext Publishing Engine Test Utility
Arbortext Publishing Engine offers an interactive testing utility called Arbortext
Publishing Engine Test Utility to validate and test your Java, JavaScript, VBScript, and
ACL applications as well as document conversion (f=convert) parameters. You can test
your custom applications without having an Arbortext Publishing Engine production
environment in place.

You can launch the Arbortext Publishing Engine Test Utility as a standalone program or
from the Arbortext Publishing Engine Interactive Tools menu. You choose the test type
and set all the parameters and their values for the custom application. The utility
constructs the query string from your specifications and validates it. You can also run the
test and report the results as though it had been handled by Arbortext Publishing Engine.
If errors occur, they're included in the report. The Arbortext Publishing Engine Test
Utility is documented in the Test Utility User's Guide manual, which you can find in the
/docs on the Arbortext Publishing Engine distribution archive or CD-ROM, as well as
in the PE_HOME/e3/docs directory after you install Arbortext Publishing Engine. The
Arbortext Publishing Engine Test Utility standalone executable is located in:

PE_HOME\e3\bin\e3test.cmd

Avoiding Content Type Problems in the Arbortext
Publishing Engine HTTP Request
You may experience problems with a returned file if you submit an HTTP or HTTPS
request that ends with a file extension. The web browser can interpret the request
improperly. If Arbortext Publishing Engine passes the content-type header correctly (for
instance, application/pdf) in its response to the browser, the web browser may
ignore the content-type header and try to render the response based on a file extension
occurring at the end of the URL. To avoid this problem, you may want to structure an
HTTP request so that file extensions do not appear at the end.

In the following example, the first request may cause a problem. By reordering the
parameters in the same request, as in the second example, the request will succeed. The
best practice is to place the f=java, f=javascript, f=vbscript, f=acl, or f=convert
specification at the end of the URL.

The following HTTP f=acl request may cause a problem because the request ends in .
xml. The web browser may try to interpret XML as the content-type, rather than the PDF
content-type which is specified and is the content-type that will be returned. Ignore the
line breaks in the examples:

http://www.myserver.com:8000/e3/servlet/e3
?f=acl&function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml

The following HTTP request will succeed because the URL ends with the f=acl
specification, which won't confuse the web browser:

Writing Arbortext PE Applications in ACL 161

http://www.myserver.com:8000/e3/servlet/e3
?function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml&f=acl

You may also want to take advantage of the fact that the web browser can interpret
content-type from a URL that ends in a file extension. You can include a dummy
parameter at the end of the URL to specify a file extension, for example, dummy=file.
pdf for a PDF file. The dummy parameter will be ignored by Arbortext Publishing
Engine, but the web browser may try to render the response based on the file extension .
pdf occurring at the end of the URL.

162 Programmer’s Guide to Arbortext Publishing Engine

11
Arbortext Publishing Engine

Document Conversion

Document Conversion Parameters ... 165
Loading a Document for Conversion... 173
Conversion Processing ... 176
Conversion Result ... 187
Customizing Document Conversion.. 188
Troubleshooting Conversion Processing .. 190

Arbortext Publishing Engine ships with an ACL Arbortext PE Application for
transforming one document into another, possibly of a different format. The application is
invoked when the Arbortext PE Request Manager receives an HTTP request with an f=
convert query parameter. For a GET request, Arbortext Publishing Engine converts a
document on or accessible to the Arbortext PE server. For an HTTP POST request,
Arbortext Publishing Engine converts the document passed as the HTTP message body.

Document conversion supports:

• SGML and XML input documents

• Importing Microsoft Word, RTF, and WordML; Adobe FrameMaker MIF; XML of
a different document type; HTML; PDF; and text document formats to XML

• Extracting an input document of the previously listed types from a zip archive

• Applying profiling, stylesheets, publishing rules, data merging, and graphic
reference mapping to the input document

• Transforming to HTML, PDF, PostScript, HTML Help, EPUB, RTF, SGML, and
XML output formats

• Producing PDF and PostScript using Arbortext Advanced Print Publisher

• Support for returning a zip archive containing the output file and related documents

163

An example of an f=convert request within the HTTP request looks like:

type=html&file=D:\Documents\bigdoc.xml&f=convert

This request specifies loading the file /usr/pedocs/bigdoc.xml, and then
transforming it to HTML using the default stylesheet for the document type used by
bigdoc.xml. The resulting HTML document will be returned to the web client as the
body of the HTTP response.

Every f=convert request must specify an output document format. Other parameters
specify the input file to be converted for GET requests and additional instructions on how
to read the input document and transform it into the desired output.

The basic flow of control for a conversion operation is to load a document into memory,
operate on the in-memory document, then transform the in-memory document to the
desired output format on disk. The details vary depending upon the format of the input
document, transformation parameters specified, and the desired format for the output
document.

You can also call the document conversion processor from an ACL, Java, or JavaScript
application. Refer to Customizing Document Conversion on page 188 for information.

164 Programmer’s Guide to Arbortext Publishing Engine

Document Conversion Parameters
The following table describes the parameters accepted by the f=convert function for
processing by the Arbortext PE Request Manager. If a parameter is only used in
producing a particular type of output, it is ignored if another output type is specified. Note
that because APP produces PDF and PostScript, parameters for other output types don’t
apply when the print engine is APP.

Note
The FOSI and XSL-FO print engines are on sustained support and do not receive
enhancements or maintenance fixes. APP is the recommended engine for print output.

Conversion Parameters

Parameter Explanation
app-config-file=pathname Specifies the name of the PDF

configuration file when using the APP
print engine to convert documents to PDF
or PostScript only. If it’s not specified, the
default configuration file for the document
type is used. This parameter is ignored for
other output types or if the APP print
engine is not being used.

app-snapshot=yes|no Specifies whether to generate an APP
snapshot zip archive when using the APP
print engine to convert documents to PDF
or PostScript. Set to yes to produce the
snapshot. As a result, the transaction will
also be archived on the Arbortext PE
server (ignoring archive-transaction).
For more information on using the
snapshot zip for troubleshooting, refer to
Troubleshooting APP Publishing.
If app-snapshot is not specified, then the
behavior defaults to the value of the ACL
set appsnapshot option. Specifying
app-snapshot on a request overrides the
value of the set appsnapshot option.
This parameter is ignored if the APP print
engine is not being used.

archive-transaction=yes|no Specify whether to archive the transaction
produced by the request. If set to yes, the
transaction will be archived if com.
arbortext.e3.transactionArchive.enable
is set to true in the e3config.xml

Arbortext Publishing Engine Document Conversion 165

Parameter Explanation

configuration file. If app-snapshot is set
to yes, this parameter is ignored.

change-tracking=
original|changes|latest

If the document contains change tracking
markup, this parameter specifies which
document version should be published.

• original publishes the original
document with no changes.

• changes publishes the document
showing proposed changes.

• latest publishes the document
with all changes applied (the default
and is assumed if the parameter is
omitted)

This parameter is ignored if output type is
xml, sgml, or subset=toc. This
parameter has no effect on documents
without change tracking.

cropmarks=yes|no Determines whether crop marks appear in
PDF output. This parameter is ignored for
other output types or if the APP print
engine is not being used. The default is
no.

encoding=specification Specifies the character encoding to use for
EPUB, HTML, and Web publishing
output. If omitted, the publishing
operation uses the document type default.
Consult the online help topic Character
sets and encoding for encoding
specification values.

export-stylesheet=pathname Specifies the absolute path to a stylesheet
to be used in producing RTF output. When
producing RTF output, if export-
stylesheet is not specified, stylesheet will
be used instead if stylesheet specifies a .
style file.
Note that you can specify both a
stylesheet parameter to transform an
XML document to another XML
document, and an export-stylesheet to
produce RTF on the same request.
If not specified, the default stylesheet for
the document type is used.

166 Programmer’s Guide to Arbortext Publishing Engine

Parameter Explanation
failure-mode=
linkcheck|localgraphics

Specifies method to use to check graphics
for the input document.
The linkcheck method verifies graphic
and file entity references of the input file.
The localgraphics setting collects
graphic entity references specified by a
URL and copies the graphic entities to a
local temporary http cache subdirectory.
The actions performed by
localgraphics include the actions for
linkcheck.
By default, neither method is applied.

file=pathname Specifies the absolute path, logical ID, or
URL for the input file to be converted.
Required for GET requests; optional for
POST requests.

file-type=type Specifies the format of the data in the
input file. Refer to Loading a Document
for Conversion on page 173 for supported
values.
file-type is optional except when
importing WordML documents. If
omitted, Arbortext Publishing Engine will
try to determine the input file type from
the HTTP content-type header for a POST
request. Arbortext Publishing Engine will
examine the file extension of the input file
for a GET request.

flatten-entities=yes|no Specifies whether all entities and XML
inclusion references should be resolved
when producing an XML or SGML
document. The default is no.

frameset=directorypath Specifies the absolute path to a directory
containing a frameset to apply to web
publishing output. If omitted, the
publishing operation uses the document
type default.

graphic-transform=specification Specifies rules for transforming graphics
when converting a document to the
specified output format. specification
consists of one or more rules separated by
vertical bars: rule1|rule2|ruleN. A
rule consists of a list of input types
separated by commas, followed a colon,
and then an output type.
For example:

Arbortext Publishing Engine Document Conversion 167

Parameter Explanation

svg,cgm:png|bmp:gif

specifies two rules, the first converts SVG
and CGM graphics to PNG, and the
second converts BMP to GIF.
For example:

tif,drw,eps,iso,idr:svg

specifies a single rule that converts TIF,
DRW, EPS, ISO and IDR graphics to
SVG.

Note
Conversion to SVG is only supported for
IDR and ISO graphics.

The supported graphic input and output
types depend on the type of output format.
For all HTML output formats, the types
are the same as those specified by set
graphicwebtransform preference.
For RTF output, the types are the same as
those in the set
graphicrtftransform preference.
For print or PDF output using APP, the
types are the same as those in the set
graphicapptransform preference. If
this parameter is not specified, the values
of these preferences is used instead for the
associated output types.
This parameter is ignored if there are no
graphics of the type specified, or if the
output format is postscript, sgml,
xml, or subset=toc.

graphic-web=yes|no This parameter is deprecated. Use the
graphic-transform parameter instead.
Specifies whether to convert embedded
intelligent (such as 3D and ISO) graphics
to web-friendly graphics (GIF, JPEG, or
PNG) when producing HTML or Web
output. The default is no.

import-inline-map-comments= yes|no Specifies whether to include Import
MapTemplate comments in the imported
XML file. Setting import-inline-map-
comments to yes includes the comments.
The default is no.

168 Programmer’s Guide to Arbortext Publishing Engine

Parameter Explanation
import-map=path Specifies the absolute path to the

MapTemplate file used when importing a
Microsoft Word, Adobe FrameMaker,
HTML, PDF, RTF, text, XML, or
WordML document to XML.
There is no default; this parameter is
required if the input document is in any of
the supported formats.

input-entry=filename Specifies the file name of the entry in a
zip archive to be used as the input
document.
There is no default; this parameter is
required if the input file is a zip archive.

input-entry-type=type Specifies the format of the data in the zip
archive entry specified by input-entry=
filename.
type can be any supported input file type
other than zip.
input-entry-type is optional and if
omitted, Arbortext Publishing Engine will
examine the file extension of the file name
input-entry parameter value.

locale=none|coountry code Valid when publishing to web via HTTP
request
Specifies the locale for the publish action,
setting the UI language and displaying the
correct content.
Enter none to use the default (current)
locale.

pdf-config-file=pathname Specifies the absolute path to a PDF
configuration file (.pdfcf), which
controls PDF output using FOSI engine.
pdf-config-file is optional and if omitted,
Arbortext Publishing Engine will use the
default configuration file for the document
type of the document being converted
(usually standard.pdfcf).
For information about PDF configuration
files, please refer to Print and PDF
Configuration Files in Arbortext Editor
Help.

print-engine-override=app|fosi|
xslfo

Specifies whether to use APP, FOSI, or
XSL-FO engine for PDF or PostScript
output.
The Arbortext PE sub-process saves the
current value of

Arbortext Publishing Engine Document Conversion 169

Parameter Explanation

printengineoverride and then
applies this setting before performing the
requested document conversion. After the
conversion is complete, the Arbortext PE
sub-process restores the saved value for
printengineoverride.
This parameter is ignored for any other
output type or if APP is not being used on
the Arbortext PE server.

print-options=option-list Specifies a list of options that are used in
producing PostScript output. This
parameter is ignored when producing PDF
output direct from XML.
Refer to Producing PostScript Output on
page 182 for supported values.
print-options is optional and if omitted,
no options are passed to the print
command.
This parameter is ignored for any other
output type or if APP is being used.

profile=specification Specifies how to apply profiling to the
input file before converting it to the output
format.
Refer to Applying a Profile on page 177
for a description of profiling expressions.
By default, no profiling is performed.

regmarks=yes|no Determines whether registration marks
appear in PDF output. This parameter is
ignored for other output types or if the
APP print engine is not being used. The
default is no.

return-composer-errors=
no|error|warning

Specifies whether to return the event log
in place of the output document.
This option applies to producing
PostScript, HTML, and PDF.
The default value is no, meaning
publishing errors are ignored and the
output document is returned (if one is
generated).

return-formatter-errors=yes|no Specifies whether, if formatting errors are
detected, the errors should be returned in
an XML document instead of the
formatted output document.
The default value no returns the output
document if one is generated. The value
yes returns the event log instead of the

170 Programmer’s Guide to Arbortext Publishing Engine

Parameter Explanation

output document if the log contains error
messages.

return-parser-errors=yes|no Specifies whether, if parser errors occur
when opening an XML or SGML
document, the errors should be returned in
an XML document instead of the
formatted output document.
The default value is no, meaning parser
errors are ignored.

rule-file=rulefileUniqueID Specifies the unique ID of the publishing
rule file containing the publishing rule set
or publishing rule to execute. The Unique
ID is assigned when the rule file is created.
If rulefileUniqueID does not specify a
valid rule file on the Arbortext PE server,
an error is returned.
This parameter must be specified along
with the rule=rulename parameter or an
error is returned.
There is no default value.

rule=rulename Specifies the name of the publishing rule
set or publishing rule to be used for
publishing the document.
If rulename does not specify a valid rule
or rule set in the rule file specified by
rule-file=rulefileUniqueID, an error is
returned.
This parameter must be specified along
with the rule-file=rulefileUniqueID
parameter or an error is returned.
There is no default value.

use-ruleset-parameters=
yes|no

Specifies whether a parameter value
specified in the rule set definition in a rule
file will be used or ignored.
Ordinarily, the rule set output process
specifies its own values for parameters
such as absoluteManifestPaths,
generateManifest, generateRuleLogs,
outputMode, outputModePattern,
ruleTargetOverride, and
ruleTargetPattern rule set parameters.
If use-ruleset-parameters is set to yes, a
parameter value specified in the rule set
definition in a rule file will be used. For
any parameter not specified in the rule
file, the default value is used. (Publishing

Arbortext Publishing Engine Document Conversion 171

Parameter Explanation

rule set parameters and their defaults are
documented in Customizer's Guide.)
If this parameter is specified,rule-file=
rulefileUniqueID and rule=rulename
must also be specified, or an error is
returned.
The default is no and may be omitted.

stylesheet=pathname Specifies the absolute path, URL, or
logical ID of the stylesheet to apply during
document conversion. (a .style, .
fos.xsl or .3f file).
For Web, specify an .xsl stylesheet or a
.style file that supports XSL.
For EPUB, specify a .style stylesheet.
This parameter is optional; the default is
the default stylesheet for the document
type.

subset=toc Specifies whether to extract a subset of a
loaded, profiled document when
publishing HTML output.
If this parameter is omitted, the entire
document is returned. If subset=toc is
specified, only the table of contents is
returned.

type=target Specifies the format of the output
document. This parameter is required,
except when specifying a publishing rule
or rule set (which produces an error).
Refer to Conversion Processing on page
176 for a list of output types.
If zip-output=yes is specified, the output
document will be placed in a zip archive
and the zip archive will be returned.

xml-char-ent=
same|char|entref|numref

Specifies how non-ASCII characters are
handled in XML output.

• same keeps the characters the same
as the source

• char converts to characters in the
target encoding

• entref converts to character
entity references

• numref (the default) converts to
numeric character references

172 Programmer’s Guide to Arbortext Publishing Engine

Parameter Explanation

This parameter is supported only for the
output type xml, otherwise it is ignored.

xml-header=yes|no Specifies whether to include the XML
header when producing XML output.
The default is no.

zip-graph-dir=directory Specifies the name of a directory that will
contain graphic files produced by the
conversion process when zip-output=yes
is specified.
Refer to Generating a Zip Archive on page
184 for a description of the default used if
this parameter is omitted.

zip-include-composerlog=yes|no Specifies whether to return a zip archive
containing a manifest file, the result of the
publishing operation, XML and HTML
versions of the event log, and an error
page if one was generated. The default is
no.
.This parameter is ignored unless zip-
output=yes is specified or the output
type=target specifies web (implying zip-
output=yes). Refer to Generating a Zip
Archive on page 184.

zip-output=yes|no Specifies whether the conversion output
should be placed in a zip archive, and the
zip archive returned instead of the output
file.
The default is no. Refer to Generating a
Zip Archive on page 184.

zip-root=filename Specifies the name for the published
output file if zip-output=yes is specified.
Refer to Generating a Zip Archive on page
184 for a description of the default used if
this parameter is omitted.

Loading a Document for Conversion
The conversion process begins by finding and loading an XML document into the
Arbortext PE sub-process. If the input document is not XML, it is imported from its
native format to XML, and the resulting XML document is loaded.

Arbortext Publishing Engine Document Conversion 173

Specifying the Input File
For a GET request, the HTTP query must include a file parameter specifying the input
file, otherwise an error is returned.

For a POST request, the input file can be included as the HTTP request body or specified
in a file parameter. If the file=pathname parameter is specified, the submitted request
body will be ignored, as though a GET request had been submitted. A POST request with
neither a file parameter or a request body is an error.

The HTTP query parameter file=pathname must specify one of the following:

• the absolute path to the input file

• a URL that the conversion processor can use to retrieve the input file from the
network

• a Logical ID that the conversion processor can use to fetch the input file from a
document repository

Determining the Input File Type
For either a GET or a POST request, the input file type can be specified by the file-type=
type parameter. If a file parameter is specified, but no file-type parameter is specified, the
conversion processor attempts to determine the input file type by examining the file
extension. The supported input file types, the file-type=type parameter values, and the
associated file extension mapping are described in the following table.

Input file types

Input file type file-type parameter
values

File extension

SGML sgml .sgm, .sgml

XML xml .xml, .dita, .
ditamap

HTML html .htm, .html

Microsoft Word word .doc, .docx

WordML xml .xml

Adobe FrameMaker frame .mif

Rich Text Format rtf .rtf

Text text .txt

PDF pdf .pdf

Zip archive zip .zip

174 Programmer’s Guide to Arbortext Publishing Engine

For a POST request passing the input file as the HTTP request body (no file or file-type
parameter specified), the conversion processor determines the input file type according to
the HTTP header parameter content-type as follows:

Mapping content-type header to input file type

Header value Input file type

application/msword Microsoft Word

application/pdf PDF

application/rtf
text/rtf

Rich Text Format

application/vnd.framemaker
application/x-framemaker
application/x-frame

Adobe FrameMaker

application/zip zip archive

text/html HTML
text/plain Text

text/sgml SGML

text/xml XML. When importing WordML files, the
file-type parameter must also be set to
wordml.

Converting a Zip Archive Entry
If the input file is a zip archive, you must specify the input-entry=entry parameter. If the
archive member name specified by input-entry does not end in one of the recognized file
extensions, you must also specify the input-entry-type=type parameter.

When the input file is a zip archive, the conversion process create a temporary directory
and extracts the archive content to that directory. Then it proceeds as if the values of the
file and file-type functions had been specified as the values of the input-entry and input-
entry-type parameters.

Logical File Identifiers (Logical IDs)
The file parameter can specify an input document using a logical file identifier. A logical
ID is a URL that specifies an object in a document repository.

To use logical IDs, you must install a custom script to establish a connection to the
repository when the Arbortext PE sub-process initializes. For information on the sample
scripts included with your Arbortext Publishing Engine installation, refer to Connecting
to a Repository Adapter on page 196.

Arbortext Publishing Engine Document Conversion 175

Returning Parser Errors
When the conversion process loads an XML or SGML document, it uses an XML or
SGML parser to convert text into a usable document. Some documents may contain
parser errors, text patterns not allowed by the XML and SGML standards. By default, the
conversion processor ignores parser errors and does its best to process each document as
if it were correctly formed.

If you specify return-parser-errors=yes and the input SGML or XML document
contains errors, the conversion processor will return an XHTML document listing the
errors.

Checking Graphic References
After the input file has been opened or imported, you can apply optional processing to
check for graphic reference errors or to improve graphic handling by setting the failure-
mode parameter to one of the following values:

• linkcheck value directs the conversion processor to scan the loaded document
looking for graphic and entity references that point to unknown files. If any are
found, the conversion process returns an XHTML document listing the errors. If no
errors are found, processing continues normally.

• The localgraphics value includes linkcheck processing. Then it instructs
the conversion processor to copy all remote graphics to a local directory and adjust
the graphic references to point to the local files. The local copies will be discarded
at the end of the conversion operation.

Specifying failure-mode=localgraphics can improve performance by reducing the
number of times a graphic is retrieved from an external server during the publishing
process. This improvement is only realized during the course of a single publishing
operation; there is no caching of graphic files between conversion requests.

Conversion Processing
After it loads the input document, the conversion processor translates the loaded
document to the specified output format. The operations it performs depend upon the
output format selected and the other options specified.

Specifying the Output Format
The output format is specified by the type parameter. This parameter both controls the
processing performed and specifies the HTTP content-type header value to be used in
returning the output file to the HTTP client that submitted the f=convert request. The
following table lists the supported output types and the corresponding header value.

176 Programmer’s Guide to Arbortext Publishing Engine

Output File Types

Type parameter value content-type header value

epub application/epub+zip

html text/html
htmlhelp application/octet-stream

pdf application/pdf

postscript application/postscript

rtf text/rtf
sgml text/sgml

web application/zip

xml text/xml

There is no defined MIME type for the HTML Help format. Therefore the conversion
processor returns a content-type of application/octet-stream.

For Web output, the conversion process return a zip archive containing the directory
produced by the web publishing process and a number of subdirectories.

In addition, the conversion processor returns a zip archive (content-type
application/zip) if the parameter zip-output=yes is specified on the request.
Lastly, the conversion process may return an XHTML page (content-type text/xml)
with a return code of 500 if it detects an error that prevents it from successfully
completing the requested conversion.

Applying a Profile
Profiling is an optional process for deleting specified portions of the input document. For
example, a document for a training class might have some content appropriate to the
instructor, other content appropriate to students, and content common to both. To produce
a student document, the profiling feature would delete content designated only for the
instructor. The conversion process applies profiling in one of two ways:

• For the XML and SGML output formats, the conversion process applies profiling
as the next step after the document is opened.

• For other output formats, profiling is applied as part of the process of converting to
the output format.

Profiling is performed the same way for all outputs, and all the profile parameter values
are supported. Profiling options can be specified as:

• a logical expression.

profile=logicalexpression=markup

Arbortext Publishing Engine Document Conversion 177

The markup must match the content model of a SetProfileGroup in the profiling
DTD.

• a name, which refers to a profile specification that must be defined in the .pcf
profiling configuration file for the document type. Same as SetProfileGroup.

profile=resolutiongroupname=name

• a name, which refers to a profile specification that must be defined in the .pcf
profiling configuration file for the document type. Same as resolutiongroupname.

profile=setprofilegroup=name

When specifying profile=logicalexpression=markup, markup must be either a
ProfileRef or a LogicalExpression element as defined in the profiling.dtd.

• A ProfileRef element specifies a profile selector and value.

• A LogicaExpression element specifies either a LogicalGroup or a LogicalNot
element.

– A LogicalGroup element must contain two descendant elements, each of which
can be a LogicalGroup, a LogicalNot, or a ProfileRef elements.

– A LogicalNot element must contain one child element, either a LogicalGroup
or a ProfileRef element.

Example of a ProfileRef

profile=logicalexpression=
<ProfileRef alias="User Level" value="Expert"/>

Example of two ProfileRefs

profile=logicalexpression=
<LogicalExpression>

<LogicalGroup operator="OR">
<ProfileRef alias="User Level" value="Expert"/>
<ProfileRef alias="User Level" value="Typical"/>

</LogicalGroup>
</LogicalExpression>

Applying a Stylesheet
A stylesheet provides instructions on how to convert the input document to the output
document. There are two stylesheet parameters, stylesheet, which can be specified
with every output type, and export-stylesheet, which is only used when producing
RTF output.

There are several kinds of stylesheets:

178 Programmer’s Guide to Arbortext Publishing Engine

• Arbortext Styler stylesheets (.style files) can contain definitions for several
APP, XSL, or FOSI stylesheets, each for a different output format. The conversion
processor extracts and uses the appropriate APP, XSL, or FOSI stylesheet for the
target output type.

• FOSI stylesheets (.fos files) provide instructions for transforming an XML or
SGML document to HTML, PDF, or PostScript.

• XSL stylesheets (.xsl files) provide instructions for transforming one XML or
SGML document to another XML or SGML document. In some cases, the resulting
document is the output of the conversion operation. In other cases, the XML
document produced by the XSL transformation is the input to a further processing
step.

• .3f APP template files provide instructions for transforming an XML or SGML
document to PostScript or PDF.

Some conversion operations do not use stylesheet processing at all.

You can specify a stylesheet in the following ways:

• as an absolute path and file name on the Arbortext PE server. To avoid exposing the
path to the Arbortext Publishing Engine installation tree, a stylesheet path can be
specified using a server-side variable, for example:

PE_HOME\doctypes\axdocbook\axdocbook.style

• as a URL

You can update Arbortext PE sub-process stylesheets and then use f=init to clear all
previously cached stylesheets without restarting the Arbortext PE Request Manager. By
clearing the stylesheet cache, Arbortext PE sub-processes will use the updated stylesheet
for the next request that uses it.

Specifying Encoding
If you are converting to EPUB, HTML, HTML Help, or Web output, you can specify a
character encoding method using encoding=specification. A character encoding is a rule
for representing multi-byte characters as sequences of ASCII characters.

Note
The online help topic Character sets and encoding lists the values for encoding
specifications.

The Arbortext PE Request Manager surrounds parameters with double quotes and
encodes the characters\n, \f, \r, \t, ', ", \, and $ to alleviate confusion about escaped
characters in a request.

Arbortext Publishing Engine Document Conversion 179

Returning Formatter Errors
If the output type is HTML, PostScript, or PDF, one stage in the conversion process runs
the Arbortext Publishing Engine formatter. Normally, minor errors in the formatting
process are ignored, as Arbortext Publishing Engine attempts to correct minor errors and
continue processing.

If you specify return-formatter-errors=yes and formatter warning or error messages
are issued, then the conversion process stops processing and returns an XHTML
document with a return code of 500 and a list of the errors.

Errors and warning from Arbortext Advanced Print Publisher (APP) are sent to the event
log, which is returned to the client during publishing on the Arbortext PE server.

Returning Composer Errors
When an Arbortext PE sub-process publishes a document, minor errors are normally
ignored.

• If you specify return-composer-errors=error and publishing error messages are
issued, then the conversion process discards the output document and returns an
XHTML document containing a list of the errors, along with a result code of 500.

• If you specify return-composer-errors=warning and warning or error messages
are issued, then the conversion process discards the output document and returns an
XHTML document containing a list of the errors and warnings, along with a result
code of 500.

• If you specify return-composer-errors=no (the default), PE will attempt to
correct minor errors and continue processing. Even if warnings or errors are
detected, they will be discarded as long as PE is able to produce an output
document.

Errors and warning from APP are sent to the event log, which is returned to the client
during publishing on the Arbortext PE server.

Producing HTML Output
You can specify any kind of stylesheet (.style, .fos, or .xsl) for producing an
HTML output document. If the document being converted contains graphics, and if zip-
ouptut=yes is specified as a parameter, then the referenced graphics will be copied to a
graphic subdirectory and converted to GIF format.

You can customize graphics processing when publishing to HTML, described in
Customizing Document Conversion on page 188.

180 Programmer’s Guide to Arbortext Publishing Engine

Producing HTML Help Output
You can specify a .style or .xsl stylesheet when converting to HTML Help. The
XML document produced by the stylesheet is passed to the Microsoft HTML Help
compiler, which must be installed on the Arbortext PE server. The compiler can produce a
number of output files, but only the .chm file is returned as the result of the conversion
operation. Because the HTML Help compiler is a Windows program, you can produce
HTML Help only on Arbortext Publishing Engine running on a Windows platform.

Refer to Publishing a Document for HTML Help and Setup Considerations for Arbortext
Publishing Engine for further information.

Producing EPUB Output
You can specify a .style stylesheet and encoding when converting to EPUB. The
Arbortext PE server must have Calibre installed. The set epubinstalldir ACL
option must be specified on the Arbortext PE server to the location where Calibre 0.8.0 or
later is installed. A valid Calibre install directory must contain the files ebook-
convert.exe and ebook-viewer.exe. You can place the set
epubinstalldir statement in an ACL script in the Arbortext-path/custom/
init directory to declare the location of the installation.

You must also install Calibre on the Arbortext Editor client and implement set
epubinstalldir to enable the EPUB viewer.

Producing PDF Output
The conversion processor can produce PDF using the Arbortext Publishing Engine with
the FOSI print engine or the APP print engine, or it can produce PostScript output.

For information about PDF configuration files, please refer to Print and PDF
Configuration Files in Arbortext Editor Help.

Note
The FOSI and XSL-FO print engines are on sustained support and do not receive
enhancements or maintenance fixes. APP is the recommended engine for print output.

Producing PDF Using FOSI
You can control many details of PDF publishing by specifying a PDF configuration file.
The pdf-config-file parameter specifies the absolute path to the .pdfcf file you want.
Installation Guide for Arbortext Publishing Engine provides information on configuring
Arbortext Publishing Engine to produce PDF. Also, refer to the Customizer's Guide for
information on PDF configuration files.

Arbortext Publishing Engine Document Conversion 181

Producing PDF Using APP
When producing PDF using Arbortext Advanced Print Publisher, the conversion
processor uses APP to publish documents based on an Arbortext Styler stylesheet that
uses APP for print or PDF or on a native .3f stylesheet. Creating Arbortext Styler
stylesheets for APP is documented in the Arbortext Styler documentation. These
stylesheets must be on the Arbortext PE server to be available to Arbortext Editor and
other client applications. APP extends the functionality available from an Arbortext Styler
stylesheet, particularly support for CJK languages and Hebrew, Arabic, and Thai.

Producing PostScript Output
You can specify any type of stylesheet to produce PostScript. Windows users need to
select a PostScript printer as their default printer using the Arbortext Publishing Engine
Configuration program, available from a shortcut on the Arbortext Publishing Engine
program group.

You can control the behavior of the PostScript generator by specifying the print-options
parameter. The print-options=option-list parameter can take some of the arguments that
are supported for the print composed command of Arbortext Editor. The Arbortext
Publishing Engine Interactive online help print command topic provides information
about the supported print composed command arguments that are not specifically
excluded in the following list.

Caution

The conversion processor issues a print composed command and specifies some
command parameters to produce the output. To be sure you don't override the values
Arbortext Publishing Engine uses, do not specify any of the following print options:

[all | current | page_range]

[onepass | allpasses | noformat]

[force | auto]

[wait | nowait]

[printer=printer_name]

[file=path_name]

[color | monochrome]

[panel]

stylesheet=path

The following options are safe for use:

All | page_range

182 Programmer’s Guide to Arbortext Publishing Engine

portrait | landscape

papersize=uslegal | usletter | a4 | b5

paperheight=n

paperwidth=n

options="pubps_options"

copies=n

To submit a list of values for print-options=option-list that contains spaces and quotation
marks, you need to replace them in the HTTP request with hexadecimal notation. For
instance, a space is noted as %20, and a quotation mark is noted as %22. The following
example sets landscape orientation with datemark on:
f=convert&print-options=landscape%20options=%22-datemark%20on%22

If you are having problems producing PostScript, refer to the Installation Guide for
Arbortext Publishing Engine section on printer setup considerations.

Producing RTF Output
You may specify two stylesheets when converting to RTF output, one using the stylesheet
parameter and one using the export-stylesheet parameter. The stylesheet parameter is an
XSL stylesheet (.xsl) that specifies an in-memory transformation that is performed
before the document is translated to RTF. If omitted, no in-memory translation is
performed. The export-stylesheet parameter must specify an Arbortext Styler .style
file. If omitted, the default stylesheet for the document type of the input document is used
to produce the RTF output. If the RTF document contains graphics, Arbortext Publishing
Engine will return a zip archive.

Producing Web Output
Specifying Web output always returns a zip archive containing the output file. This means
that processing is conducted as though zip-root=on, and the parameters zip-root and zip-
graph-dir are ignored. The frameset parameter controls the output structure inside the
zip archive. The encoding parameter can specify the character encoding.

Producing XML and SGML Output
You can specify an XSL (.xsl) stylesheet to transform the input document to these
output types. The stylesheet may be omitted, in which case no transformation is
performed.

Arbortext Publishing Engine Document Conversion 183

Controlling the XML Header in XML Output
When the output type is XML, you can choose whether to write or omit the XML header
when the output document is generated by specifying the parameter xml-header=yes|
no. The XML header typically includes the DOCTYPE declaration and any internal
ENTITY declarations that normally appear at the top of a standard DOCTYPE header. By
default, the XML header is not generated.

Flattening Entities in the Output
When the output type is XML or SGML, you can choose whether to flatten all entities
and XML inclusion references in the output document by specifying the parameter
flatten-entities=yes|no.

Generating a Zip Archive
The HTTP protocol only allows one file to be returned as the body of the HTTP response.
Output formats such as HTML, XML, SGML, and RTF can produce a file accompanied
by a directory of graphic files which are referenced by the output file. If a single output
file is returned, the client can't access its graphic files.

Specifying zip-output=yes returns the result in a zip archive, which is a single file that
can contain any number of files and subdirectories. For HTML, the archive contains the
HTML document and the graphics to which it refers.

When this option is specified, all output, regardless of output type, is written to a single
target directory. For output types such as HTML, XML, SGML, and RTF, which support
external graphic references, the conversion process allocates a graphic subdirectory in the
output directory and copies all graphic files to the graphic subdirectory.

The conversion processor copies all graphics referenced by the input document to a
subdirectory of the output directory. Like profiling and stylesheet application, the graphic
copying process can be part of the output conversion operation (for output types HTML,
RTF, and Web) or immediately after stylesheet application (for the other output types).
Then the conversion processor adjusts the graphic references in the input document to
reference the graphics using relative path names within the archive.

If the output type is PostScript, PDF, EPUB, or HTML Help, this step is skipped because
the conversion processor embeds the graphics inside the output file.

By default, the name of the output file is e3out.ext, where ext is the file extension
appropriate to the type of document being converted (.htm, .pdf, .rtf, and so on).
You can specify the parameter zip-root to specify another file name.

If a graphic subdirectory is required, the default name will be external.graphics if
no zip-root parameter is specified. If zip-root is specified, the default graphic
subdirectory name will be root.graphics where root is the value of the zip-root
parameter. You can specify the zip-graph-dir parameter to specify any graphic
subdirectory name you with.

184 Programmer’s Guide to Arbortext Publishing Engine

If the output type is Web, then the zip-output, zip-root, and zip-graph-dir parameters
are ignored. The publishing capability always produces an output directory, and it's
automatically placed in a zip archive. The content of the directory is controlled by the
conversion process.

Example

type=html
zip-output=yes

The output file will be named e3out.htm and the graphic directory will be named
external.graphics.

Example

type=html
zip=output=yes
zip-root=testroot.htm

The output file will be named testroot.htm and the graphic directory will be named
testroot.htm.graphics.

Example

type=html
zip=output=yes
zip-root=testroot.htm
zip-graph-dir=mygraphics

The output file will be named testroot.htm and the graphic directory will be named
mygraphics.

Requesting an Event Log
A client specifying zip-include-composerlog=yes needs to anticipate the possible file
structure returned, as it can vary based on what happens during publishing. When a zip
archive is requested and zip-include-composerlog=yes, the returned result can be one of
the following:

• A zip archive of a specific format, which contains a manifest file listing the other
files returned, the result of the publishing operation (whether it succeeds or
generates errors), XML and HTML versions of the event log, and an error page if
one was generated.

The manifest file provides an index to the zip archive contents. Arbortext PE
Request Manager returns an HTTP result code of 200 if it returns a zip archive,
regardless of whether the publishing operation is successful or has errors.

• A text/xml document containing an XHTML error page, if processing fails without
being able to construct a zip archive.

Arbortext Publishing Engine Document Conversion 185

In the case of an error generating only a text/xml type XHTML error page, there is
no zip archive. The client should be able to handle the return of a text/xml
document as a fatal error. Arbortext PE Request Manager returns an HTTP result
code of 500 if it returns an XHTML error page.

The manifest.xml file is a short XML document of the following type:

<!ELEMENT convert-result EMPTY >
<!ATTLIST convert-result

success (yes|no) #REQUIRED
transaction-id #CDATA #IMPLIED
subprocess-id #CDATA #IMPLIED
status-code #CDATA #REQUIRED
fatal-count #CDATA #IMPLIED
output-name #CDATA #IMPLIED
reason-phrase #CDATA #REQUIRED
html-composer-log #CDATA #REQUIRED
error-count #CDATA #IMPLIED
warning-count #CDATA #IMPLIED
error-name #CDATA #IMPLIED
graphic-name #CDATA #IMPLIED
composer-log #CDATA #REQUIRED

</convert-result>

Using the EPUB sample as an example, you could specify:

http://pe-server:8080/e3/servlet/e3?file=$aptpath/e3/e3/e3demo.xml
&type=epub&f=convert&zipoutput=yes&zip-include-composerlog=yes

The zip archive would contain the following:

The returned manifest would be something like the following:

<?xml version="1.0" encoding="UTF-8"?>
<convert-result
success="yes"
transaction-id="74949"
subprocess-id="2832"
status-code="200"
fatal-count="0"
output-name="e3out.epub"
reason-phrase="OK"
html-composer-log="composerlog.html"

186 Programmer’s Guide to Arbortext Publishing Engine

error-count="0"
warning-count="0"
composer-log="composerlog.xml">
</convert-result>

Producing Output Using Publishing Rules
The following parameters are used when constructing a request that uses a publishing rule
or rule set:

• file=pathname (Required for GET requests)

• file-type=type (Optional)

• input-entry=filename (Required if input file is a .zip)

• input-entry-type=type (Optional)

• rule-file=rulefileUniqueID (Required)

Must specify a valid Unique ID for the rule file. The Unique ID is assigned when
the rule file is created and is stored in the rule file as the uuid. Rule file IDs must
be unique on the Arbortext PE server system. If rule files with the same Unique IDs
exist on the client system, they are effectively ignored when publishing with
Arbortext Publishing Engine.

• rule=rulename (Required)

Must specify a valid name for a publishing rule or rule set in the specified rule file.
The rule’s document type must be the same as that of the document being
published.

• use-ruleset-parameters=yes|no (Optional)

If the request specifies zip-output=yes|no and zip-include-composerlog= yes|no,
they will be ignored. All other f=convert parameters will return an error.

Conversion Result
The result of a document conversion (f=convert) request is an HTTP response, which is
transmitted to the client that submitted the HTTP request. Like all HTTP responses, the
result consists of a result code, a series of HTTP headers, and a body file.

The Conversion Response Code
If the conversion succeeds, the HTTP result code is 200 (OK). If conversion fails, the
HTTP result code is usually 500 (Internal Server Error).

Arbortext Publishing Engine Document Conversion 187

The Conversion Result Body
If conversion succeeds, the body returned as part of the HTTP response is the output of
the conversion operation. If conversion fails, the response body is ordinarily an XHTML
document describing the failure in more detail. In either case, as required by the HTTP
standard, the response's content-type HTTP header specifies the type of data returned.

The Conversion Result Header
The conversion response returns a single HTTP header, content-type, to indicate the type
of file encoded in the result body. Refer to Conversion Processing on page 176 for the
values used. Because it's possible that a content-type can be ignored by a web browser,
be sure to review Troubleshooting Conversion Processing on page 190.

Customizing Document Conversion
The Arbortext Publishing Engine conversion processor performs a number of consecutive
processing steps; each step could be customized in a number of ways to produce different
results. However, all the functionality provided by the Arbortext PE sub-process can't be
wrapped into a single routine.

Approach customizing the conversion process in the following ways:

• You can use a built-in customization specifically for HTML output with graphics.

• The conversion processor is an ACL subroutine. You can write a Java, JavaScript,
or ACL custom application that calls the conversion routine from your code.

Mapping Graphic Paths for HTML
Mapping graphics paths addresses the problem of returning an HTML document that
contains graphics without needing to bundle the graphics with the output file. If you
specify zip-output=yes, Arbortext Publishing Engine returns the converted HTML
document and the graphic files it references. With this customization, you can change the
output HTML document to refer to all graphics using a URL (http://... references),
provided your output document type is HTML and you do not specify zip-output=yes.
This approach works if you can place all of your graphics on a web server.

Create an ACL script that will be placed in a PE_HOME\custom\init directory in the
Arbortext Publishing Engine install tree on the Arbortext PE server. This script must
require the ACL package PE_HOME\e3\packages\e3.acl by issuing the command
require e3 (the path isn't needed). Invoke the ACL function e3::add_html_image_
map(path, url) for each graphics path you want to map by specifying the initial path for
a graphic reference as a string and a corresponding URL as a string. When the document
is converted to HTML, each graphic reference path that matches the specified initial path
string will be changed to the initial URL string in the output document.

188 Programmer’s Guide to Arbortext Publishing Engine

Example ACL script to map graphics paths
require e3; e3::add_html_image_map("c:\\graphics",
"http://myserver/graphics"); e3::add_html_image_map("d:\\graphics",
"http://anotherserver/graphics");

In the path string, note that the backslash must be escaped by another backslash. If the
converted HTML document contains the following graphic references:

• c:\graphics\sample.gif

• d:\graphics\test.jpg

• e:\graphics\keep.cgm

The graphic references in the output HTML document will be mapped to:

• http://myserver/graphics/sample.gif

• http://anotherserver/graphics/test.jpg

• e:\graphics\keep.cgm

The last graphic reference is not changed because there is no match for its path (e:
\graphics) in a e3::add_html_image_map function call.

Calling the Conversion Processor from a Custom
Application
You can write an ACL, Java, or JavaScript Arbortext Publishing Engine application that
performs pre-processing, calls the conversion processor, and then performs post-
conversion processing. Calling the conversion processor varies by application language.
For information on calling the conversion processor from each supported programming
language, refer to:

• Calling the Conversion Processor from an ACL Arbortext PE Application on page
158

• Calling the Conversion Processor From a Java Arbortext PE Application on page
122

• Calling the Conversion Processor from a JavaScript Arbortext PE Application on
page 130

Calling the conversion processor from a VBScript application is not supported.

Note
For all application languages, the conversion processor cannot process a document that
has already been opened by an Arbortext PE sub-process. If your pre-conversion
processing involves creating or modifying the document that is to be converted, you must
save the document to disk and then close it before invoking the conversion processor.

Arbortext Publishing Engine Document Conversion 189

Troubleshooting Conversion Processing
The following sections provide some troubleshooting suggestions when using the built-in
conversion processor.

Initializing the Server
Make sure Arbortext PE sub-process is using the most recent version of a custom ACL
script, you can force an initialization using one of the following methods:

• Stop and restart the web server.

• Issue an Arbortext Publishing Engine f=init function request.

You should also check that the ACL script is configured in the allowed function list in
e3config.xml. A ClientFunction element under the AllowedFunctions element must
provide permission to run the script, as described in The Allowed Functions List on page
110.

Returning Errors
If the Arbortext PE sub-process encounters an error condition, Arbortext Publishing
Engine will return an HTTP content-type of text/html with an XHTML
document describing the error. The error returns an HTTP status code of 500 (internal
server error).

Disabling Friendly Error Messages
If you're using Microsoft Internet Explorer, it has an option to control how an error
message is displayed by the browser. The web browser setting can substitute a generic
HTML error page in place of the error page actually transmitted. To ensure error
messages are passed through, choose Tools ▶▶Internet Options ▶▶Advanced and clear the
box labeled Show friendly HTTP error messages.

Tracing Conversion Progress
You can trace every conversion operation by placing the following ACL script in a file in
your custom\init directory:

require e3;
$e3::g_debug=2

The trace output is written to the Arbortext Diagnostics window on Windows. You can
launch it from the shortcut called Arbortext Publishing Engine Diagnostics in your PTC
program group.

190 Programmer’s Guide to Arbortext Publishing Engine

Trace output will be logged to standard output in the file TOMCAT_HOME\logs
\catalina.out, where TOMCAT_HOME is the absolute path to the directory where
you installed the Apache Tomcat servlet container.

Using the Arbortext Publishing Engine Test Utility
Arbortext Publishing Engine offers an interactive testing utility called Arbortext
Publishing Engine Test Utility to validate and test your Java, JavaScript, VBScript, and
ACL applications as well as document conversion (f=convert) parameters. You can test
your custom applications without having an Arbortext Publishing Engine production
environment in place.

You can launch the Arbortext Publishing Engine Test Utility as a standalone program or
from the Arbortext Publishing Engine Interactive Tools menu. You choose the test type
and set all the parameters and their values for the custom application. The utility
constructs the query string from your specifications and validates it. You can also run the
test and report the results as though it had been handled by Arbortext Publishing Engine.
If errors occur, they're included in the report. The Arbortext Publishing Engine Test
Utility is documented in the Test Utility User's Guide manual, which you can find in the
/docs on the Arbortext Publishing Engine distribution archive or CD-ROM, as well as
in the PE_HOME/e3/docs directory after you install Arbortext Publishing Engine. The
Arbortext Publishing Engine Test Utility standalone executable is located in:

PE_HOME\e3\bin\e3test.cmd

Avoiding Content Type Problems in the Arbortext
Publishing Engine HTTP Request
You may experience problems with a returned file if you submit an HTTP or HTTPS
request that ends with a file extension. The web browser can interpret the request
improperly. If Arbortext Publishing Engine passes the content-type header correctly (for
instance, application/pdf) in its response to the browser, the web browser may
ignore the content-type header and try to render the response based on a file extension
occurring at the end of the URL. To avoid this problem, you may want to structure an
HTTP request so that file extensions do not appear at the end.

In the following example, the first request may cause a problem. By reordering the
parameters in the same request, as in the second example, the request will succeed. The
best practice is to place the f=java, f=javascript, f=vbscript, f=acl, or f=convert
specification at the end of the URL.

The following HTTP f=acl request may cause a problem because the request ends in .
xml. The web browser may try to interpret XML as the content-type, rather than the PDF
content-type which is specified and is the content-type that will be returned. Ignore the
line breaks in the examples:

http://www.myserver.com:8000/e3/servlet/e3
?f=acl&function=e3apps::myapp

Arbortext Publishing Engine Document Conversion 191

&mime-type=application/pdf
&file=d:\scripts\mydoc.xml

The following HTTP request will succeed because the URL ends with the f=acl
specification, which won't confuse the web browser:

http://www.myserver.com:8000/e3/servlet/e3
?function=e3apps::myapp
&mime-type=application/pdf
&file=d:\scripts\mydoc.xml&f=acl

You may also want to take advantage of the fact that the web browser can interpret
content-type from a URL that ends in a file extension. You can include a dummy
parameter at the end of the URL to specify a file extension, for example, dummy=file.
pdf for a PDF file. The dummy parameter will be ignored by Arbortext Publishing
Engine, but the web browser may try to render the response based on the file extension .
pdf occurring at the end of the URL.

192 Programmer’s Guide to Arbortext Publishing Engine

IV
Arbortext Publishing Engine

Clients

193

12
Using Adapters with Arbortext

Publishing Engine

Connecting to a Repository Adapter ... 196

There are several approaches for using an adapter with Arbortext Publishing Engine.

• A content management repository may be an Arbortext Publishing Engine client.
That is, it can ask Arbortext Publishing Engine to publish documents based upon
workflow events. For instance, if you check in a new version of a document, the
repository could ask Arbortext Publishing Engine to produce a PDF.

• An Arbortext PE sub-process may use an adapter to retrieve information from a
repository, or to store data directory into a repository.

• The two previous approaches can work together. The repository might ask
Arbortext Publishing Engine to produce a PDF and pass a POID, rather than a
document. In such a case, the Arbortext PE sub-process would have to be
connected to the repository to retrieve the document, publish it, and (possibly) store
the result directly into the repository.

Implementing these approaches require custom code for Java, JavaScript, VBScript, or
ACL. The f=convert function can accept a POID specifying the input file, but it doesn’t
store a file to a repository object. It returns the document to the HTTP client (which could
be the repository).

195

Connecting to a Repository Adapter
JavaScript sample functions provide a starting point for implementing repository
connections using Arbortext Publishing Engine. A sample JavaScript function in PE_
HOME\e3\samples\javascript\e3samples.js shows how to establish a
repository connection. The function name is specified in an f=javascript HTTP request to
Arbortext Publishing Engine. You must update the list of AllowedFunctions in the
e3config.xml configuration file to add the JavaScript function names you want to
use. Place your modified JavaScript file in PE_HOME\custom\init. The functions in
it are automatically loaded when the Arbortext PE sub-process starts.

Note
If repository credentials or other sensitive information is stored in web.xml or
e3config.xml, you should remove permission to access the ACL, JavaScript,
VBScript and Java sample applications from the Allowed Functions list in the
e3config.xml configuration file. These sample applications display the global
parameters, which would be a security issue if the parameters contain confidential
information.

You can give a specific Arbortext Publishing Engine user account exclusive permission to
read a file containing user credentials. These sample functions show how to read such a
file on the server and pass the credentials. The function can retrieve and pass a valid
username and password to establish the repository connection.

The sample function repository_connect_windchill establishes a connection to
Windchill PDMLink or Arbortext Content Manager with the PTC Server connection.

If you will be using these samples to initiate a permanent connection to the repository so
that Arbortext Publishing Engine operations such as f=convert will have access to the
repository's objects, the session.disconnect(); line in the script will need to be
removed or commented out in the function.

By default, Arbortext Publishing Engine runs on Windows under a local account called
SYSTEM. You can create a different user account for Arbortext Publishing Engine (see
Installation Guide for Arbortext Publishing Engine for instructions). Access to files on a
Windows server machine is controlled by NTFS security. You can give this specific
Arbortext Publishing Engine user account exclusive permission to read from a particular
file.

After configuring an Arbortext Publishing Engine user account, set the permissions on
your credentials text file to give exclusive read access to the Arbortext Publishing Engine
user account. All other accounts should have no access. To test the Arbortext Publishing
Engine user account's access to the secure file, log in to Windows as the Arbortext
Publishing Engine user ID and try to access the file. After you've excluded other users
with accounts on your system, you can log in using one of those accounts and make
certain the file is not accessible.

196 Programmer’s Guide to Arbortext Publishing Engine

Using an ASCII text file for the password file prevents someone from trying to obtain
access to the file using a HTTP request containing the f=convert function. An Arbortext
Publishing Engine request to convert and return a text file will fail, even if the request
specifies the correct path and file name for the credentials file.

Using Adapters with Arbortext Publishing Engine 197

13
Using the Java Client SDK

Installing the Java Client SDK ... 200
Overview of the Java Client SDK .. 200
The Java Client SDK Package .. 201
Sample Java Client SDK Code ... 201
Testing the Java Client SDK.. 201

The Arbortext Publishing Engine Java Client SDK allows client applications written in
Java to access the Arbortext Publishing Engine.

Use of the Java Client SDK is optional. The Arbortext Publishing Engine is an HTTP
server, so you could also write your own client logic using the networking support in the
Java library.

199

Installing the Java Client SDK
You can find the Java Client SDK on the Arbortext Publishing Engine distribution (either
download archive or CD-ROM) in the following directories:

\server\e3\client\javaclientsdk.zip

Extract the archive for your platform to a convenient location. Add the following paths to
your CLASSPATH environment variable; install-path is the directory where you
installed the Java Client SDK:

• install-path\e3client.jar— Java Client SDK.

• install-path\samples\e3samples.jar— Java Client SDK example
and test code.

The JVM requirements for Java Client SDK are JVM 1.7 or higher. The Microsoft JVM
is not supported.

Overview of the Java Client SDK
The Arbortext Publishing Engine Java Client SDK consists of the following files and
folders:

• An e3client.jar file containing the com.arbortext.e3.client
compiled package.

• A javadoc folder containing the HTML Javadoc files for the com.
arbortext.e3.client package.

• A readme.txt file describing the files included in this package.

• A samples folder containing:

– The e3samples.jar file containing the com.arbortext.e3.test.
script package and the com.arbortext.e3.test.SimpleTest
class.

– Shell script e3script.bat for starting the sample com.arbortext.e3.
test.script program.

– A samplescript.txt file for testing the com.arbortext.e3.test.
script program.

– A src directory containing Java source files for the e3samples.jar script
engine example and the SimpleTest example. These source files show how
to use the Java Client SDK. You can use the script engine example to perform
simple tests.

– A readme.txt file describing the files in the samples folder.

200 Programmer’s Guide to Arbortext Publishing Engine

The Java Client SDK Package
The Java package name for the Java Client SDK is com.arbortext.e3.client. All
of the classes and methods within this package will function correctly in a multi-threaded
environment.

See the com.arbortext.e3.client Javadoc for detailed information about the
classes and interfaces. The start page for the com.arbortext.e3.client Javadoc is
install-path\javadoc\index.html, where install-path is the directory where
you installed the Java Client SDK.

Sample Java Client SDK Code
The e3samples.jar file includes one or more classes from the com.arbortext.
e3.test.script package and the com.arbortext.e3.test.SimpleTest
class. The source code for both samples is in the install-path\samples\src
directory.

The SimpleTest class is designed as an introduction to the Java Client SDK. The
SimpleTest class is an entry level view of how the Java Client SDK works.

The script source code shows how the classes in the e3client.jar file were used to
construct the script class in the com.arbortext.e3.test.script package. The
script source code also demonstrates how to perform multi-threaded execution using the
Java Client SDK.

Note that the sample script demonstrates the Java Client SDK and is not intended to be
used as a production solution. Refer to the script code as you create your own application
using the native Java classes in the e3client.jar file.

Testing the Java Client SDK
The com.arbortext.e3.test.script is a working sample of an application
which uses the Java Client SDK. Use this code to verify that the Java Client SDK can
communicate with Arbortext Publishing Engine. The test files are located in the
install-path\samples folder.

Use the sample com.arbortext.e3.test.script to test the Java Client SDK.
This package runs a script for passing commands to Arbortext Publishing Engine. A
demonstration script file named samplescript.txt exercises the Java Client SDK.

You will need to edit to samplescript.txt before you can test the Java Client SDK:

• Set the e3 variable to the URL that specifies Arbortext Publishing Engine for your
servlet container.

Using the Java Client SDK 201

• By default, the samplescript.txt test script uses input and output files
relative to the current directory. If you need to change this setting, edit the
basedir variable.

To run the samplescript.txt test, execute the following at the command line:

e3script.bat samplescript.txt

Note
The samplescript.txt test intentionally contains a bad command to exercise error
handling capability.

202 Programmer’s Guide to Arbortext Publishing Engine

14
Troubleshooting Tips

Checking the Publishing Configuration Report ... 204
Enabling Tracing in compose.acl .. 204
Enabling Publishing Debugging .. 204

Be sure to also consult the troubleshooting sections of Configuration Guide for Arbortext
Publishing Engine.

203

Checking the Publishing Configuration
Report
The server publishing configuration report is available in the following ways:

• from the Arbortext Editor client, choose Help ▶▶About Arbortext Editor ▶▶PE
Configuration

• from the Arbortext Publishing Engine Testing page (http://server:port/
e3/), click the Short link.

You can update the report by clicking the Rescan Publishing Configuration link from
the Arbortext Publishing Engine index page

For more information, refer to The f=compconfig-rescan Request on page 76.

The returned report provides a summary of all document types installed on the Arbortext
PE server, publishing configuration path and file names (.ccf and related files used by
the content pipeline), paths to framesets for web publishing, Arbortext Import/Export
templates, applications installed in the application directory used by the PE_HOME
installation, and a list of Arbortext Editor client versions supported by Arbortext
Publishing Engine.

If you are looking for a file that isn't included in the publishing configuration report, you
can check the log file tracing the process that produced the document from the publishing
configuration log link on the Arbortext Publishing Engine index page.

Enabling Tracing in compose.acl
On the client machine, you can enable tracing for PE_HOME\packages\tools
\compose.acl and the comp_output-type.acl routines. From the command line, issue
the following commands:

require compose
$compose::debug=2
$compose::verbose=1

These commands force the publishing modules to display the contents of the global
associative parameter array at each stage of processing a publishing request.

Enabling Publishing Debugging
On the client machine, you can enable publishing debugging by issuing the ACL
command:

set debugcomposition=on

204 Programmer’s Guide to Arbortext Publishing Engine

After you issue this command, the data associated with each publishing operation you
initiate, including the data transmitted to the Arbortext PE server and the response
returned from the server, is saved in a temporary directory. To retrieve this information,
choose Tools ▶▶Save Application from Arbortext Editor. In the application save directory,
the publishing information will appear as a file named compose.zip.

Troubleshooting Tips 205

V
Arbortext Publishing

207

15
Introduction

Starting a Publishing Operation... 210
Publishing Operation Components ... 210

This chapter provide an overview of the publishing capabilities provided by Arbortext
Editor and Arbortext Publishing Engine. They explain terminology and each component
in the publishing system. Subsequent chapters explore each component in more detail.

Publishing is the process by which Arbortext Editor transforms an XML or SGML
document to some other representation, such as HTML or PDF (also sometimes known as
“Composition”). Most often, the input to the publishing process is a document in memory
and the output of the process is stored on disk. The process is flexible and general, and
almost any aspect of the operation can vary from case to case.

Some publishing operations take place entirely within Arbortext Editor. Others involve
running external applications, such as the HTML Help compiler. Some publishing
operations may run on a separate machine, the Arbortext Publishing Engine. Publishing
operations often run smaller, simpler publishing operations as part of their processing.
Publishing operations can produce transformed XML or SGML. The result of a
publishing operation may reside in memory or be stored to disk.

209

Starting a Publishing Operation
You can start a publishing operation in either of two ways:

• From the Arbortext Editor user interface by choosing one of the following from the
File menu:

– Print Preview

– Print

– Publish submenu options For Web, For HTML Help, For EPUB, HTML File,
PDF File, RTF File, Using Rule, or Using XSL

– Import submenu option Import a Document

Note
The availability of these operations depends on products and licensing for specific
features installed at your site.

• From ACL (Arbortext Command Language) code that invokes subroutines specific
to the type of publishing. The only way to invoke a publishing operation from Java,
JavaScript, or VBScript is by calling one of the ACL subroutines. Each publishing
type supported by Arbortext Editor can also be performed by a corresponding
subroutine. The subroutines follow the form compose_for_type, where you could
specify type as dvi, epub, export, html, htmlhelp, import, pdf, and web.

Publishing Operation Components
Each publishing operation is made up of a number of smaller operations performed in
sequence. Most of the complex processing is handled by two components called “content
pipelines” and “content compilers”. Most publishing operations involve setting up the
operation, running a content pipeline, and then running a content compiler on the pipeline
output.

content pipeline
a mechanism that transforms an XML or SGML document into another XML or
SGML document. The result is retained in memory or written to disk. Some of the
operations that a content pipeline performs include:

• profiling (removing portions of the input document being published)

• transforming the document as specified by an XSL stylesheet

When using Arbortext PE server to fulfill publishing requests, the content pipeline
always runs on the server. Refer to 16 Content Pipelines on page 213 for a more
detailed description.

210 Programmer’s Guide to Arbortext Publishing Engine

filter
a component of a content pipeline. Filters are written in Java, and developers can
write their own custom filters. Developers can create a new content pipeline by
combining existing and custom filters in new patterns.

Information about filters is included in 16 Content Pipelines on page 213.

content compiler
a mechanism that transforms an XML or SGML document into some other format
(not XML or SGML). Some content compilers are integrated with Arbortext Editor
and can read their input documents from memory. Others are separate programs and
read their input documents from disk files. All content compilers place their output
in disk files.

A content compiler is a large, monolithic, and complex program. Although it is less
likely that developers want to create their own content compilers, they are more
likely to use commercial third-party software as content compilers. For example;
Arbortext Publishing Engine uses the third party compilers in HTML Help
Workshop.

Refer to 17 Content Compilers on page 219 for a more detailed description.

publishing framework
a software procedure that combines a content pipeline and one or more content
compilers to form a complete publishing operation. The publishing framework, also
sometimes known as the composition framework, is implemented in ACL. It's
accessible to the Arbortext Editor user interface or to ACL subroutine calls. The
framework collects publishing parameters, initializes, runs a content pipeline, runs
one or more content compilers, and detects and reports errors. The publishing
framework also can request services from the Arbortext Publishing Engine if
required.

Refer to 18 The Publishing Framework on page 223 for a more detailed description.

PE Client Composer
a layer of software that handles the Arbortext Editor client side operation that is
performed when using Arbortext Publishing Engine publishing.

Every publishing operation starts on the client, either from a graphical user
interface or from ACL code. When Arbortext Editor uses the Arbortext PE server,
the publishing framework calls the PE Client Composer. Usually the framework
calls the Client Composer just at the point where the framework is ready to run the
content pipeline. The Client Composer gathers the data, transmits it to the
Arbortext PE server, and waits for the server’s response. When the Arbortext PE
server returns a response, the Client Composer extracts the returned data and places
it in a predetermined location. Then the Client Composer returns control to the
publishing framework, which may determine if any other processing is needed.

Refer to 19 Arbortext Publishing Engine Client Composer on page 243 for a more
detailed description.

Introduction 211

PE Server Composer
an Arbortext PE Application that handles the server side operation for fulfilling the
request from the PE Client Composer. It receives data transmitted by the Client
Composer, runs the appropriate content pipeline and/or content compiler, and then
returns the result to the Client Composer.

Refer to 20 Arbortext Publishing Engine Server Composer on page 261 for a more
detailed description.

Publishing Parameter Array
is an ACL associative array of name and value parameters used by almost all stages
of the publishing process. The array is initialized by the publishing framework. As
processing continues, various components of the publishing process retrieve values
from the array, and then they store new values in the array to control publishing
behavior downstream. The parameter array is passed to the content pipeline and
controls every aspect of pipeline execution. If Arbortext PE server is used for
publishing, the parameter array is passed by the PE Client Composer to the PE
Server Composer.

Parameters are explained in the context where they are used.

Some content compilers always run on the server, while others run on the client machine.
Some publishing operations can only be performed on the client, while others require
Arbortext PE server. Some operations run in a mixed mode; for example, a content
pipeline followed by a content compiler that run on the server, and then another content
compiler that runs on the client to finish the publishing operation. Some operations may
be performed locally or with server assistance, depending upon the products and licenses
you have.

212 Programmer’s Guide to Arbortext Publishing Engine

16
Content Pipelines

Developing and Configuring Content Pipelines .. 214
Creating Content Pipelines with ACL .. 216

A content pipeline is a mechanism for translating an XML or SGML document into
another XML or SGML document. It consists of a sequence of Java objects called filters.

A content pipeline begins with a special filter called a generator that translates an XML
or SGML document into a series of SAX events. It ends with a special filter called a
serializer that translates a series of SAX events back into an XML or SGML document,
placing it in-memory or on disk. Each filter between the generator and serializer accepts
a stream of SAX events from the previous filter in the pipeline and passes a stream of
SAX events to the next filter in the pipeline.

A filter can remove content from the XML document passing through it by omitting some
SAX events from its output stream. It can insert content by adding SAX events. Some
filters make only minor modifications to the document; some may replace the document
entirely by applying complex transformation rules to the input stream.

The content pipeline and filters used in Arbortext software are an implementation of a
freely-available technology called SAX2, the second version of the Simple API for XML.
You can find information about SAX2, the SAX2 parser, and SAX filters on the web. Be
sure to consult the Content Pipeline Guide for more information on the Arbortext
implementation; however, the following sections summarize its information.

When Arbortext Editor uses Arbortext PE server for publishing, most content pipelines
run on the Arbortext PE server rather than on the client. However, some auxiliary
pipelines run on the client if their primary function is to prepare data for transmission to
the server.

213

Developing and Configuring Content
Pipelines
Implementing New Filters
Basically, create a Java object that implements one or more of the seven standard SAX2
interfaces. Then compile your code and place it in a JAR file where the Arbortext PE sub-
processes can find it. Custom JAR files are usually placed in the classes subdirectory
of the PE_HOME\custom directory, (refer to Overview of Custom Programs and Scripts
on page 280). Consult the Content Pipeline Guide for information on developing custom
filters.

Using Existing Filters
Arbortext Editor and Arbortext Publishing Engine install a number of defined filters, and
they are combined into content pipelines. The definitions can be found in the
Arbortext-path\composerdirectory. You can use filters shipped with Arbortext
Editor or develop your own filters. Each filter is defined in an .ent (XML Entity) file in
the composer directory in the Arbortext installation. Any filter can be used in a new
content pipeline. Put your custom filters in the custom\composer directory to make
them automatically available.

Defining a Content Pipeline
Filters and content pipelines are normally defined using XML files. In Arbortext
software, the .ccf (publishing configuration file) XML document defines a content
pipeline by listing a series of filters, starting with a generator and ending with a
serializer. A filter may be defined in the .ccf file, but usually a filter is defined in an .
ent (XML or SGML entity) file, so that its definition can be reused in several .ccf files
without the need to repeat the definition in each .ccf file.

A filter definition consists of an XML FilterDef element which defines the Java classes
that implement and invoke the filter. It also contains a series of Parameter elements
which define the parameters that are passed to the filter to control its operation.

A pipeline definition consists an XML Interface element which contains Parameter
elements that define pipeline parameters, a Resource element that contains filter
definitions (usually entity references to the .ent files), and a Pipeline element that
defines the initial filter of the pipeline, the order in which the filters are chained together,
and the mapping of pipeline parameters to filter parameters.

The most complex part of a pipeline definition is mapping pipeline parameters to filter
parameters. Essentially, the pipeline parameters are a series of string name and value
pairs that are passed to the content pipeline at runtime to control its operation. To avoid
namespace collisions among filter parameters, the content pipeline definition maps

214 Programmer’s Guide to Arbortext Publishing Engine

pipeline parameter names to filter parameter names. A single pipeline parameter might be
used by two different filters, yet each filter might have its own name for the parameter.

As an example of a content pipeline definition, consider the files epicGenerator.
ent and pdf.ccf, both distributed in the Arbortext-path\composer directory.
The epicGenerator.ent entity contains a definition of the epicGenerator filter. The
definition specifies the filter's ID, the filter's type, and the names of Java classes that
implement the filter and provide an interface to it. In its parameters list, each parameter
has an ID (so that the parameter definition can be referenced), a name (so that the
parameter can be mapped to a pipeline parameter) and attributes like parameter type,
whether the parameter is required, and a default value.

The file pdf.ccf defines a content pipeline that uses the epicGenerator filter. The
pipeline definition first defines the pipeline parameters by:

• a name attribute, which is used to identify the parameter value in the global
parameter array when the pipeline runs.

• an idref attribute that references the ID of the Parameter element that defines the
parameter in the filter definition.

The first Parameter in the Interface section of pdf.ccf has a name of document
and an idref of epicGenerator.docId. This means the Parameter element with the
ID epicGenerator.docId provides the parameter definition (to obtain its type,
default value, whether it's required or optional, and so on). At run time, when an
Arbortext PE sub-process is given an associative array of parameters, the parameter with
a name of document will have to match this parameter definition.

The pdf.ccf continues with a Resource section that defines the filters it needs. The
filter definitions are entity references, to the entity file epicGenerator.ent as well
as others. It ends with a Pipeline element that lists the filters that define the pipeline.

The first Filter has the id of epic_generator. But it is the value of the filterDefRef
attribute, epicGenerator, which maps to the filter defined in epicGenerator.
ent. epicGenerator matches the id attribute of the FilterDef element in
epicGenerator.ent.

In pdf.ccf the epic_generator filter’s first FilterParameter configures the filter
parameter named docId to be initialized from the pipeline parameter named
document. There is a double reference in the file: the Parameter element in the
epicGenerator filter named docId is referenced twice in pdf.ccf.

1. the first Parameter element’s idref attribute (in the Interface section)

This first reference retrieves the parameter definition. Several pipeline parameters
could be defined with different names but all using the same idref value to
reference the same definition. The pipeline would then have several parameters
with different names, but with the same parameter type, default value, and so on.

2. the name of the first FilterParameter element in the epic_generator filter (in
the Pipeline section).

Content Pipelines 215

The second reference assigns a pipeline parameter value to the filter parameter at
run time. The pipeline could contain multiple occurrences of the same filter, each
having the same filter parameter name but initialized by a different pipeline
parameter. Conversely, the same pipeline parameter may be used to initialize the
filter parameters of several unrelated filters.

Switch Filters and Conditional Execution
The switch filter allows you to define two or more paths through a content pipeline. For
example, you might want two content pipelines that are identical except for the final filter
that hands off the document. In one, the final filter might be the fileSerializer, which
places the processed document on disk. In the other, the final filter might be the
epicSerializer, which places the processed document in memory for use by Arbortext
Editor. You could write two separate .ccf files, or you could use a switch filter to route
the document to the appropriate serializer based on the value of a pipeline parameter.

The pdf.ccf contains two examples of using a switch filter. For more information, refer
to the Arbortext-pathcomposer\switch.ent.

Creating Content Pipelines with ACL
To transform a document in a content pipeline, an ACL routine must create the pipeline,
set up an array of parameters for the pipeline, and then execute the pipeline on a
document. The behavior of a content pipeline is controlled by the parameter array. ACL
supports associative arrays in which each entry has a string name and a string value.

To run a content pipeline, an ACL routine must create an empty array and add one entry
for each parameter described as required by the Parameter element (in the Interface
section of the .ccf file. The name of the array entry must match the name attribute of
the Parameter element. The corresponding value must be compatible with the filter's
type attribute. Optional parameters may be specified or omitted.

The pipeline will ignore any parameters in the array that are not defined in the Interface
element section of the .ccf file. Be aware that parameter names are case sensitive, and
most names use the mixed case convention made popular by Java and similar languages.

A pipeline can only transform an input XML document to another XML document. That
means that a content pipeline by itself can not transform an XML document to another
output type, such as PostScript, PDF, or RTF. To perform transformations from XML to
another format, the document must be passed to a content compiler, as described in 17
Content Compilers on page 219.

Creating a Content Pipeline
A content pipeline is created by an ACL function call:

handle = get_composer(arr, name [, doc])

216 Programmer’s Guide to Arbortext Publishing Engine

The arguments are specified as follows:

• arr

specifies the ACL associative array which will be filled with the name and value of
each parameter defined for the content pipeline as specified in the .ccffile. If a
parameter has a default value not otherwise specified, the default is used. If a
parameter has no default value, a null string is used. Parameter values can be
specified in the .dcf file associated with the document type, and the value
specified in the .dcf is used.

• name

specifies the composer to create as well as the base name for the .ccf. If the value
pdf is passed, then the search looks for a file named pdf.ccf in each directory
for the composer path (including the custom\composer directory, set
composerpath option, and the append_composer_path function).

• doc

(optional) specifies the document to be published. If it is omitted or specified as 0,
the current document is used.

The return value is either a handle or a null string. The handle can be used to reference the
composer in later calls. If no .ccf file matches the name parameter, then a null string is
returned.

Running a Content Pipeline
After a content pipeline has been created, an ACL function call runs it:

result = run_composer(handle, arr)

The arguments are specified as follows:

• handle

is the handle returned by get_composer.

• arr

is the parameter array.

If the content pipeline succeeds, the function returns 1. If an error is detected, the
function returns 0.

The pipeline may leave open documents in memory or files on disk, depending on the
values passed in the parameter array and the nature of the pipeline, Developers need to
remember that management of these files is the responsibility of the code that created and
ran the pipeline.

Content Pipelines 217

17
Content Compilers

The Arbortext Formatting Engine and Arbortext Advanced Print
Publisher... 220

Producing PostScript and PDF from DVI .. 221
Producing HTML.. 221
Producing HTML Help ... 221

A content compiler is a program that translates a document (not required to be XML) to a
non-XML format, such as PDF, PostScript or HTML Help. Unlike content pipelines,
which have a uniform interface, each content compiler is configured and invoked in a
different way. Two content compilers are built into Arbortext Editor, the Arbortext
Formatting Engine and the Arbortext Advanced Print Publisher. Other content compilers
are separate binaries that run under the control of Arbortext Editor. Still others are
programs supplied and licensed by third parties.

Content compilers are invoked by the publishing framework after the content pipeline
finishes running. This post-process callback is explained in The Outer Layer of the
Publishing Framework on page 225.

219

The Arbortext Formatting Engine and
Arbortext Advanced Print Publisher
The most commonly used content compilers are the Arbortext Formatting Engine and the
Arbortext Advanced Print Publisher. Both provide a mechanism for transforming an XML
or SGML document for previewing or to be published to PDF or PostScript. Each offers
different capabilities.

Arbortext Formatting Engine
The Arbortext Formatting Engine is invoked by the ACL format command. It uses a
FOSI specification to translate an open XML or SGML document to an internal DVI
(device independent) format stored on disk. The DVI file may be displayed directly in a
Preview window or used as input to a content compiler which produces PostScript or
PDF as explained in Producing PostScript and PDF from DVI on page 221. When
Arbortext Editor is using the Arbortext PE server for publishing, the formatter always
runs on the Arbortext PE server.

Internally the formatter has two parts, one built into Arbortext Editor and the Arbortext
PE sub-processes, and another in a separate program named PubTeX.

The Windows Task Manager allows you to check formatting progress. This action is
useful if you suspect that PubTeX is hung, or that Arbortext Editor or the Arbortext PE
sub-process is hung waiting for PubTeX to finish.

Arbortext Advanced Print Publisher
The Arbortext Advanced Print Publisher is invoked internally by the publishing
framework. There are no ACL commands to run it directly. It uses a .3f template
specification to translate an open XML or SGML document directly to Postscript or PDF.
To support previewing, Arbortext Editor may display the PDF output using a PDF viewer
such as Adobe Reader. When Arbortext Editor is using the Arbortext PE server for
publishing, Arbortext Advanced Print Publisher always runs on the Arbortext PE server.

Arbortext Styler Files
To transform an XML or SGML document, both the Arbortext Formatting Engine and
Arbortext Advanced Print Publisher require a formatting specification. Both engines can
read a formatting specification from an Arbortext Styler (.style) file. The Arbortext
Formatting Engine also supports a FOSI stylesheet, which it can read directly from a .
fos stylesheet. The Arbortext Advanced Print Publisher also supports an APP Template,
which it can read directly from a .3f file. A style file is an independent way of
representing a formatting specification for either engine. Style files are created by the
Arbortext Styler (consult the User's Guide to Arbortext Styler for extensive information).

220 Programmer’s Guide to Arbortext Publishing Engine

Note that a .style file may also contain other types of formatting specifications not
used by either the Arbortext Formatting Engine or the Arbortext Advanced Print
Publisher:

• When a .style file contains an XSL stylesheet, the publishing process uses a
content pipeline to apply the stylesheet and transform the document being
published to the standard XSL-FO format. Afterwards, the publishing process uses
the Arbortext Formatting Engine to translate the XSL-FO document to DVI.

• When a .style file contains specifications for transforming a document into
output formats other than PDF and Postscript, such specifications are ignored when
producing a PDF or PostScript transformation.

Producing PostScript and PDF from DVI
There are two content compilers that translate a DVI file to PostScript or PDF. On
Windows, the DVI-to-PostScript compiler is named pubview.exe and the DVI-to-PDF
compiler is named pubpdf.exe.

When Arbortext Editor is using the Arbortext PE server for publishing, and the publishing
operation is producing PostScript for printing or for saving to a disk file, pubview.exe
runs on the Arbortext Editor client machine. If a publishing operation is producing PDF,
the PubPDF content compiler always runs on the server.

Producing HTML
There are two ways to produce HTML:

• Producing HTML directly through a content pipeline. Because HTML is a
simplified form of XML, it can be generated directly by a content pipeline by
applying an XSL stylesheet or a .style file containing XSL.

• Producing HTML using the HTML formatter and applying a FOSI stylesheet or a .
style file containing a FOSI.

When Arbortext Editor is using Arbortext PE server, the content pipeline and the HTML
formatter run on the Arbortext PE server.

Producing HTML Help
The HTML Help Workshop contains the content compiler used to produce HTML Help .
chm (Compiled Help Module) files. The process of generating HTML Help involves
running a content pipeline, which uses an XSL stylesheet (or an XSL stylesheet in a .
style file) to transform a document into the format that the HTML Help compiler

Content Compilers 221

accepts. Then HTML Help compiler runs as a content compiler to translate the XML
document to a .chm file.

When Arbortext Editor is using Arbortext PE server, the HTML Help Workshop must be
installed on the Arbortext PE server.

Refer to Publishing a Document for HTML Help and Setup Considerations for Arbortext
Publishing Engine for further information.

222 Programmer’s Guide to Arbortext Publishing Engine

18
The Publishing Framework

The Outer Layer of the Publishing Framework ... 225
The Inner Layer of the Publishing Framework .. 229
The Publishing Framework Hook .. 233
Print and Print Preview .. 234
How Arbortext PE server uses the Publishing Framework 236
Writing your own Outer Layer Module... 238
Modifying the Inner Layer .. 239
Debugging the Publishing Framework .. 239

The “publishing framework” (sometimes also known as the “composition framework”) is
the layer of ACL code that surrounds the content pipelines and content compilers. The
publishing framework is responsible for:

• receiving control from Arbortext Editor or from custom ACL code in an
application

• prompting for or gathering publishing parameters

• creating the content pipeline

• setting up the parameter array for the content pipeline

• running the content pipeline

• running content compiler(s)

• cleaning up afterwards (closing documents, deleting temporary files, and so on)

• launching a viewer for the output if needed

• detecting and reporting errors at each stage of processing

• calling customer-provided code at each state of processing.

223

The publishing framework is divided into two layers of code. The “outer layer” contains
code and information specific to producing particular kinds of output (such as PDF,
HTML, PostScript, and so on). It’s explained in the next section.

The “inner layer” of the publishing framework is operation-independent, and it's
explained in The Inner Layer of the Publishing Framework on page 229.

224 Programmer’s Guide to Arbortext Publishing Engine

The Outer Layer of the Publishing
Framework
Arbortext installations contain a number of outer layer publishing packages, located in
Arbortext-path\packages\tools. These outer layer ACL packages are named
comp_type.acl, where type corresponds to the type of processing it performs. For
example, HTML publishing is handled by comp_html.acl, while publishing to PDF is
handled by comp_pdf.acl. Each outer layer package contains three entry points and four
callback routines.

The Entry Point Functions
The entry points functions are explained in the next sections. Note that their names vary
slightly.

The compose_type Function
The entry point for the Arbortext Editor user interface is:

main::compose_type(doc)

doc is normally omitted by Arbortext Editor as it defaults to the current document.

This routine calls its associated compose::compose_for_type (where the processing type
is the same) with an empty parameter array.

The compose_for_type_java Function
The entry point for Java programs is:

compose::compose_for_type_java(doc, string, delim)

• doc

is the document to be published

• string

is a string containing an encoded version of the associative parameter array

• delim

is the character used to separate name and value pairs in the string

This function calls the ACL routine epicutil::UnserializeKeyed to translate the string
into an ACL associative array, and then calls the compose_for_type function. This
function is primarily used by the Arbortext Publishing Engine Server Composer,
described in 20 Arbortext Publishing Engine Server Composer on page 261.

The Publishing Framework 225

The compose_for_type Function
The primary entry point for each publishing type is:

compose::compose_for_type(doc, params)

• doc

is the document being published

• params

is the parameter array

This routine usually loads parameters and then calls the inner layer of the publishing
framework.

The function implements persistent parameters for interactive operations; these
parameters persist from operation to operation during an Arbortext Editor session. For
example, if a user selects a particular stylesheet for publishing a document to PDF, that
stylesheet will become the new default choice when the user publishes a PDF a second
time.

It creates persistent parameters by determining whether the params array is empty. If it is,
the function loads the parameters used in the last interactive operation for this document
and publishing type into params. If this is the first interactive publishing operation of its
type since the document was opened, nothing is loaded.

After loading parameters, compose_for_type calls the inner layer of the publishing
framework, compose::compose_for_type (note, in this case, type is literal in the
function name). The compose_for_type function passes the name of the content pipeline,
the parameter array, and the names of four callback functions.

When compose::compose_for_type returns, the publishing operation is usually complete
and most compose_for_type functions simply return at that point.

The Publishing Framework Callback Functions
Most of the real work in the outer layer of the publishing framework is performed by its
callback routines. The basic idea is that compose_for_type is passed the names of four
outer layer subroutines, which it calls at predetermined points during execution. Each
callback routine is passed the parameter array, and callbacks are expected to modify the
name and value parameters in the array to control downstream processing.

Names of the callback routines can vary substantially between comp_type modules. The
actual callback function names are passed as strings to compose_for_type. A callback
name may be passed as an empty string, in which case compose_for_type skips the
callback and proceeds as if it returned successfully.

226 Programmer’s Guide to Arbortext Publishing Engine

The preprocess Callback
This routine is called by the inner layer before it tackles any serious work. This callback
is expected to initialize type-specific data in the parameter array, to perform type-specific
error checks, and to perform any other necessary setup.

comp_type::preprocess_cb(doc, params[], interactive)

• doc

is the document being published

• params

is the parameter array

• interactive

is set to 1 if the operation was invoked from the Arbortext Editor user interface

The callback can return:

• -2

error detected, error message was logged

• 0

error detected, no message was logged

• 1

success, compose_for_type should continue processing

• 2

processing should continue, but compose_for_type should skip loading the default
content pipeline parameters into the parameter array

The return code -1 is not used.

The dialog Callback
The dialog callback is called only if the publishing operation is interactive (meaning it
was invoked from Arbortext Editor and not from custom code, as noted in The Outer
Layer of the Publishing Framework on page 225). It displays the dialog box to the user
and prompts for parameters, such as which stylesheet to use, where to put the output file,
and so forth. The callback records the responses in the parameter array.

comp_type::dialog_cb(doc, params)

• doc

is the document being published

• params

is the parameter array

The Publishing Framework 227

The callback can return:

• -1

error detected, error message was logged

• 0

error detected, no message was logged

• 1

success, compose_for_type should continue processing

The fixup Callback
The fix-up callback is always called just before compose_for_type runs the content
pipeline. This is the final opportunity to get operation-specific parameters set correctly
before the content pipeline runs.

comp_type::fixup_cb(doc, params)

• doc

is the document being published

• params

is the parameter array

• -1

error detected, error message was logged

• 0

error detected, no message was logged

• 1

success

• 2

processing should continue, but compose_for_type should skip running the content
pipeline

The postprocess Callback
The post-process callback is called after the content pipeline runs and it runs the content
compiler(s). It also displays the results of the operation to the user (such as launching
Adobe Acrobat Reader to view PDF output), and it also performs clean-up.

comp_type::postprocess_cb(doc, params[], interactive)

• doc

is the document being published

228 Programmer’s Guide to Arbortext Publishing Engine

• params

is the parameter array

• interactive

is set to 1 if the operation was invoked from the Arbortext Editor user interface

The callback can return:

• -1

error detected, error message was logged

• 0

error detected, no message was logged

• 1

success

The Inner Layer of the Publishing
Framework
The inner layer of the publishing framework is operation-independent, which means that
it doesn’t care what kind of output the operation is producing. Conceptually, its operation
is intended to run the content pipeline, with calls to outer layer callbacks that provide
type-specific processing before and after the content pipeline runs. In practice, this simple
picture is complicated in a number of ways, some arising from the needs of various
publishing types, and some from the requirements imposed by using Arbortext PE server.

The inner framework is invoked when the outer framework calls:

compose::compose_for_type(doc, comp_type, interactive, params[], preproc_cb,
dialog_cb, fixup_cb, postproc_cb)

• doc

is the document being published

• comp_type

is the name of the content pipeline to run

• interactive

is set to 1 if the operation was invoked from the Arbortext Editor user interface

• params

is the parameter array

• preproc_cb, dialog_cb, fixup_cb, postproc_cb

The Publishing Framework 229

are each strings containing the names of the four outer layer callback routines. An
empty string bypasses the callback.

The callback can return:

• -1

if the user aborts the operation, such as by choosing Cancel from the dialog box

• 0

if the operation fails

• 1

if the operation succeeds

compose_for_type logs its operation in the event log, a separate document that can be
displayed after the operation. It reports any warnings, errors, or a fatal error, and
Arbortext Editor can display the event log.

The compose_for_type function starts a new publishing job in the event log to collect
messages, calls compose_for_type_int to gather the messages, and then terminate the
event log job afterward.

Note
The function compose_for_type_int has the same parameters as compose_for_type, and
it returns the same results. Future discussion will refer to compose_for_type for brevity.

compose_for_type Processing

Note
In every operation performed by compose_for_type, a failure writes an error to the event
log and returns 0.

1. The compose_for_type operation begins by determining whether the request is
being sent to Arbortext PE server. If set peservices is on and the parameter
compose.suppress-e3-composition is not present in the parameter array, then the
Arbortext PE server will perform the publishing operation.

2. Then compose_for_type checks to make sure that information about the Arbortext
PE server is available, and that the Arbortext PE server supports the version of
Arbortext Editor that is running.

3. Next, compose_for_type calls the pre-processing callback, if one was provided.

• If the callback returns -2, compose_for_type returns 0.

230 Programmer’s Guide to Arbortext Publishing Engine

• If the callback returns -1, compose_for_type logs a generic failure message,
and returns 0.

• If the callback returns 1 or 2, compose_for_type continues processing.

4. Next, compose_for_type either creates the content pipeline or initializes for
Arbortext PE server publishing. Both operations load the default parameters for the
operation type into the parameter array. Then compose_for_type calls get_
composer to create the content pipeline, passing its comp_type parameter as the
name of the .ccf file to load. If the Arbortext PE server is performing the
publishing, compose_for_type calls compose::initialize_e3_composition to
retrieve the default Arbortext PE server publishing parameters, again passing
comp_type as the pipeline name.

For example, if the output type is pdf, both routines look for a file named pdf.
ccf in the composer path on the client or server machine.

If the pre-processing callback returned 2 (meaning processing should continue, but
compose_for_type should skip loading the default content pipeline parameters),
then the call to get_composer or initialize_e3_composition is omitted, and no
default parameters are loaded.

5. compose_for_type determines if the publishing operation is interactive and a
dialog callback was passed. When compose_for_type calls the dialog callback, a
return value of -1 causes compose_for_type to return 0. If the callback returns 0,
compose_for_type logs an error message and returns. Otherwise processing
continues. If the parameter array contains values controlling profiling, the values
are modified to work with the profiling filters in the content pipeline.

6. If the document being published contains Arbortext data merge queries, compose_
for_type calls the data merge facility to update the document with the query
results.

7. If the publishing parameters specify profiling, compose_for_type makes sure that
the values in the publishing parameter array are properly initialized.

8. If the document being published is a DITA topic, compose_for_type sets up some
parameters to either set up some extra parameters to publish the topic as is or sets
parameters to wrap the topic in a temporary DITA map.

9. compose_for_type calls the parameter fixup callback, if one was specified. If the
callback returns -1, compose_for_type returns 0. If the fixup callback returns 0,
compose_for_type logs a message and then returns. The fixup callback can return
1 for success or 2 for success but suppress the content pipeline run. If 2 is returned,
that value is saved for later. (In the second step of Processing if not using Arbortext
PE server later in this section, if the fixup callback returns 2, compose_for_type
skips running the content pipeline.)

10. compose_for_type calls the publishing preprocessor hook to see if there is custom
code that was registered using the ACL add_hook function. The hook function
code can modify the parameter array as needed. If it returns a value less than zero,

The Publishing Framework 231

the publishing process terminates. If not, operation continues. The custom code
must follow this signature:

hook_function(doc, type, interactive, params[])

• doc

is the document being published

• type

is the name of the composer

• interactive

is set to 1 if the operation was invoked from the Arbortext Editor user
interface

• params

is the parameter array

11. compose_for_type checks to see whether the document being published is a DITA
map. If so, it recursively calls an outer-framework routine, compose_for_
createprds, to transform the DITA map into a preliminary resolved data set, which
is a document that includes the topics and other content referenced by the DITA
map. Publishing continues with the PRDS in place of the original document.

Processing divides at this point. If Arbortext PE server is enabled, compose_for_type
follows one code path. If Arbortext PE server is not enabled, processing follows another.

Processing if using Arbortext PE server
1. First, compose_for_type sets some additional parameters that control execution of

the Arbortext Publishing Engine Client Composer.

2. compose_for_type calls the Arbortext Publishing Engine Client Composer, then
returns to its caller. The Arbortext Publishing Engine Client Composer handles
communication with the Arbortext PE server and calls the post-process callback
when the Arbortext PE server responds.

3. If the publishing operation is queued on the Arbortext PE server, then the post-
process callback does not run. Instead, when the user retrieves the result of the
queued publishing operation from the Arbortext PE server, Arbortext Editor runs
the post-process process as if the operation had just completed.

Processing if not using Arbortext PE server
1. compose_for_type runs the content pipeline. It skips the pipeline run if instructed

to by the fixup callback and the document being published is not a DITA map. If
the pipeline run succeeds and compose_for_type called the DITA preprocessor, it
now calls compose::postprocessForDITA to delete the temporary DITA PRDS
document. If the pipeline returns an error, processing terminates.

232 Programmer’s Guide to Arbortext Publishing Engine

2. compose_for_type calls the post-process callback function, then returns to its
caller.

The Publishing Framework Hook
The publishing framework hook allows user code to run at several points of publishing
processing that uses compose_for_type() functions described in The Outer Layer of the
Publishing Framework on page 225.

You can create an ACL compositionframeworkhook hook function and register it using
the ACL add_hook function. The publishing framework will invoke the hook function
before compose_for_type() starts executing, after each operation compose_for_type()
runs, and before compose_for_type() returns to its caller. Your hook function can return 0
to allow compose_for_type() to continue executing or return a negative value to
terminate the publishing operation. It can modify any or all values in the publishing
parameter array, thereby controlling the future flow of execution in compose_for_type().

The publishing framework hook function has the following prototype:

hook(doc, type, where, params[])

• doc is the document identifier of the document being published.

• type is the name of the pipeline or type of published output as represented by its .
ccf base file name.

The complete list of pipeline .ccf files is located in Arbortext-path
\composer.

• where is the point in publishing processing where the hook is called. It is a literal
string value that is passed by the publishing framework to the hook function each
time the framework calls it. For each string, there is a corresponding ACL variable
that specifies the point of operation.

Arbortext-path\packages\tools\composer.acl contains the set of
HK_variable-name ACL variables with defined values you can use for a
where string specification. You can determine the point at which the hook function
is called by finding the variable associated with one of the where values and
searching for it in compose.acl.

• params[] is the parameter array that holds the parameters and values to be used by
the pipeline.

Refer to the Arbortext Command Language Reference entry
forcompositionframeworkhook, which describes its syntax and use, including how to
specify the arguments.

Before writing a publishing framework hook, be sure to examine compose.acl and
experiment with the example ACL script that follows to understand how the compose_
for_type() functions work.

The Publishing Framework 233

Note
It’s possible the behavior of this hook can change from release to release. You should
check your publishing framework hook code with each release of Arbortext software.

The following example ACL function prints the location from which it is called, and sets
that function up as a publishing framework hook:

package testhook;
function compFrameHook(doc, type, where, params[]) {

local is_e3 = (main::is_e3 ? "e3" : "local");
eval "chf: $is_e3 doc=$doc type=$type where=$where" output=*debug;

}
set debug==extwin;
add_hook("compositionframeworkhook", "testhook::compFrameHook");
eval "installed composition framework hook" output=*debug;

If you place this ACL script in a custom\init directory, it will echo its parameters to
the Arbortext Diagnostics window as you publish a document. You might find it a useful
starting point for implementing a hook function of your own, because it will illustrate the
parameters your hook function should expect.

Print and Print Preview
Arbortext Editor users can choose to preview or print a document. Unlike the other
publishing types, the top levels of these commands are built in to Arbortext Editor itself,
rather than implemented in ACL.

Print Preview
The preview command displays a document in a window in the format that it will
appear in when it prints. The preview command has a number of options that are
implemented entirely in Arbortext Editor; these options stop the Arbortext Formatting
Engine, launch the Preview window on a previously-formatted document, and perform
other minor housekeeping functions.

If you invoke the preview command for real processing (i.e., not for one of the
housekeeping functions) then Arbortext Editor will invoke the ACL routine compose::
compose_for_preview in the module comp_dvi.acl. It will invoke the ACL layer if
any of the following conditions are true:

• PE publishing is enabled

• Arbortext Editor is running from a compact install tree

• The document to be previewed is a DITA map or topic

234 Programmer’s Guide to Arbortext Publishing Engine

• the document type of the document to be previewed is configured to allow the user
to choose the stylesheet to be used

• the stylesheet being used is an XSL stylesheet, an APP template, or a .style file
that contains an XSL stylesheet or APP template

• set options that use of APP rather than the Arbortext Formatting Engine

If Arbortext Editor is running from a compact install tree, then compose::compose_for_
preview will call compose_pdf_preview() in the module comp_pdf.acl, which will
translate the document into PDF and launch a PDF viewer. Otherwise compose::
compose_for_preview will set some parameters and then call compose::
compose_for_dvi(), is part of the outer layer of the publishing framework; this
routine will either use the Arbortext Formatting Engine to translate the document to the
DVI format and then use the preview noformat to launch the Preview window or use
the Arbortext Advanced Print Publisher to translate the document to PDF and then launch
a PDF viewer.

Print Command
The print composed command translates a document to Postscript and either saves
the Postscript to disk or prints it. Processing may include any of the following cases:

• compact install tree: translate the document to PDF and print the PDF

• full install tree: Arbortext Formatting Engine translates the document to DVI and
use the printer driver to either print the DVI file or save it to disk as PostScript

• full install tree: Arbortext Formatting Engine translates the document to DVI,
translate the DVI to Postscript, then print the Postscript file or save it to disk;

• full install tree: Arbortext Advanced Print Publisher translates the document to
PostScript, then either print the PostScript file or save it to disk.

Like the preview command, the print composed command has a number of minor
functions that are entirely implemented within Arbortext Editor. If none of these functions
are invoked, then print composed checks to see whether it is running in the compact
install tree. If so, it calls the ACL routine comp_print::printUsingPDF, in ACL module
comp_print.acl, which will translate the document to PDF and print the PDF file. If it’s
not running in the compact install tree, print composed displays the print dialog box,
then calls comp_print::composeAndPrint to finalize processing.

comp_print::composeAndPrint determines whether to use APP or the Arbortext
Formatting Engine and then calls either comp_print::printUsingApp or comp_print::
printUsingTex. comp_print::printUsingApp sets parameters and calls the outer
publishing framework layer subroutine comp_pdf::compose_for_pdf; comp_print::
printUsingTex sets parameters and calls the publishing outer framework subroutine
comp_dvi::compose_for_dvi.

Note that the core print composed support is responsible for displaying the print
dialog. For this reason, all of the ACL routines called by print composed support

The Publishing Framework 235

operate in batch mode, with no dialog boxes offered to the user. The core print_
composed support calls routines in the comp_print.acl module to populate some of the
fields in the publishing dialog boxes; these subroutines call the same subroutines that the
dialog box support in the publishing framework call.

How Arbortext PE server uses the
Publishing Framework
When Arbortext PE server publishing is enabled on a client, either Arbortext Editor or
Arbortext Publishing Engine Interactive, the publishing framework actually runs twice:
once on the client and once on the server. On the client, the framework performs
processing that results in a request being transmitted to the server. On the server, the
framework performs the publishing operation and produces results that are transmitted
back to the client.

This approach means that the specialized processing that follows running the content
pipeline, such as file clean-up and execution of one or more content compilers, only needs
to be coded in the post-process callback of the outer layer of the framework. The code
can easily determine whether it’s running on the client or the server by checking the
global parameter array entry e3.serverComposition, which is undefined (0,'',
false) on the client and 1 on the server.

236 Programmer’s Guide to Arbortext Publishing Engine

The following diagram illustrates the publishing framework processing performed on the
client in preparation for sending a publishing request to the Arbortext PE server.

The Publishing Framework 237

The following diagram illustrates the publishing framework processing of an Arbortext
Publishing Engine request on the server.

Writing your own Outer Layer Module
The only way to implement an outer layer module is by writing an ACL routine. You can
write your own outer layer module by providing the entry points and callbacks needed,
and then by calling compose_for_type from your compose_for_type entry point. Look at
these files as models:

238 Programmer’s Guide to Arbortext Publishing Engine

Arbortext-path\packages\tools\comp_type.acl

Modifying the Inner Layer
You should not modify the inner layer itself. Any changes you make to the code in
compose.acl is likely to fail or produce unexpected results in subsequent releases of
the software.

You should, however, be able to control the behavior of compose_for_type(), which is
the core function in compose.acl, by using the The Publishing Framework Hook on
page 233.

Debugging the Publishing Framework
There are several ways to debug the publishing framework.

The Event Log
Content pipelines write information to the event log as they initialize and, later, as they
perform their operation. The event log is an XML document divided into sections, each
covering a publishing operation. When the publishing framework is invoked, it starts a
new section in the event log. After the operation is complete, the framework terminates
the section. If you are using Arbortext Editor and the sections contains any error
messages, the framework launches a window to display the event log.

You can elect to filter results in the Event Log by thread or context. Use the View ▶▶
Display ▶▶Filter menu option to open the Filter Event Log Entries dialog box.

You can display the event log by entering the following ACL command from the
Arbortext Editor or Arbortext Publishing Engine Interactive command line:

show_composer_log()

On the server, the event log records the process ID and the transaction ID as an INFO
level message, and the information can be passed to the Arbortext Editor client or the
calling application. The event log entry would be something like:

<Level> MESSAGE</Level>
<Message>Publishing engine process ID = '372';
transaction ID = '74935'.</Message>

Composer Debug Flags
You can trace the execution of the publishing framework by entering the following three
commands on the Arbortext Editor or Arbortext Publishing Engine Interactive command
line:

The Publishing Framework 239

source compose.acl;
$compose::debug=2;
$compose::verbose=1;

You can skip the initial source command if you've already performed a publishing
operation.

Setting these two ACL global variables result in:

• The parameters debug and verbose will be passed to the content pipelines that
run for future publishing operations. Some pipeline filters will heed these values
and write additional information to the event log.

• The publishing framework will display dialog boxes showing the current values of
its parameter array as it does its work. As each dialog box is displayed, execution
will halt until you press the OK button.

If you don't want to dismiss each of the dialog boxes for each publishing operation, but
you still want to inspect the results from the parameter arrays, you can set compose::
debug to 1. The publishing framework will not display any dialog boxes, but it will
place an entry in the event log for each point where a dialog box would have been
displayed.

Setting debugcomposition
The publishing process often creates a number of internal files.

• When publishing with Arbortext Publishing Engine, Arbortext Editor generates a
log of the communication process, generates a zip archive for transmission to the
Arbortext PE server, and receives a zip archive back from the Arbortext PE server.

• When publishing to PDF using Arbortext Editor with Arbortext Styler, Arbortext
Editor might successively produce a revised XML document, a DVI file, a
PostScript file, and a PDF output file..

If you set the ACL option set debugcomposition to on, the intermediate files and
logs are saved for debugging. You can retrieve these files by selecting Tools ▶▶Save
Application. The Save Application utility generates a directory containing a substantial
amount of information, including publishing information. The publishing information is
contained in the file compose.zip in the resulting appsave directory.

Enabling Application Logging on the Server
You can set the global Arbortext Publishing Engine parameter com.arbortext.e3.
applicationLog or com.arbortext.e3.applicationLog.Compose to INFO, DEBUG,
TRACE in or ALL in e3config.xml. Then, the server side activity of each publishing
operation that is implemented in Java will log information to the servlet log.

If you set the global PE parameter com.arbortext.e3.applicationLog.display to true
(the default), application log messages are written to the Arbortext Diagnostics window.

240 Programmer’s Guide to Arbortext Publishing Engine

You can launch Arbortext Diagnostics from the shortcut called Arbortext Publishing
Engine Diagnostics in your PTC program group.

The Publishing Framework 241

19
Arbortext Publishing Engine Client

Composer

Synchronous and Asynchronous Operations.. 244
Immediate and Queued Operations .. 244
Arbortext Publishing Engine Client Composer Operation................................... 245
Significant Parameters for the Arbortext Publishing Engine Client

Composer .. 246
Client Composer Parameter Types ... 250
The Client Composition Extension .. 254
Queuing Support ... 259
Debugging the Client Composer ... 259

The client side of an Arbortext Publishing Engine publishing operation is handled by Java
code called the Arbortext Publishing Engine Client Composer. The Client Composer
collects all of the information that the Arbortext Publishing Engine Server Composer
needs to perform some portion of a publishing operation, transmits the data to the server,
awaits a response, and processes the data returned by the server. The server operations are
explained in 20 Arbortext Publishing Engine Server Composer on page 261.

The overall architecture of Arbortext Publishing Engine publishing—on both the client
and the server—is designed to prevent content pipelines and content compilers from
being aware of where they're running. Some content pipeline filters and some content
compilers contain open source or commercial code that could not be modified to
understand Arbortext Publishing Engine functionality.

243

Synchronous and Asynchronous
Operations
Arbortext Publishing Engine publishing supports both synchronous and asynchronous
publishing operations. Most operations are synchronous, meaning the inner layer of the
publishing framework calls the Client Composer, which in turn does its job, awaits a
response from the Arbortext PE server, and returns to the publishing framework in a
single thread of execution. While awaiting a response from the server, Arbortext Editor is
blocked; the user is prevented from doing work.

However, preview and print composed operations are asynchronous, unless the
user specifies print composed wait or preview wait (then the operation is
synchronous). The Client Composer creates a background task to perform the publishing
operation, then returns to the publishing framework instantly. For an asynchronous
operation, Arbortext Editor does not wait for the Arbortext PE server to respond. Instead,
the user can continue working as if the operation succeeded. After some time passes, the
Preview window will open or the printer will start printing.

Immediate and Queued Operations
Arbortext Publishing Engine publishing supports both immediate and queued operations.
Immediate operations do not use the queuing feature on the Arbortext PE server, and their
execution follows the synchronous operation format. Queued requests use the queueing
feature on the Arbortext PE server. The Client Composer transmits a request to the
Arbortext PE server to queue the operation. The server returns a transaction ID, and the
user can use Arbortext Editor’s Queued Transaction Viewer to determine when the
queued request completes and to retrieve the queued transaction’s results.

A queued transaction is not an asynchronous operation in the sense it was described
earlier. Asynchronous transactions do not persist past the termination of Arbortext Editor,
but a queued transaction persists for as long as it’s configured to do so. You can submit a
queued transaction request, exit from Arbortext Editor, and start Arbortext Editor at a
later time and check the status of any queued transactions that you submitted using the
Queued Transaction Viewer.

Only Print Preview and Print requests may be asynchronous, but Print Preview and Print
operations, whether synchronous or asynchronous, may never be queued. If you submit an
asynchronous Print Preview or Print request and then exit from Arbortext Editor, you’ll
never get anything back from Arbortext Publishing Engine. The transaction ID which
Arbortext Publishing Engine assigns to immediate synchronous transactions, is not
returned to Arbortext Editor, so synchronous publishing operations are not visible in the
Queued Transaction Viewer.

244 Programmer’s Guide to Arbortext Publishing Engine

Arbortext Publishing Engine Client
Composer Operation
The Arbortext Publishing Engine Client Composer performs only processing that is
common to all publishing types. To perform processing specific to the output type, the
Client Composer loads a Client Composer Extension object and calls methods defined by
the extension just before the request is transmitted to the Arbortext PE server, and does it
again after the response has been received.

The Client Composer is a Java object named com.arbortext.e3c.ClientComposer. It
defines one public method called compose(Map-parameters, Map-types).

The method returns either the string ok or an error message. The two Map arguments are
parallel associative arrays. For each map key name, parameters[name] is the parameter
value and types[name] is the parameter type.

If a parameter appears in parameters[name] but not in types[name] the default
parameter type is string. If a parameter appears in types[name] but not in parameters
[name], it is ignored.

For example, to pass a parameter named test1 of type string and with value
abcdef, store the values in the parameters[name] and types[name] maps as follows:

parameters["test1"] = "abcdef";
types["test1"] = "string";

The Client Composer starts running when the publishing framework routine compose_
for_type calls the ACL routine compose::e3_compose. Then e3_compose creates the
parameters and types arrays and invokes the Java method com.arbortext.e3c.
ClientComposer.compose.

ClientComposer.compose starts by searching the parameters[name] array for a
parameter named e3.asynchronous. If the parameter is not present or it has a value
other than 1, then ClientComposer.compose simply calls the private method
doCompose and returns its result. If e3.asynchronous is present and equal to 1,
ClientComposer.compose creates a new thread which calls doCompose, and then
ClientComposer.compose returns ok to its caller immediately. All of the real work is
performed by doCompose, which has the same parameters and result signature as
ClientComposer.compose.

The doCompose method begins by creating an input directory. The content of this input
directory will be transmitted to the Arbortext PE server. Next, it processes the list of
parameters. It looks for a few parameters by name, but, for most parameters, processing is
driven by the parameter type. For each parameter, doCompose performs some action
based upon the parameter name or type. Some parameters are saved for transmission to
the Arbortext PE server, possibly with a modified value or type.

Next, doCompose loads the Client Composition Extension and calls its preProcess
method. It writes key information about the publishing operation, including the modified

Arbortext Publishing Engine Client Composer 245

parameter list, to the input directory file index.xml. Then it compresses the input
directory into a single JAR file.

After creating the JAR file, the ClientComposer.doCompose method obtains the server
URL from the Arbortext Editor (from the Tools ▶▶Preferences ▶▶Publishing Engine or
the value of the set peserverurl option), then uses the Java Client SDK to construct
a request and transmit the request to the Arbortext PE server. The request includes the
query parameters f=java and class=com.arbortext.e3c.Application. The JAR file
containing the input directory is sent as the body of the request. Then the Client
Composer waits for the Arbortext PE server to respond.

After it finishes processing, the Arbortext PE server returns a response that contains a
JAR file as the response body. The Arbortext Publishing Engine Client Composer saves
the response JAR to disk and extracts two files. One is an XML document named
response.xml which contains basic information about whether the request succeeded.
The other file is the server composer log from the JAR which contains information
generated by the server during the publishing process. The Client Composer analyzes
response.xml to determine if the request succeeded or failed, and then copies
information from the server event log into the client event log. The Arbortext Publishing
Engine Client Composer then calls the Client Composition Extension method
postProcess. Lastly, the Client Composer calls the postprocess callback of the publishing
framework (described in the postprocess Callback section of The Outer Layer of the
Publishing Framework on page 225).

Significant Parameters for the Arbortext
Publishing Engine Client Composer
The publishing framework must define all Arbortext Publishing Engine Client Composer
parameters before calling ClientComposer.compose. The Client Composer looks for the
parameters listed in the following table by name, and it takes special actions based upon
these parameter values. The processing for all other parameters is determined by the type
code for each parameter. If a parameter is required but not present, the Arbortext
Publishing Engine Client Composer will issue a fatal error message. After processing the
parameters in the table, the Client Composer may take one of three actions, shown in the
Disposition column.

• Parameters with local disposition are not transmitted to the Arbortext PE server.

• Parameters with string disposition are transmitted to the Arbortext PE server
with no processing.

• Parameters with markup disposition are transmitted as attributes on the Compose
element in the index.xml document written by the Client Composer to the input
directory.

246 Programmer’s Guide to Arbortext Publishing Engine

Significant Parameters for the Client Composer

Parameter Name Disposition Description

compose.document (required) local This is the ACL ID of the document
being published. The Client
Composer passes it to the
publishing framework postprocess
callback function.

compose.interactive
(required)

local If set to 1, the publishing operation
was invoked by the Arbortext
Editor user interface. The Client
Composer uses this variable to
determine whether to display
progress messages and a dialog box
(with a Cancel button) while
awaiting a response from the
Arbortext PE server. This value is
passed to the publishing framework
postprocess callback function.

compose.postProcessor
(required)

local The name of the ACL post-process
function to be called by the
publishing framework after the
Client Composer receives its
response from the Arbortext PE
server. If the value of this parameter
is null, the Client Composer does
not call a post-process function.

compose.suppressLogDisplay
(optional)

string if 1, the event log is not displayed
after the operation completes, even
if it contains errors or fatal errors.

ditaDoctype (optional) string an empty string, topic, map, or
omitted. If ditaProcessing is set to
true, and ditaDoctype is set to
map, then the Client Composer
looks in the directory named by
ditaFilePath for files named
maplinks.unordered and
metadatacollection.xml.
The Client Composer copies them
into a subdirectory named
ditaData in the input directory
(the directory transmitted to the
server in a JAR file).

Arbortext Publishing Engine Client Composer 247

Parameter Name Disposition Description

ditaFilePath (optional) local Required if ditaProcessing is
true and ditaDoctype is set to
map. It must contain the absolute
path to a directory containing files
as described in ditaDoctype above.

ditaLinksHrefAlternate string (see ditaLinksHrefPrefix)

ditaLinksHrefPrefix
(optional)

local Specifies the relative path by which
the DITA Map being published
references the files in the DITA
links directory. The Client
Composer creates a subdirectory of
the input directory using this path
and copies the DITA link files to
the new subdirectory. For HTML
Help and Web publishing, set this
parameter to something other than
the value .\. In those cases, the
Client Composer uses the value of
the ditaLinksHrefAlternate
parameter instead, to avoid copying
DITA link files to the top level of
the input directory.

ditaLinksDir (optional) local Specifies the absolute path to a
directory of files on the client that
are referenced by a DITA map but
which are not XML documents.
The Client Composer copies this
directory to the input directory,
using the name indicated by the
parameters ditaLinksHrefPrefix and
ditaLinksHrefAlternate.

ditaProcessing (optional) string If true, the document being
published is a DITA topic or map
document, as indicated by the
ditaDoctype parameter.

e3.asynchronous (required) local If set to 1, the publishing operation
is performed asynchronously.
Otherwise the Client Composer
performs a synchronous operation.

e3.busyMessage (optional) local If specified, this parameter is
displayed during a synchronous

248 Programmer’s Guide to Arbortext Publishing Engine

Parameter Name Disposition Description

publishing operation instead of the
localized version of the message
Composing on PE Server.

e3.busyPanel (optional) local If specified, this parameter gives
the name of the dialog box
displayed during a synchronous
operation. If not specified, the
dialog box defined in
e3compose.xml is displayed.

e3.busyPanelMessage
(optional)

local If specified, this parameter gives
the name of the message displayed
in the busy panel. The default is
Composing on PE Server {url},
where url is replaced by the
Arbortext PE server URL. If e3.
busyPanel is specified and e3.
busyPanelMessage is not
specified, then no message is
loaded into the e3.busyPanel
dialog box.

e3.
clientCompositionExtension
(required)

local This parameter must specify the
fully-qualified name of the Java
class to be instantiated and called as
part of the publishing operation.
The Java class must implement the
interface com.arbortext.e3c.
E3ClientCompositionExtension.

e3.clientOptions (optional) string This must be a list of the names of
ACL set options separated by |
characters. The Client Composer
retrieves the value of each option
and passes the value to the
Arbortext PE server.

e3.composerPath (required) markup This must be the absolute path to
the composer .ccf file that will
run on the Arbortext PE server, or
an empty string if no composer will
be used.

e3.compositionType
(optional)

local This is a string that is passed as the
value of the ati-operation-type
parameter when submitting a
request to Arbortext Publishing

Arbortext Publishing Engine Client Composer 249

Parameter Name Disposition Description

Engine. It allows the Arbortext PE
server to determine what kind of
publishing operation a request will
perform. The administrator can
configure Arbortext PE server to
allocate different Arbortext PE sub-
process pools, queues, notifiers, and
so on to handle different kinds of
publishing requests.

e3.excludedDirectories
(optional)

local This must be a colon-separated list
of directory names. Each even
numbered entry specifies the name
of a subdirectory in the input
directory; each even-numbered
entry specifies the name of a
subdirectory of the previous even-
numbered entry that should not be
transmitted to the Arbortext PE
server.

e3.sourceDocument
(optional)

markup This must be the ACL ID of the
document that will be passed to the
Arbortext PE server. It may be
omitted if no document is required,
such as when importing a Word
document. It must be accompanied
by a type of either local or
opendoc. If local, no document
is transmitted to the Arbortext PE
server. opendoc is described in
Handling document and opendoc
Parameters on page 251.

queue (optional) local If set to yes, the request is queued,
not processed immediately.

Client Composer Parameter Types
Apart from the significant parameters, as described in the previous section, the Client
Composer determines how to handle most parameters based upon the supported type
codes:

• document

250 Programmer’s Guide to Arbortext Publishing Engine

• entry

• file

• http

• http-header

• local

• opendoc

• string

Handling document and opendoc Parameters
The document and opendoc (open document) parameter types allow the Client
Composer to package an XML document for transmission to the Arbortext PE server. The
parameter type codes document and opendoc may be specified alone or followed by
suffixes requesting certain kinds of optional processing. For example, a parameter with a
type of opendoc.location would be considered an opendoc parameter with a suffix
requesting location processing (described in the Optional Parameter Suffixes table).

For a parameter of type document, the parameter value must be the absolute path to an
XML or SGML document. The Arbortext Publishing Engine Client Composer will ask
Arbortext Editor to open the document, process the document as if it was an opendoc
document, and then close it again. The document will be opened using the following
flags:

• read-only

• no locking

• no context checking

• no parser error messages

• no stylesheet

• no prompt if the DTD or schema is unknown

The Client Composer calls Arbortext Editor and directs it to open a document by calling
the Java method Application.openDocument(path, flags). It species the absolute path to
the document for path and sets a flags parameter to flags corresponding to the conditions
described in the previous list.

For a parameter of type opendoc, the parameter value must be the ACL ID of a document
that is already open in Arbortext Editor. The document is left open, and no changes are
made to it.

For both document and opendoc parameter types, the Client Composer will copy the
document in memory, modify the copy by processing it, and then write the document
using a temporary name to the input directory. The name will begin with the string x

Arbortext Publishing Engine Client Composer 251

followed by a number needed to make the name unique. The name will end with the file
extension .xml, .html, or .sgml.

The Client Composer will adjust the parameter’s value to the name of the file in the input
directory, and the parameter's type will be adjusted to entry.

If the Client Composer is given a document parameter named testfile with a value
of c:\test\inputfile.xml, the Arbortext Publishing Engine Server Composer
will receive an entry parameter named testfile with a value of something like x10.
xml. The x10.xml file in the input directory would be the modified version of the file
c:\test\inputfile.xml on the client.

The Client Composer always begins processing a document or opendoc parameter by
cloning the document in question, making a temporary copy in memory, and replacing
entity references with the actual data (sometimes referred to as a “flattened” document).
Flattening entity references ensures that the document will have no references to other
XML or SGML documents when it is written to disk, which is important because the
referenced documents might not be accessible to the Arbortext PE server.

After the document has been opened, copied, and flattened, subsequent processing is
controlled by any suffixes included on the document or opendoc type code, as described
in the following table.

Optional Suffix Parameters

Suffix Option Description
.gl Don't copy graphics

.location insert location PIs

.3d Convert 3D graphics to 2D versions

.iso-eps Convert ISO graphics to EPS format

.iso-jpg Convert ISO graphics to JPG format

.iso-png Convert ISO graphics to PNG format

Graphics are copied unless .gl are specified.

To convert ISO graphics, only one of .iso-eps, .iso-jpg, or .iso-png may be
specified. If none of these are present, then ISO graphics are not converted.

If the .location suffix is present on the type code, the Client Composer optionally
inserts location processing instructions. The PIs allow a DVI file returned by the
Arbortext PE server to reference locations in the ACL document, which would occur
when publishing PDF, PostScript (print composed), and preview. The .
location suffix supports the Edit ▶▶Synchronize Editor Position feature in Arbortext
Editor Preview window.

Next, the Client Composer processes graphics referenced by the flattened document by
copying all of the graphics referenced by the document to a subdirectory of the input

252 Programmer’s Guide to Arbortext Publishing Engine

directory. After graphic handling is processes, the Client Composer will write the
flattened document to the input directory for transmission to the Arbortext PE server.

Copying Graphics
For any publishing process that returns a DVI file to Arbortext Editor, graphic copying is
a solution to the problem of transmitting a document with no external references that
might be invalid on the Arbortext PE server. Graphic copying is straightforward: for each
graphic referenced by an XML or SGML document, as the Client Composer copies the
graphic to a subdirectory of the input directory. The graphic reference is adjusted to a
relative path reference. The subdirectory name is derived from the base name for the
temporary XML or SGML document written in the input directory. If the document is
called x10.xml, its graphics are placed in the subdirectory x10–graphics. If the
document contained reference to the graphic c:\test\graphicfile.gif, the file
would be copied to x10–graphics\graphicfile.gif. Its reference would be
modified to specify the same value. Graphic file names are also modified, if necessary, to
prevent name collisions in the destination subdirectory (which might occur for graphics
collected from several locations).

Handling Entry Parameters
An entry parameter provides a mechanism for transmitting an arbitrary file to the
Arbortext PE server as part of the publishing request. The parameter value must be the
absolute path to the file. Unlike a file referenced by the document parameter, the file
designated by an entry parameter is not opened as an XML or SGML document by
Arbortext Editor. Instead, the file is copied to the input directory (i.e. to the directory that
will be transmitted to the Arbortext PE server as a JAR file). An entry parameter
transmits a file located on the client, without opening the file, expanding entities, copying
graphics, or other processing.

The file designated by an entry parameter will be transmitted to the Arbortext PE server
using only its name. If entry parameter p1 has the value c:\test\data.txt, it will
be copied into the input directory as data.txt. To avoid name collisions, no entry
parameter should reference a file named:

• index.xml

• xinteger.xml

• xinteger.sgml

• xinteger.html

• xinteger-graphics

An entry parameter must specify a path and file, not just a directory.

Arbortext PE server retrieves the file by looking for the entry by name (such as data.
txt from the example) in the JAR file it receives from the client.

Arbortext Publishing Engine Client Composer 253

Handling File Parameters
A file parameter must have the value of the absolute path to a file located on the
Arbortext PE server. When it receives a publishing request from the Client Composer, the
Arbortext Publishing Engine Server Composer will examine each file parameter and
report an error if the specified file is not found. If a file parameter value starts with e3:
or pe:, the prefix is removed from the parameter value before it is transmitted to the
server.

Handling HTTP parameters
An http parameter is passed to the Arbortext PE server as a query parameter on the HTTP
request.

Handling HTTP-Header Parameters
An http-header parameter is passed to the Arbortext PE server as an HTTP header on the
HTTP request.

Handling local parameters
A local parameter is not transmitted to the Arbortext PE server. Its value is available only
to the Client Composer and Client Composition Extension.

Handling string parameters
A string parameter is transmitted to the Arbortext PE server with no processing. The
string value is simply passed to the server.

The Client Composition Extension
The Client Composition Extension is a Java class that allows operation-specific code to
run in the context of the PE Client Composer. The Client Composition Extension is
specified by the parameter e3.clientCompositionExtension. The parameter must be of
type local, and its value should be a fully-qualified Java class name. The class must
implement the interface com.arbortext.e3.ClientCompositionExtension.

The PE Client Composer will instantiate an object of this class once, the first time it is
referenced. After the initial use, the Client Composer will save the object in a map and
reuse the same object for subsequent publishing operations that specify the same
Composition Extension name. A Composition Extension must be serially reusable. It does
not need to be thread safe, however, as Arbortext Editor can not execute simultaneous
publishing operations.

254 Programmer’s Guide to Arbortext Publishing Engine

The com.arbortext.e3c.ClientCompositionExtension
Interface
This interface requires the following methods for a Client Composition Extension.

The constructor Method
A Client Composition Extension must define a constructor which takes no parameters.
Each client publising object is effectively a singleton; the constructor will be called only
once, for the first publishing operation using a particular Client Composition Extension
after Arbortext Editor is launched.

The preProcess Method
The preProcess method is called by the Client Composition Extension just before it zips
the input directory to a JAR file and transmits it to the Arbortext PE server as part of the
publishing request. It has the following signature:

public void preProcess(
File inputDir,
E3ServerCompositionRequest request,
Map localParameters,
E3Tracer tracer

);

The inputDir gives the location of the directory that will be zipped into a JAR file and
transmitted to the Arbortext PE server. The Client Composition Extension can create files
and subdirectories in it, and they will be transmitted to the server along with everything
else in the directory.

To avoid naming collisions, recall that the Arbortext Publishing Engine Client Composer
may have files beginning with the string x followed by an integer and a file extension of
.xml, .html, or .sgml, along with subdirectories beginning with x followed by an
integer and ending in -graphics. The Client Composer also writes a file named
index.xml before transmitting the directory to the Arbortext PE server.

The parameter request is the request that is being transmitted to the Arbortext PE server.
The Client Composer will serialize it to the input directory under the name index.xml
before zipping the input directory into a JAR file. The Client Composition Extension can
modify the request by calling its addParameter, setDoc, and setPath methods. Refer to
the Javadoc for information on these methods.

Adding a parameter simply manipulates string values. If you add a parameter, only the
content of index.xml changes. No work happens because of it, such as opening
documents, flattening entities, copying graphics, and so on.

To obtain the processing that the Client Composer provides for document, entry, file,
local, opendoc, and string, you must code that behavior directly.

Arbortext Publishing Engine Client Composer 255

The localParameters parameter is a map containing the local parameters passed to the
Client Composer. It contains string parameter names and string parameter values. These
parameters are not transmitted to the Arbortext PE server.

The parameter tracer is a tracing object that makes entries in the Arbortext Publishing
Engine debugging log, described in Debugging the Client Composer on page 259.

The postProcess Method
The postProcess method is called by the Client Composer after it has received a JAR file
containing the results from the Arbortext PE server. This method retrieves and uses the
information returned by the Arbortext PE server.

Many publishing methods do little processing in their preProcess methods because the
Client Composer can do some of the work. However, postProcess performs any
processing of the publishing results returned, because there's little common processing for
the Client Composer to do. The postProcess method has the following signature:

public void postProcess(
E3ServerCompositionResult result,
JarFile responseJar,
E3Tracer tracer

);

The parameter result is an instance of the class com.arbortexte3c.
E3ServerCompositionResult, which describes the result of the publishing operation. The
result is the result.xml returned by the Arbortext PE server in the returned JAR file.

The parameter responseJar is a JAR file descriptor for the entire file returned by the
Arbortext PE server. The file may contain one or more files produced by the publishing
operation on the Arbortext PE server, including graphics and subdirectories containing
result files. The primary job of the postProcess method is to extract the files in this
archive and relocate them to their proper local locations rather than on the Arbortext PE
server.

The parameter tracer is a tracing object that makes entries in the Arbortext Publishing
Engine debugging log, described in Debugging the Client Composer on page 259.

The com.arbortext.e3c.
E3ServerCompositionParameter Interface
This interface describes a parameter transmitted to the Arbortext PE server as part of a
publishing request. Parameters are logically contained in an object that implements the
interface com.arbortext.E3ServerCompositionRequest, which is written to a file named
index.xml in the input directory that is transmitted to the Arbortext PE server as part
of the JAR file. A parameter consists of three strings specifying the parameter name,
value, and type. Parameter names must be unique. Valid types are string, file, and
entry.

256 Programmer’s Guide to Arbortext Publishing Engine

A string parameter has a simple string value, and Arbortext PE server does not
perform any special processing. A file parameter represents a file on the Arbortext PE
server, and its value must be an absolute path. The Arbortext PE server will check that the
file exists as part of setup before running the publishing request. An entry parameter
represents a file being transmitted to the Arbortext PE server, and its value must be the
name of a file in the input directory, which becomes an entry in the JAR archive
transmitted to the server.

These parameter types are a subset of the parameter types that may be passed to the Client
Composer. As part of processing the parameters it receives, the Client Composer
processes local parameters by not encoding them for transmission to the Arbortext PE
server. The Client Composer processes the document and opendoc parameters by
converting them to entry parameters and copying the underlying documents into the input
directory.

You can create parameters of your own by creating objects that implement the
E3ServerCompositionParameter interface and adding them to the server request by
calling the E3ServerCompositionRequest.addParameter method. You can use the class
com.arbortext.e3.ServerCompositionParameter (though intended for internal use,
custom code can use it).

Simply creating a parameter and adding it to a request does not perform the processing.
You must place a file in the input directory before creating an entry parameter, and verify
that a file really does exist on the Arbortext PE server before creating a file parameter.

The com.arbortext.e3c.
E3ServerCompositionRequest Interface
The com.arbortext.e3c.E3ServerCompositionRequest interface describes a request that
will be transmitted to the Arbortext PE server for processing by the Arbortext Publishing
Engine Server Composer. The request will be written to a file named input.xml in the
input directory, which will be zipped into a JAR file for transmission to the Arbortext PE
server.

Logically, a request consists of a document, a composer path, and a collection of
parameters. The document is simply an entry parameter indicating which entry in the
input JAR file is to be published. The composer path is a file parameter with a value of
the absolute path to the content pipeline .ccf file that will be run on the server. Both the
document and composer path are optional. For example, an import publishing operation
does not require an input document, and some publishing operations proceed without
using a content pipeline.

This object provides accessors and modifiers for the document, the content path, and the
parameters.

Arbortext Publishing Engine Client Composer 257

The com.arbortext.e3c.E3ServerCompositionResult
Interface
The com.arbortext.e3c.E3ServerCompositionResult interface describes the response to
a publishing request returned by the Arbortext PE server. It indicates whether the
operation succeeded and tells where to find the information returned by the server in the
JAR file transmitted from the server.

The getSuccess Method
This method returns true if the publishing operation succeeded and false if an error
prevented the operation from running correctly.

The getOutputFileEntry Method
This method returns the name of the entry in the output JAR file that contains the output
of the publishing operation. It returns null if the operation doesn't return a single output
file.

The getOutputDirPrefix Method
This method returns a string that is a prefix for all files in the output JAR file that are in
the publishing operation's output directory. It returns null for those operations that don't
return a directory of files. Some operations may have both an output file and an output
directory. For example, if the output file was an HTML file, the output directory might
contain the graphics it references. Other operations might return only a file or only an
output directory. No operation intentionally returns no output.

The getErrorFileEntry Method
This method returns the name of the entry in the output JAR file that contains an error
message explaining why the publishing operation failed on the Arbortext PE server. This
method returns null if no error occurred.

The com.arbortext.e3c.E3Tracer Interface
The com.arbortext.e3c.E3Tracer interface provides a way for the Client Composer and
Client Composition Extensions to write information and error messages to an output log
for debugging purposes. Messages passed to the interface’s info method are discarded
unless the Client Composer is configured to write them.

Messages sent to the tracer are written to the Application Save log and to the Arbortext
Diagnostics window (launch it from the shortcut called Arbortext Publishing Engine
Diagnostics in your PTC program group) when the Client Composer runs on Windows.

258 Programmer’s Guide to Arbortext Publishing Engine

Queuing Support
For an immediate request, after transmitting the request to the Arbortext PE server,
waiting for a response, and receiving the response, the Client Composer calls the internal
method handleResponse. This method examines the response, which will be either an
XHTML error message (in case of severe error) or a JAR file containing the result of the
publishing operation. handleResponse extracts data from the JAR file and places the files
it contains in the locations to which they would have been written had the publishing
operation been performed locally. Then handleResponse calls the post-process function
in the outer layer of the publishing framework, described in The Outer Layer of the
Publishing Framework on page 225.

For a queued request, the Client Composer receives a nearly instant response from the
Arbortext PE server. The Client Composer immediately returns ok to the inner layer of
the publishing framework, which returns to the outer layer, and the operation is finished.

At a later time, the user may launch the Queued Transaction Viewer, which asks the
Arbortext PE server for the status of all queued transactions submitted by the user. If a
publishing request has completed processing, the user can select the transaction and clicks
the Download button. Arbortext Editor retrieves the JAR archive from the Arbortext PE
server, then calls the Client Composer’s handleResponse routine, which proceeds as if
the JAR file was the response to an immediate request.

Debugging the Client Composer
To obtain a log containing the Client Composer’s execution information, together with the
files sent to and received from the Arbortext PE server, set the ACL option set
debugcomposition to on on the Arbortext Editor client and perform one or more
publishing operations. Then select Tools ▶▶Save Application. Publishing data will be
placed in the file compose.zip in the appsave directory produced by the Save
Application utility.

Arbortext Publishing Engine Client Composer 259

20
Arbortext Publishing Engine

Server Composer

Publishing Applications ... 263
Arbortext Publishing Engine Server Composer .. 263
The Server Composition Extension... 265
Debugging the Server Composer.. 266

Support for Arbortext Publishing Engine publishing on the Arbortext PE server is called
the PE Server Composer.

The PE Server Composer is simply an Arbortext PE Application implemented in Java. It
runs in an Arbortext PE sub-process like any other Arbortext PE Application.

The Server Composer application is invoked by an Arbortext PE sub-process at the
request of the Arbortext PE Request Manager. It receives the request from the Arbortext
Editor client, which includes the input directory zipped as a JAR file. It opens the JAR
file, which contains information about what operation to perform along with the data
required by the operation. It performs the requested publishing operation, and places the
results in a temporary directory known as the output directory. Then it zips the output
directory into a JAR file and returns the JAR file to the Arbortext PE Request Manager,
which returns it to the Arbortext Editor client.

The PE Server Composer application consists of three components:

• The Composition Application, which is a standard Arbortext PE Application. It
receives control from the Arbortext PE Request Manager and invokes the next
layer, which is the PE Server Composer.

• The PE Server Composer performs operation-independent setup processing, then
loads and calls an operation-specific PE Server Composition Extension.

261

• The PE Server Composition Extension does the real work by invoking code
(usually the outer layer of the publishing framework) that knows how to run the
content pipelines and content composers.

262 Programmer’s Guide to Arbortext Publishing Engine

Publishing Applications
The Arbortext PE server Publishing Application is a standard Arbortext PE Application
implemented in Java. It runs in an Arbortext PE sub-process and it's implemented by the
class com.arbortext.e3c.Application. It expects to be invoked when the Arbortext PE
Request Manager receives a POST request accompanied by an HTTP request body with a
content-type of application/x-java-archive and the following request query
parameters:

• f = java

• class = com.arbortext.e3c.Application

• composer-class = com.arbortext.e3c.ServerComposer

The Publishing Application will not be called by the Arbortext PE Request Manager if the
class parameter has another value. It also issues an error message if there is no request
body or the content-type header indicates another type.

The composer-class query parameter could have another value; but the code that runs on
the Arbortext Editor client always specifies this value. If another value is specified, it
must be a Java class implementing the interface com.arbortext.e3c.E3ServerComposer.

The Publishing Application begins by retrieving and validating the content-type header. It
will ignore an optional ; charset= specification as allowed by the HTTP protocol. It
retrieves the POST request body and saves it to disk. Then it searches for, loads, and
instantiates an object of the class indicated by the composer-class parameter, which is
the PE Server Composer. Then it calls the Server Composer's doCompose method.

The Publishing Application maintains a cache of instantiated Server Composer objects,
and only loads and instantiates an object for a given class once. This means that Server
Composers should be serially reusable. An Arbortext PE sub-process can only process
one request at a time, so a Server Composer doesn't need to handle simultaneous requests.

The Server Composer's doCompose method takes the POST request body file as a
parameter, and it is expected to return a Java File object referencing a JAR file. The
Publishing Application will return the JAR file to the Arbortext PE Request Manager
(who returns it to the client) with a content-type of application/x-java-
archive.

If the Publishing Application detects any errors, it returns an XHTML document with
content-type text/xml instead of a JAR file.

Arbortext Publishing Engine Server
Composer
The PE Server Composer is a Java object of a class implementing the interface com.
arbortext.e3c.E3ServerComposer. A Server Composer object is instantiated the first

Arbortext Publishing Engine Server Composer 263

time the Publishing Application processes a request with a composer-class parameter
that specifies the Server Composer's class name. The Server Composer is essentially a
filter intended to transform a JAR file of input data to a JAR file of output data.

The PE Client Composer code always specifies the Server Composer class name as com.
arbortext.e3c.ServerComposer.

The Arbortext Publishing Engine Server Composer's primary method is:

File doCompose(File inputJar);

The inputJar parameter specifies a JAR file transmitted from the Arbortext Editor client.
The return value is a File object naming a JAR file to be returned to the client.

A Server Composer also exports a default constructor and a destroy method, and neither
takes any arguments. The distributed Server Composer allocates a working directory in its
constructor and deletes the directory and its content in its destroy method.

In its doCompose method, the PE Server Composer begins by searching its input JAR
file for an entry named index.xml, which it parses into a com.arbortext.e3c.
E3ServerCompositionRequest object. Before continuing, it looks for the name of the
PE Server Composition Extension it will call later (by retrieving the value of the
parameter e3.serverCompositionExtension) and checks that the underlying object has
been instantiated.

The PE Server Composer creates directories named source and target in the
transaction directory allocated by the Arbortext PE Request Manager to handle the
publishing request. Then PE Server Composer restores its input JAR archive to the
source directory.

Next, the PE Server Composer creates an empty property map (see the AOM interface
com.arbortext.epic.PropertyMap in the Programmer's Reference) and copies parameter
names and values from the E3ServerCompositionRequest object to the property map.
Each parameter has a type of either string, file, or entry. The Server Composer
copies the value of string parameters. For file parameters, it checks whether the
parameter value specifies the absolute path to an existing file, and fails with an error
message if the file isn't found. For entry parameters, it checks to make sure that the
JAR file entry specified by the parameter value has been restored to a file in the source
directory. If so, it replaces the parameter value with the absolute path to the restored entry.
If not, it issues an error message and fails.

Next, the PE Server Composer allocates an empty result object (see the Javadoc for the
interface com.arbortext.e3c.E3ServerCompositionResult). Then it calls the Server
Composition Extension specified by the client, which does the real publishing work.

When the Server Composition Extension returns, the PE Server Composer serializes the
result object to the file result.xml in the output directory. Then it compresses the
output directory into a JAR archive and writes the archive to the file that will be returned
as the HTTP response body. The PE Server Composer then returns to its caller, which
returns to the Arbortext PE Request Manager, which returns the response to the Client
Composer on the client machine.

264 Programmer’s Guide to Arbortext Publishing Engine

Note that the Server Composer does not need to delete its source and target
directories. They are created in the transaction directory managed by the Arbortext PE
Request Manager. After the Arbortext PE Request Manager returns the response to the
client, it may be configured to save the transaction directory as a zip archive in the
transaction archive and then delete the transaction directory, including the source and
target directories. Consult the Configuration Guide for Arbortext Publishing Engine
for information.

Writing a Custom Server Application
If you write custom code that runs as part of the Arbortext Publishing Engine Server
Composer (your own Server Composition Extension, for example) be sure that your code
close any files that it opens in the transaction directory, source directory, or target
directory. If your code leaves a file open, the Arbortext PE Request Manager will be
unable to delete the transaction directory, and the Arbortext Publishing Engine will begin
to leak disk space.

The Server Composition Extension
A Server Composition Extension is a Java object that implements the interface com.
arbortext.e3c.E3ServerCompositionExtension. The class is loaded, and an object is
instantiated, by the PE Server Composer when the Server Composition Extension's class
name is specified in the parameter e3.serverCompositionExtension.

A Server Composition Extension must be serially reusable. After it’s instantiated, it can
perform any number of publishing operations. It is not required to be thread safe, as a
single Arbortext PE sub-process can only perform one publishing operation at a time.
However, because several Arbortext PE sub-processes could run separate instantiations of
the same Server Composition Extension at the same time, developers should produce
programs safe for multi-processing, following good programming practices such as using
unique file names. Refer to Concurrency on page 108 for more information.

The com.arbortext.e3c.E3ServerCompositionExtension interface specifies a single
method, doCompose:

void doCompose(
E3ServerCompositionRequest request,
E3ServerCompositionResult result,
File sourceDir,
File targetDir,
Map jarMap,
PropertyMap propMap,
E3Tracer tracer

);

• request

Arbortext Publishing Engine Server Composer 265

is an object into which the file index.xml from the source directory was loaded.

• result

is the object to be returned to the client as result.xml.

• sourceDir

is the directory where the input JAR file was restored.

• targetDir

is the directory which will be compressed into a JAR file and returned to the client.

• jarMap

is a map that translates JAR entry names in the input JAR to the absolute paths of
the files in the source directory where each entry was restored.

• propMap

is a map that contains the publishing parameters

• tracer

used to write trace information

Server Composition Extension Processing
Most Server Composition Extensions follow the same basic flow of operation. However,
the processing of each Server Composition Extension will depend on the publishing type.

1. The extension creates a content pipeline for the publishing type.

2. Then it copies the content pipeline's default parameters into a Java map.

3. The Server Composition Extension copies the parameters sent by the client into the
same map, so that parameters from the client override the defaults.

4. Next, the Server Composition Extension opens the document to be published and
calls the appropriate compose_for_type function to invoke the publishing
framework. Since the set peservices setting is always off on the Arbortext
PE server, the publishing framework will perform the publishing operation.

5. Once the publishing framework returns, the Server Composition Extension closes
the document and returns.

Debugging the Server Composer
The source and target directories that the Server Composer creates are located in the
transaction directory allocated by the Arbortext PE Request Manager when it processed
the f=java request that ran the Server Composition Application.

266 Programmer’s Guide to Arbortext Publishing Engine

To obtain the transaction directories, configure Arbortext Publishing Engine so that the
transaction archive retains all transactions (explained in Configuration Guide for
Arbortext Publishing Engine), then use the Arbortext Publishing Engine web page
(explained in Monitoring and Reporting Using a Web Browser on page 26) to locate the
transaction archive directory and the archive entry (zip archive) for the transaction. You
can restore the zip archive to a temporary directory.

The Server Composition Application, Server Composer, and Server Composition
Extensions all log their behavior using the same log4j mechanisms as other Arbortext
PE Applications. To obtain the log information, set the level of logging you desire, as
described in Configuration Guide for Arbortext Publishing Engine.

Arbortext Publishing Engine Server Composer 267

21
Server Configuration for

Publishing

Overview.. 270
Content of the Publishing Configuration Document .. 271

269

Overview
When Arbortext Editor transmits a publishing request to the Arbortext PE server, it only
includes the document to be published and any graphic files that the document references.
It does not include files describing the document type, the stylesheet to be used in
publishing the document, or any custom code that might be needed.

The Publishing Configuration subsystem allows the Arbortext PE server to provide
Arbortext Editor clients with a list of the document types, stylesheets, framesets, and
other information stored on the Arbortext PE server. The server generates a Publishing
Configuration document, and then the client retrieves this document and consults it to
determine what is installed on the server.

There are actually four versions of the Publishing Configuration document:

• an XML document that lists everything available for publishing operations on the
Arbortext PE server

• an expanded, detailed version of the XML document, which contains MD5
checksums for everything installed on the server. This version enables Arbortext
Editor to perform an exhaustive comparison of its configuration with that of the
Arbortext PE server.

• an HTML version of the XML list document, which you can read for debugging.

• a log of the scan that Arbortext PE server performs when it builds the Publishing
Configuration document, which can also be used for debugging.

Publishing Configuration on the Server
The Publishing Configuration documents are generated by the Arbortext PE server each
time it starts. The documents are stored in a cache for retrieval by all Arbortext Editor
clients.

You can force the Arbortext PE server to regenerate the Publishing Configuration
documents without restarting by selecting the Rescan Publishing Configuration link on
the Arbortext PE server index page (refer to Monitoring and Reporting Using a Web
Browser on page 26 for information). For example, you would need to regenerate if you
installed a new document type or other publishing-related information on the server.

You can examine the Publishing Configuration document by selecting the short, detailed,
or log links on the Arbortext PE server index page.

The log is the primary tool for debugging problems in the Publishing Configuration
document. For example, you can use the log to determine why something you installed on
the server doesn't appear in the Publishing Configuration document retrieved by an
Arbortext Editor client.

270 Programmer’s Guide to Arbortext Publishing Engine

Client Use of Publishing Configuration
An Arbortext Editor client retrieves the Publishing Configuration document from the
Arbortext PE server each time it enables publishing against an Arbortext PE server. under
the following circumstances:

• when Arbortext Editor starts and Arbortext Publishing Engine publishing was
enabled during its last session

• When the Use Publishing Engine preference is changed from cleared to checked
and the URL preference value is set to a valid URL of an Arbortext PE server
(Tools ▶▶Preferences ▶▶Publishing Engine)

• When theURL preference value is changed to a valid URL of a different Arbortext
PE server while the Use Publishing Engine box is checked (also in Tools ▶▶
Preferences ▶▶Publishing Engine)

• when the set command option peservices is changed to on and
peserverurl is set to a valid URL of an Arbortext PE server

• when the set command option peserverurl changes to the valid URL of a
different Arbortext PE server while the set option peservices is set to on

A good way to force Arbortext Editor to again retrieve the Publishing Configuration
document from the Arbortext PE server is to clear the Use Publishing Engine check box
and then reopen Preferences ▶▶Publishing Engine and check the box.

You can display the Arbortext Editor version of the Publishing Configuration document
by selecting Help ▶▶About Arbortext Editor ▶▶PE Configuration. Either the Publishing
Configuration document will be displayed, or an error dialog box will appear explaining
why Arbortext Editor is unable to communicate with the Arbortext PE server.

Content of the Publishing Configuration
Document
The XML, detailed XML, and HTML versions of the publishing configuration document
contain the same information. Each contains global information about the Arbortext PE
server; then presents lists of composers, files in the composer path, document types,
stylesheets, framesets, import templates, PDF configuration files, APP configuration files,
installed applications, and supported Arbortext Editor client versions.

General Server Information
The general information section of the Publishing Configuration document contains the
following global information about the Arbortext PE server:

• Host Type (operating system)

Server Configuration for Publishing 271

• Whether Arbortext APP is installed

• Whether the HTML Help compiler is installed

• Whether the Arbortext Import/Export feature is installed

• Whether an Arbortext Print Composer license is installed

• Whether an Arbortext Web/Wireless Composer license is installed

• Whether to use Arbortext APP or the FOSI print engine to generate PostScript and
PDF by default

• The build name, date, and version for the Arbortext PE Request Manager

• The build name, date, and version for Arbortext PE sub-processes

Composers
The Composer section of the Publishing Configuration document lists every composer
configuration file (.ccf) defined on the Arbortext PE server. For each composer file, the
document lists the absolute path to the .ccf file and every parameter defined for the
composer. For each parameter, the document lists the parameter name, whether the
parameter is required, the default value if one exists, the parameter type, and (for
enumerated parameters only) legal parameter values.

Files in the Composition Path
The Composition Path section of the Publishing Configuration document lists the
directories in the composer path on the Arbortext PE server. For each directory, the
Publishing Configuration document lists the name of every file available in the directory.

Document Types
The Document Type section lists each document type installed on the Arbortext PE
server. A document type can be a DTD or schema. For each document type, the
Publishing Configuration document lists the following information:

• the absolute path to the directory containing the document type definition.

• a list of public IDs that map to the document type

• a list of URIs that map to the document type

• a list of stylesheets for the document type

• a list of composers associated with the document type

• a list frame sets for the document type

• a list of system ID mappings for the document type if available

• a list of stylesheet orderings if available

272 Programmer’s Guide to Arbortext Publishing Engine

Path to Document Type
The path to the document type directory is the unique identifier for each document type.

Public ID Lists, URI Lists, and System ID Mappings
To Arbortext Editor or an Arbortext PE sub-process, a document type is simply a
directory containing information about how to process a particular kind of document. The
document type directory contains a Document Type Definition (.dtd) file or a Schema
(.xsd) file. It also contains stylesheets, framesets, and other information about the
document type. The only truly unique identifier for a document type is the absolute path
to the directory in which it resides.

An SGML or XML document specifies its document type somewhat indirectly, by
specifying a Public ID, a System ID, or a URI. A given document type may be identified
by any number of public IDs, System IDs, or URIs. These identifiers are associated with
the document type directory by directives in one or more catalog files, which are read by
Arbortext Editor and by Arbortext PE sub-processes as they initialize.

An SGML or XML document usually has either a document type declaration or a schema
declaration that specifies its document type. A document type declaration specifies a
Public ID, a System ID, or possibly both. A schema declaration specifies a URI. A public
ID is simply a text string; a system ID is an absolute or relative path to the .dtd or .xsd
file. A URI is a URL for locating an .xsd file on the internet.

When Arbortext Editor or an Arbortext PE sub-process initializes, it scans a list of
directories for catalog files. Catalog files may contain PUBLIC, URI, or SYSTEM
directives (as well as others). A PUBLIC directive maps a Public ID to a System ID,
which allows Arbortext Editor or an Arbortext PE sub-process to map a Public ID string
to the path to a .dtd or .xsd file. A URI directive maps a schema URI to a System ID,
which allows Arbortext Editor or an Arbortext PE sub-process to map a URI to an .xsd
file. A SYSTEM directive maps one system ID to another; that is, a directive such as:

SYSTEM a b

directs Arbortext Editor or an Arbortext PE sub-process to look for file b instead of
looking for file a.

When Arbortext Editor or an Arbortext PE sub-process opens an SGML or XML
document, it finds the relevant document type directory by looking for a document type or
schema declaration. If the document contains a schema declaration, Arbortext Editor or
an Arbortext PE sub-process looks for the schema-to-directory mapping provided by a
URI directive in a catalog file. If the document contains a document type declaration with
a Public ID, Arbortext Editor or an Arbortext PE sub-process looks for a public ID-to-
directory mapping provided by a PUBLIC directive in a catalog file. If the document
contains a document type declaration with only a System ID, Arbortext Editor or an
Arbortext PE sub-process uses the System ID directly. In all cases, if a URI or a Public ID
can be translated to a System ID, or if a System ID is specified directly, Arbortext Editor
or an Arbortext PE sub-process checks to see if the System ID is mapped to another
location by a SYSTEM directive.

Server Configuration for Publishing 273

When the Publishing Configuration document is assembled, the Arbortext PE sub-process
looks for PUBLIC, URI, and SYSTEM directives in every installed catalog file; each
directive maps a Public ID, a URI, or a System ID to a document type directory. The
Arbortext PE sub-process adds the mapping to the appropriate list for the document type.

When an Arbortext Editor client tries to publish a document using an Arbortext PE server,
it must be able to locate the document's document type on the Arbortext PE server. To
find the server-based document type, it looks in the Publishing Configuration document
for a document type with a matching Public ID, URI, or system ID.

System ID Mapping Between Client and Server

Some document types are defined and then referenced only by System ID (in other words,
by an absolute path). This complicates using Arbortext PE server for publishing
operations, because the document type is likely to be installed in a different location on
the server than on the client.

To get around this problem, you can add a catalog file to a document type directory on the
Arbortext PE server that contains SYSTEM declarations for these document types. Each
SYSTEM declaration should map an absolute path to the document type on a client to the
absolute path to the document type on the Arbortext PE server.

You'll want to follow the practice of reducing the number of mappings needed if you're
using the Arbortext PE server. Installing document types in the same location on every
client machine will help minimize the total number of SYSTEM mappings you need to
define.

Stylesheet List
The Stylesheets section of the Publishing Configuration document lists each of the
stylesheets associated with a document type. For each stylesheet, the document lists the
name, the absolute path to the stylesheet, and the types of publishing that the stylesheet
supports. The document also indicates whether a stylesheet supports the FOSI engine,
APP, or both.

Composer Associations
In the Publishing Configuration document, the Composer Associations section of the
Document Type lists composer override information for a document type. A document
type can specify a different composer (.ccf) file to use when publishing its documents
to a particular output format. It also allows the document type to change the default
parameter values used by the composer.

Frame Sets
The Frame Sets section of the Publishing Configuration document lists additional frame
sets associated with a document type.

274 Programmer’s Guide to Arbortext Publishing Engine

Stylesheet Orderings
The Publishing Configuration document, the Stylesheet Orderings section of the
Document Type contains stylesheet order preferences for the document type. This section
displays any configuration of the order of stylesheets presented in the Arbortext Editor
stylesheet selection list. The order is controlled by configuring PEStylesheetOrder in the
document type’s .dcf.

Framesets
This section of the Publishing Configuration document lists frame sets installed on the
Arbortext PE server that can be used when publishing to the Web output format. These
framesets are not associated with any particular document type.

PDF Configuration Files
This section of the Publishing Configuration document lists PDF configuration files. The
Arbortext PDF generator (PubPDF) uses these files when translating a document to PDF.

APP Configuration Files
This section of the Publishing Configuration document lists APP configuration files. The
Arbortext Advanced Print Publisher uses these files when translating a document to
PostScript or PDF.

Import Templates
The Import Templates section of the Publishing Configuration document lists templates
for the Arbortext Import/Export feature that are available for importing a non-XML
document to XML. For more information about Arbortext Import/Export, refer to the
Arbortext online help and the Arbortext Import/Export documentation, including Tutorial
for Arbortext Import, Reference Guide to Arbortext Import, and the Customizer's Guide.

Applications
This section of the Publishing Configuration document lists the optional applications
installed on the Arbortext PE server, along with the platforms, application versions and
client versions they support.

Client Versions
The Client Versions section of the Publishing Configuration document lists the versions
of Arbortext Editor that the Arbortext PE server supports as publishing clients.

Server Configuration for Publishing 275

VI
Implementing Programs and
Scripts for Arbortext Publishing

Engine

277

22
Custom Applications

Overview of Custom Programs and Scripts .. 280
Description of the Custom Directory Structure.. 280
Using the Custom Directory for Custom Applications ... 290
Description of the Application Directory Structure .. 291
Using the Application Directory for Custom Applications.................................... 294
Deploying Zipped Customizations... 295
Specifying the JavaScript Interpreter Engine.. 296

279

Overview of Custom Programs and
Scripts
The Arbortext Editor and Arbortext Publishing Engine installations have directory
structures within them where you can place your custom scripts and programs. The
custom and the application directories are described in the following sections.

The Custom Directory Structure
The Arbortext-path\custom directory has a subdirectory structure designed to
hold your custom programs and scripts and make them automatically available during the
session. At startup, these subdirectories are searched for Java, JavaScript, JScript,
VBScript, ACL, and composer configuration files. You can also provide custom
document types, entities, fonts, graphics, and native shared libraries and DLLs. The
supported file types are automatically accessed if they reside in the appropriate
subdirectory. Implementing your custom files using this approach takes advantage of the
startup sequence to automatically locate your custom files. The Arbortext-path
\custom directory and its subdirectories are explained in detail in this chapter.

The Application Directory Structure
The Arbortext-path\application subdirectory can contain custom applications
as well as application software distributed by Arbortext. The application directory
must have one or more uniquely named subdirectories, each containing a specific
configuration file, application.xml, that conforms to a specific format. At startup,
the application directory is searched for subdirectories and the presence of a valid
application.xml file. In the uniquely named subdirectory, all subdirectories of the
custom directory are supported. The custom application in a application then uses
these subdirectories in the same way as the custom directory structure. You can also
have additional subdirectories needed to support the implementation of this type of
custom application. Implementing your custom application using this approach takes
advantage of the startup sequence, supports delivering a completely self-contained custom
application, and offers the option of setting the conditions for whether the application
should be loaded. The application directory is also explained in this chapter.

Description of the Custom Directory
Structure
When Arbortext Editor or an Arbortext PE sub-process starts, it can access custom files
placed in specific directories. At startup, it automatically looks for compiled Java files (.
class and .jar files), JavaScript, JScript, VBScript, ACL, document type, publishing

280 Programmer’s Guide to Arbortext Publishing Engine

configuration and other types of files within the Arbortext-path\custom directory
structure.

You can have one or more custom directories outside the Arbortext-path install
tree. To specify a path list for their locations, set the APTCUSTOM environment
variable. The custom directory must be located using a file system; HTTP references are
not supported.

At startup, some search paths are automatically prepended with the path to a custom
subdirectory. Startup automatically sets some of these search paths using a symbolic
variable as a path specification. You can use symbolic parameters to represent a search
path in the context of the default search path, the location of the install tree, or the locale.

If a directory supports more than one type of file, the file types are processed in the
following order:

• .acl (Arbortext Command Language) files

• .js (JavaScript or JScript) files

• .class (Java) files

• .vbs (VBScript) files

For each file type, its files are processed in alphabetical order by file name.

The Arbortext-path\custom directory is processed at startup. If you add custom
applications and document types after startup, they're not recognized during the session. If
you're using Arbortext Editor, it needs to be closed and restarted. If you're using
Arbortext Publishing Engine, you need to stop and restart the Arbortext Publishing
Engine to re-initialize the Arbortext PE sub-processes.

custom.xml File
At the top level of the custom directory is the custom.xml file. Following is the
default version of this file:

<?xml version="1.0" encoding="UTF-8"?>
<!--Arbortext, Inc., 1988-2009, v.4002-->
<ApplicationConfiguration

xmlns="http://www.arbortext.com/namespace/doctypes/appcfg">
<Information>
<!--The following name will be shown in the New dialog

as the category for all document types in this
custom directory that do not specify a category.-->

<Name>Custom Directory Name</Name>
</Information>

</ApplicationConfiguration>

This file is only used when you have a custom document type in the custom
\doctypes subdirectory, and you have not designated a category name for the

Custom Applications 281

document type in the associated document type configuration (.dcf) file’s NewDialog
element. In this case, the name in the custom.xml file’s Name element is used as the
Category name for the document type(s) in the custom\doctypes subdirectory in the
New Document dialog box.

Subdirectory Structure
The following list describes each custom subdirectory and how it's used. Arbortext
Editor and Arbortext Publishing Engine look in these directories for any references that
use a relative path or have no specified path.

• classes subdirectory

Holds compiled Java .class and .jar files.

The Arbortext Editor and Arbortext Publishing Engine JVM Java class path holds a
list of directories and paths to .jar files. Any files matching *.jar are
prepended to the JVM Java class path. Then the classes parent directory is
prepended, putting it first in the JVM Java class path.

In cases where a class file occurs in more than one .jar file, you can extract the
preferred .class file from its .jar file and place it in a subdirectory path of the
classes directory to control which one takes precedent.

• composer subdirectory

Holds publishing configuration files (.ccf, .ent, and .xml files) and can
support a catalog file. Supports one level of subdirectories.

The default path is Arbortext-path\composer. If there are any
subdirectories of the custom\composer directory, those subdirectories are
prepended to the publishing configuration path. Then the custom\composer
parent directory is prepended to the path. If the custom\composer directory
contains a catalog file, that directory is also prepended to the catalog path.

• datamerge subdirectory

Holds data merge configuration (.dmf) files specifying queries and their
components. The .dmf file structure is discussed in the Customizer's Guide.

• dialogs subdirectory

Holds dialog files that can be accessed from custom applications, such as one that
uses the AOM Application.createDialogFromFile method.

The Arbortext-path\samples\XUI\preferences\pref_exts.zip
contains a sample application that adds a tab to the Preferences window as a way to
extend preferences for custom applications. Refer to the readme.txt file for
more information.

If there are any subdirectories of the custom\dialogs directory, those
subdirectories are prepended to the dialog path. Then the custom\dialogs
parent directory is prepended to the dialog path.

282 Programmer’s Guide to Arbortext Publishing Engine

• ditarefs subdirectory

Holds content referenced by DITA documents when the reference is not specified
as either an absolute path name or a path name relative to the current document
directory. For example, the ditarefs subdirectory could hold content referenced
by topic references, content references, and so forth. Supports one level of
subdirectories.

The default DITA reference path is Arbortext-path\ditarefs. The DITA
references path can be set in the File Locations category of the Tools ▶▶
Preferences dialog box. You can also use the set ditapath option or the
APTDITAPATH environment variable to set the default path for DITA references.
If there are any subdirectories of the custom\ditarefs directory, those
subdirectories are prepended to the path. Then the custom\ditarefs parent
directory is prepended to the path.

Note
Graphic references from DITA documents are resolved using the graphics path list.

• dictionaries subdirectory

Holds user-defined dictionary files that can be used by the spelling checker.
Supports one level of subdirectories.

The default path is Arbortext-path\lib\proximity\userdict. If there
are any subdirectories of the custom\dictionaries directory, those
subdirectories are prepended to the dictionary path. Then the custom
\dictionaries parent directory is prepended to the dictionary path.

• doctypes subdirectory

Holds a custom catalog file and document type files. Supports one level of
subdirectories. Each document type should reside in a uniquely named subdirectory
of doctypes. The subdirectory should also contain a catalog file for the
custom document type. A doctypes subdirectory can also contain a subset of the
complete document type file set. You can place a document type configuration file
.dcf or stylesheets in a \custom\doctypes\doctype directory.

You can add a stylesheet to the list of stylesheets that displays when you make a
publishing request using one of the File ▶▶Publish choices. Arbortext Editor and
Arbortext Publishing Engine search each \custom\doctypes\doctype
directory and aggregate the list of stylesheets. For example, you can add stylesheets
for the Arbortext Simplified XML DocBook Article built-in document type
(asdocbook) by placing them in Arbortext-path\custom\doctypes
\asdocbook.

If a document does not specify an Editor view stylesheet with a stylesheet
association PI, Arbortext Editor will first search first the document directory, then

Custom Applications 283

the relevant \custom\doctypes\doctype directory, and finally the original
location for the doctype directory.

If the subdirectory contains only a .dcf file, it must conform to a naming
convention that expects the subdirectory and .dcf file name to reflect the base
document type name. For example, you could customize the default Arbortext
Simplified XML DocBook Article asdocbook.dcf file, and put it in
Arbortext-path\custom\doctypes\asdocbook\asdocbook.dcf to
override the built-in .dcf. Note that the document type subdirectory and file name
must be the same as the default document type name for Arbortext Editor and
Arbortext Publishing Engine to find all the relevant document type files.

A DCF file can reference other files, such as the .pcf, demo.xml, and
template.xml files. Custom versions of these files can be placed with the .dcf
in \custom\doctypes\doctype. If Arbortext Editor and Arbortext
Publishing Engine find a .dcf in the \custom\doctypes\doctype location,
relative path references are resolved by first searching the same directory as the .
dcf and then by searching the document type directory in the original location.

The default catalog path is Arbortext-path\doctypes. If there are any
subdirectories of the custom\doctypes directory that contain a catalog file,
those subdirectories are prepended to the catalog path. Then the custom
\doctypes parent directory is prepended to the catalog path.

You can place custom tag template files (.tpl) in a custom\doctypes
\doctype\tagtemplates directory. The custom\tagtemplates
directory can also be used as a more generally available location for tag templates.

Any document type from the custom\doctypes directory is also added to the
list of available document types that are displayed in the File ▶▶New dialog box.

• entities subdirectory

Holds file entities. Supports one level of subdirectories.

A file entity is any structurally complete document unit saved as a file. File entities
commonly have an .xml file extension.

The default entity path is Arbortext-path\entities. If there are any
subdirectories of the custom\entities directory, those subdirectories are
prepended to the entity path. Then the custom\entities parent directory is
prepended to the entities path.

• fonts subdirectory

Holds custom AFM or TFM font metric files (.afm and .tfm).

The default fonts path is Arbortext-path\fonts. If there are fonts in
custom\fonts, the path is prepended. If the APTTEXFONTS environment
variable is set, the custom\fonts directory is prepended to it.

• formats subdirectory

Holds custom PubTex format files (.fmt).

284 Programmer’s Guide to Arbortext Publishing Engine

The default PubTex format path is Arbortext-path\formats. If there are .
fmt files in custom\formats, the path is prepended. If the APTTEXFMTS
environment variable is set, the custom\formats directory is prepended to it.

• framesets subdirectory

Holds custom framesets for Publish ▶▶For Web. Supports one level of
subdirectories. Framesets are defined in the document type configuration file.

The default frameset path is Arbortext-path\framesets. If there are any
subdirectories of the custom\framesets directory, those subdirectories are
prepended to the framesets path. Then the custom\framesets parent directory
is prepended to the frameset path.

• graphics subdirectory

Holds graphic files. Supports one level of subdirectories.

The default graphics path is Arbortext-path\graphics. If there are any
subdirectories of the custom\graphics directory, those subdirectories are
prepended to the graphics path. Then the custom\graphics parent directory is
prepended to the graphics path.

• importexport subdirectory

Holds Arbortext Import/Export Import project files.

• inputs subdirectory

Holds source files for custom macros, program fixes, or other customizations in a
custom.tmx. Refer to Using .tmx files for more information. Document type
and document .tmx files can be placed in the custom\doctypes directory.

Also holds .tex files and source files for hyphenation exception and pattern rules
in .exc and .pat files.

The default source path is Arbortext-path\inputs. Then the Arbortext-
path\custom\inputs directory is prepended to it.

• lib subdirectory

Holds custom versions of the .pdfcf PDF configuration file. The default path for
.pdfcf files is Arbortext-path\lib. Then the Arbortext-path
\custom\lib directory is prepended to it. For more information on creating .
pdfcf files, refer to the Customizer's Guide.

In addition, the lib subdirectory can hold .wcf files for custom window classes.
For more information on creating .wcf files for window classes, refer to the
Creating custom window class preferences files in the Arbortext Editor help.

The lib subdirectory can also hold custom versions of the following files:

charent.cf

charmap.cf

Custom Applications 285

installprefs.acl

prted.pro

pubview.cf

pubview.fnt

tfmfont.cf

tfmscaling.cf

tfontsub.cf

wcharset.cf

wfontsub.cf

xcharset.cf

xfontsub.cf

You can specify more than one charent.cf file, as the effects are cumulative.
Refer to the Setting paths for new character set files and APTCUSTOM
environment variable topics in the online help for more information.

The custom\lib directory also has locale\locale-name subdirectories.
The default path is the appropriate locale subdirectory of Arbortext-path
\lib\locale. The locale-specific subdirectory of the custom\lib\locale
directory is prepended to the default locale path.

The locale\locale-name can hold custom versions of the .pdfcf PDF
configuration file. For more information on creating .pdfcf files, refer to the
Customizer's Guide.

Each locale\locale-name directory can hold custom versions of the
following files:

charent.cf

installprefs.acl

ixlang.cf

pubview.cf

pubview.fnt

tfmfont.cf

tfmscaling.cf

tfontsub.cf

wcharset.cf

wfontsub.cf

xcharset.cf

286 Programmer’s Guide to Arbortext Publishing Engine

xfontsub.cf

The custom\lib directory also has a subdirectory to hold native shared libraries
for platform-specific use:

– dll

Holds Windows dynamic link libraries, or DLL files (.dll).

The path to this directory is prepended to the system PATH environment
variable.

The custom\lib directory can have an ixlang subdirectory, which holds a
custom ixlang.cf file and index mapping files like those found in
Arbortext-path\lib\ixlang.

• publishingrules subdirectory

Holds publishing rules .prcf files which contain definitions of publishing rules
and publishing rule sets.

• pubview subdirectory

Holds pubview.cf and pubview.fnt files.

The default path is Arbortext-path\pubview. Then the Arbortext-path
\custom\pubview directory is prepended to it.

• scripts subdirectory

Holds .acl (Arbortext Command Language), .vbs (VBScript), and .js
(JavaScript and JScript) files. Supports one level of subdirectories.

The scripts in this directory can be called from scripts or applications in the
custom\init directory, which is processed at startup time. Scripts placed here
can be accessed using the source or require ACL commands. A customized
menu item or button can call a script in custom\scripts when invoked.

If there are any subdirectories of the custom\scripts directory, those
subdirectories are prepended to the load path. Then the custom\scripts parent
directory is prepended to the load path.

• stylermodules subdirectory

Holds Arbortext Styler stylesheet modules. Any modules stored in this directory
are automatically available to Arbortext Styler.

• tagtemplates subdirectory

Holds .tpl files. You can also put custom tag templates you want associated with
a particular document type into a custom\doctypes\doctype
\tagtemplates directory or in the original location of the document type's
doctype\tagtemplates directory.

If the APTTAGTPLDIR environment variable is set, this path is prepended to it.

• init subdirectory

Custom Applications 287

Holds .acl, .js, .class, and .vbs files.

The init subdirectory is processed last at startup time. All files of the supported
application types are executed. No nested subdirectories of custom\init are
supported. This directory is processed after the other Arbortext-path
\custom subdirectories so that its scripts and applications can rely on paths
already established during startup.

If you are putting custom applications on the Arbortext PE server, use the init
directory for your custom .acl, .js, .class files.

In the startup process, the custom\init directory is processed after _main.
acl but before arbortext.wcf. See the online help topic Startup command
files for complete startup processing information.

The supported application types are:

– .acl (Arbortext Command Language) files

Errors are reported to Arbortext Editor or recorded by Arbortext Publishing
Engine to be sent to its HTTP client.

– .js (JavaScript or JScript) files

Errors are reported to Arbortext Editor or recorded by Arbortext Publishing
Engine to be sent to its HTTP clients. You need to specify the JavaScript
interpreter engine to use in processing .js files. Refer to Specifying the
JavaScript Interpreter Engine on page 296 for more information.

– .class (Java) files

Java .class files in this directory must be compiled Java classes that are not
part of a named package. You can also put a .class file in custom\init
that calls into a .jar file located in the custom\classes directory.

The Java class must also implement a public static void main(String[] args)
method, which will be called with an empty string array. If the .class file
does not implement this method, an error is reported to Arbortext Editor or
recorded by Arbortext Publishing Engine to be sent to its HTTP client.

– .vbs (VBScript) files

Errors are reported to Arbortext Editor.

• editinit subdirectory

Holds .acl, .js, .class, and .vbs files. Note that when you run Arbortext
Editor with the -c option, any applications in this subdirectory are not executed at
startup.

All files of the supported application types are executed each time a non-ASCII
document is opened for editing. Files in this directory act on a document opened in
the Edit window. File in this directory act on a document opened using ACL when
the 0x8000 flag is used with the doc_open function. File in this directory act on a

288 Programmer’s Guide to Arbortext Publishing Engine

document opened using AOM when the OPEN_EDITINIT flag is used with the
Application.openDocument method.

The editinit subdirectory is processed before any document type command
files, document type instance command files, and document command files.

The supported application types are:

– .acl (Arbortext Command Language) files

Errors will be reported if the interface is running interactively, otherwise they
will be suppressed.

– .js (JavaScript or JScript) files

Errors will be reported if the interface is running interactively, otherwise they
will be suppressed.

– .class (Java) files

Java .class files in this directory must be compiled Java classes that are not
part of a named package. The Java class must also implement a public static
void main(String[] args) method, which is called with an empty string array.
You can put a .class file in custom\init that calls into a .jar file
located in the custom\classes directory. Errors will be reported if the
interface is running interactively, otherwise they will be suppressed.

– .vbs (VBScript) files

Errors will be reported if the interface is running interactively, otherwise they
will be suppressed.

Error Reporting for the custom\init Directory
Errors caused by mistakes in custom code in the Arbortext-path\custom\init
directory are reported with both the error message and the name of the initialization file
causing the error. Note the following:

• If Arbortext Editor is not running interactively (batch mode), no errors are reported
and the errors are not logged.

• Arbortext Publishing Engine records errors and reports them to its HTTP clients in
an HTML error page.

• ACL, JavaScript, and Java class errors are reported to the Arbortext Editor
interface or held by Arbortext Publishing Engine to be sent to HTTP clients making
requests.

Custom Applications 289

Additional Information
If you are using the AOM, refer to the documentation for Application.
getCustomDirectory. Refer to the XUI section of the Customizer's Guide for information
on extending the Arbortext Editor Preferences dialog box for your custom application.

The following set command options and environment variables affect custom path
search lists. They are documented in the online help.

set catalogpath

set composerpath

set dialogspath

set ditapath

set entitypath

set framesetpath

set graphicspath

set javaclasspath

set libpath

set loadpath

set pdfconfigfile

set tagtemplatepath

set userdictpath

Using the Custom Directory for Custom
Applications
The Arbortext-path\custom subdirectory structure provides the means to
implement custom applications. Where your application should be placed depends on the
application purpose and programming language.

If you're implementing custom applications or scripts, the following information will
assist you in determining the approach and location for your files:

• A custom Java program can be placed in custom\init, which supports a .
class file that must implement a public static void main (String[] args) method.
The method will be called at startup with no arguments (an empty String array).
If an error occurs, it's reported interactively for Arbortext Editor or sent to the
HTTP client for the Arbortext Publishing Engine.

A custom Java program can also be placed in custom\classes, which supports
.class or .jar files.

290 Programmer’s Guide to Arbortext Publishing Engine

We recommend putting Java applications in the custom\classes directory and
calling or initializing them from the custom\init directory.

Paths to .jar files in custom\classes are automatically prepended to the
embedded Arbortext Editor Java class path. Then the path to custom\classes
is prepended, putting it first in the search order.

• A custom JavaScript, JScript, VBScript, or ACL application can be placed in
custom\init or in custom\scripts. If you place your scripts in the
custom\scripts directory, you can call them from a script or scripts you place
in custom\init (which is processed at startup). Any code that exists outside a
function definition in a script from custom\init is executed at startup time.
Errors are reported if running interactively, otherwise they're suppressed.

You can create a simple JavaScript example file called simple_init.js. The script
should contain the following line:

Application.alert("Hello from JavaScript");

Put the simple_init.js file in Arbortext-path\custom\init.

When the startup process loads scripts from custom\init, you will see a dialog box
showing the Hello from JavaScript message.

Description of the Application Directory
Structure
The Arbortext-path\application subdirectory supports installing an
application into the Arbortext Editor and Arbortext Publishing Engine install trees.
Arbortext Editor and the Arbortext Publishing Engine automatically search for
subdirectories of the application directory at startup.

Arbortext-path\application must contain a uniquely named subdirectory for
each distributed application. Arbortext recommends using the naming pattern for a unique
qualified Java class name:

com.company-name.application-name

Each unique subdirectory of the application directory must also contain an
application.xml configuration file which describes various aspects of the
application, such as its release version and supported versions of Arbortext products. At
startup, Arbortext Editor and the Arbortext Publishing Engine search the application
directory for any subdirectories containing an application.xml configuration file.
The application.xml file contents provide the criteria to determine whether the
application should be loaded. The application directory must be located using a file
system; HTTP references are not supported.

Custom Applications 291

Subdirectory Structure
A subdirectory of the application directory can be structured the same as the
custom directory to take advantage of automatic Arbortext Editor and Arbortext
Publishing Engine startup processes. For example, if the uniquely named directory
contains graphics or entities directories, those directories are automatically added
to the search paths constructed at startup.

An application path could be something like:

application\com.company-name.application-name

Refer to the Description of the custom directory structure for the names and descriptions
of each supported subdirectory.

Note
When Arbortext Editor or the Arbortext Publishing Engine constructs search paths,
subdirectories of the custom directory take precedence over any corresponding
subdirectories under the application directory. When search lists are constructed at
startup, the first path in any search list will be the appropriate custom directory
followed by any applicable directory under the application directory. For example,
in constructing the graphics search path list at startup, custom\graphics would
precede application\com.arbortext.sample\graphics. An
application\graphics directory with no application.xml file will be
ignored during startup.

When implementing a custom application using the application directory structure,
you can add supplemental directories as needed to support your application. However,
your application code must be aware of these directories and how to use them.

Application Startup File
The Arbortext-path\doctypes\appcfg\application.xml file provides a
basic template for defining information about the custom application. You can make a
copy of doctypes\appcfg\application.xml to use as a template to create the
file that will eventually be distributed with the application. The application.xml file
must be placed in the application's top level directory, for example:
Arbortext-path\application\com.company.application-package-name\application.xml

In the template application.xml file, you can specify a list of elements that describe
the application. If the custom application determines its criteria is not met and the
application is not to be loaded, then these values are ignored. The base element for the file
is the ApplicationConfiguration element. This element has a required attribute called
installType that determines the type of Arbortext Editor installation for which this
application is supported. The default value is any meaning the application is supported in
both the full and compact installations of Arbortext Editor. The other supported value is

292 Programmer’s Guide to Arbortext Publishing Engine

full meaning the application is only supported in the full installation of Arbortext
Editor.

The following other elements are supported in the application.xml file:

• Name (required)

• Description

• LicenseNumber is only for an application distributed by Arbortext

• Version (required)

• Date

• Copyright

• Vendor

• RequiredApplications is for other applications that are required for this
application to run correctly. You must enter the qualified name for the application
in the qualifiedName attribute and a human-readable name in the name attribute.

• SupportedProducts

A Product element has attributes for specifying the name (required), minimum
version (required), and maximum version of the Arbortext product that supports the
custom application or application. The Product specification helps the launching
Arbortext product determine whether it should load this custom application by
matching criteria specified in this section.

The name must be one or more of the following:

– Arbortext Editor

– Arbortext Publishing Engine

– Arbortext Architect

– Arbortext Editor with Styler

The version must follow the convention used by Arbortext products, such as 5.2,
5.2 M040, or 5.3.

• SupportedPlatforms

The section is reserved for future use. Windows is currently the only supported
platform.

• GlobalParameters

Parameter contains ParameterName and ParameterValue elements for
specifying any global variables that the application may need when it's launched.

Related Topics
If you are using ACL, refer to the following ACL function descriptions:

Custom Applications 293

• application_name function

• get_custom_dir function

• get_custom_property function

• get_user_property function

• set_user_property function

If you are using the AOM, refer to the documentation for Application.
getCustomDirectory. Refer to the XUI section of the Customizer's Guide for information
on extending the Arbortext Editor Preferences dialog box for your custom application.

The following attributes from the Application interface are also useful:

• haveWindows

• initDone

• isE3

• customProperties

• userProperties

• name

Using the Application Directory for
Custom Applications
The Arbortext-path\application subdirectory provides the means to
implement a custom application that uses a special configuration file to determine
whether it should be loaded at startup. The application directory uses the same
principles of structure as the custom directory.

The Arbortext-path\application directory is processed at startup. If you add a
custom application after startup, you must exit and restart Arbortext Editor or stop and
restart the Arbortext Publishing Engine to have it recognized. You also have the option to
issue the f=init function to re-initialize the Arbortext PE sub-processes. Refer to
Configuration Guide for Arbortext Publishing Engine for more information.

Rules for using the application directory are:

• Your custom application must be contained in a uniquely named subdirectory of the
application directory.

• You must have an application.xml configuration file in the uniquely named
subdirectory that sets the conditions for loading the application.

• The same set of subdirectories supported by the custom directory are supported
for the uniquely named subdirectory of the application directory. At startup,

294 Programmer’s Guide to Arbortext Publishing Engine

the supported directories are automatically detected and used in constructing search
paths.

• Any other subdirectory of the application directory will be ignored at startup.
For example, an application\graphics subdirectory with no
application.xml file will be ignored during startup.

Arbortext has developed proprietary custom applications that are deployed using the
application subdirectory structure. A uniquely named subdirectory contains all the
necessary components to run an application within Arbortext Editor as well as the
Arbortext Publishing Engine.

The following information will help determine an approach for a custom application.

• You can have additional subdirectories for your custom application. You are not
limited to the subdirectories supported by the custom directory. However, these
additional directories are not automatically recognized during the startup process.

• Processing each unique application's subdirectories follows the same rules for
processing custom subdirectories. Recall that the application's subdirectories
come after the custom subdirectories in constructing any applicable search paths
for the session.

• If you decide not to use a particular supported subdirectory, you can improve
performance by omitting the directory to reduce the length of a search path that
would contain it.

• You can use the APTAPPLICATION environment variable to set the path to one
or more application directories.

• An application should not write data to its own application directory. An
application user may not have write permission access to this application directory,
for example, any C:\Program Files directories on Windows (the location
where Arbortext Editor and the Arbortext Publishing Engine are typically
installed).

Deploying Zipped Customizations
You can deploy not only custom directories, but also application and content
management system adapters directories in a compressed zip file. Using a zip file to
distribute your customizations has the following advantages:

• You can host your customizations on a web server.

In this case, use the HTTP or HTTPS URL to the zip file as the value for the
APTCUSTOM environment variable.

• Your customizations will be available to users when they cannot access your
network.

Custom Applications 295

If you use a shared network folder to host your customizations, users do not have
access to those customizations when the network is unavailable. If you use a zip
file to distribute your customizations, Arbortext Editor unzips those customizations
to a directory in the Arbortext Editor cache directory (.aptcache\zc). At start
up, Arbortext Editor checks to see whether the zip file has been updated. If it has,
Arbortext Editor downloads and uncompresses the updated customizations. If not,
Arbortext Editor continues to use the customizations stored in the local cache. If
the network is unavailable to a user, your customizations are still available to that
user in the local cache. Note that the user must also have a fixed Arbortext Editor
license on their system to work away from the network.

• Network traffic might be reduced.

Since the zip file containing your customizations is only downloaded once over the
network, and then only if it has been updated, traffic on your network might be
reduced. If you store your unzipped customizations in a shared network folder,
Arbortext Editor might have to access that folder several times over the course of a
session.

• Customizations stored in a compressed zip file are harder to change accidentally
than customizations stored in a directory structure.

Note that you cannot use a zip file to distribute a customized installprefs.acl in
the custom\lib directory. You can use the APTINSTALLPREFS environment
variable to specify the location of a custom installprefs.acl file.

Note also that you cannot include the following font configuration files in the lib
subdirectory of a zipped custom directory:

• charent.cf

• wcharent.cf

• wfontsub.cf

• charmap.cf

These files are processed before a zipped custom directory when Arbortext Editor starts
up, so the files cannot be processed when deployed in that way.

Specifying the JavaScript Interpreter
Engine
Both JavaScript and JScript files have a .js file extension. By default, Arbortext Editor
and the Arbortext Publishing Engine interpret .js files as Rhino JavaScript files. You
should specify the JavaScript interpreter for a JavaScript or JScript .js file. This is
especially important if you have .js files of both types.

296 Programmer’s Guide to Arbortext Publishing Engine

We recommend adding a comment line to your script that specifies either the Rhino
JavaScript engine (the default) or the Microsoft JScript engine as shown in the following
examples. The first line of your .js file must be a comment starting with //.

To specify the Rhino JavaScript interpreter:

// type="text/javascript"

To specify the Microsoft JScript interpreter:

// type="application/jscript"

The specification can be enclosed in a script tag. Both of the following examples are a
valid specification for JScript:

// <script type="application/jscript">

// type="application/jscript"

You can also specify the JavaScript interpreter using the ACL set
javascriptinterpreter command. You can specify it in an ACL file placed in the
Arbortext-path\custom\init directory, where it will be processed at startup.
For information on setting the interpreter using ACL, see the online help topic for set
javascriptinterpreter.

Custom Applications 297

Index

A
ACL scripts
loading automatically, 287

adapter
passing credentials, 196

application directory
structure, 291

application directory overview, 280
application files
error reporting at startup, 289
implementing custom, 290
overview of application directory, 291
overview of custom directory, 280

Arbortext Import/Export
custom directory, 285

Arbortext Publishing Engine configuration
testing, 26

Arbortext Publishing Engine custom
applications
ACL
troubleshooting, 160

Java
troubleshooting, 124

Java sample files, 124
JavaScript
troubleshooting, 131

location of JAR file, 118
sample
in ACL, 159
in JavaScript, 131
in VBScript, 144

using the Java Client SDK, 199
VBScript
troubleshooting, 145

Arbortext Publishing Engine integration
testing, 26

Arbortext Publishing Engine Java Client
SDK, 199
Arbortext Publishing Engine Test Utility

testing custom applications, 125, 132,
146, 161, 191

Arbortext Styler
modules, 287

C
configuration

application.xml, 292
configuring Arbortext Publishing Engine

testing, 26
contacting technical support, 8
content type

avoiding problems, 126, 133, 146, 161,
191

custom applications
application directory, 291
application.xml startup file, 292
approach, 294
Arbortext Publishing Engine
troubleshooting ACL, 160
troubleshooting Java, 124
troubleshooting JavaScript, 131
troubleshooting VBScript, 145

custom directory, 280
deploying as zip file, 295
Enterprise Publishing Packs, 291
error reporting at startup, 289
using the Java Client SDK, 199

custom directory
custom.xml file, 280
deploying as zip file, 295
structure, 280

custom directory overview, 280
custom.xml file, 280
customizations

deploying as zip file, 295

299

D
Dialog boxes
creating custom
where to place files, 282

Dictionaries
custom, 283

directories
application, 291
custom, 280

DITA support
custom DITA reference path, 283

Document types
custom, 283

E
Enterprise Publishing Packs
implementing, 291

Entities
setting paths
loading automatically, 284

error reporting
at startup, 289

F
Fonts
custom, 284

Framesets
setting paths
loading automatically, 285

G
Graphics
setting paths
loading automatically, 285

H
HTTP client for Arbortext Publishing
Engine
using the Java Client SDK, 199

Hyphenation
loading custom files automatically, 285

I
Index

customized
loading custom files automatically,
287

initialization
custom files, 287
editing, 288

integrating Arbortext Publishing Engine
testing, 26

J
Java classes

loading automatically, 282
JavaScript interpreter, 296

L
list of

conceptual terms, 8
loading custom applications

using application directory, 291
using custom directory, 280

Locales
custom font and formatting files, 286

M
Macro files

loading automatically, 285
Merging data

where to place files, 282
Microsoft JScript interpreter, 296

P
passing credentials to a repository, 196
Paths

300 Programmer’s Guide to Arbortext Publishing Engine

custom font and formatting files, 285
custom library files, 287
custom pdfcf files, 285

PDF
custom pdfcf files, 285

PDF output, 181
product support contact information, 8
publishing configuration file
custom, 282

publishing rules files
loading automatically, 287

PubTex
automatically loading formatter files,
284

pubview files
loading automatically, 287

R
repository adapter
establishing a connection, 196
passing credentials, 196

Rhino JavaScript interpreter, 296

S
Scripts
loading automatically, 287

startup files
customizing, 287
editing, 288

sub-process settings
cascade, 63
environment variables, 67
id, 63

support contact information, 8

T
Tag templates
setting paths
loading automatically, 287

terms
conceptual, 8

testing Arbortext Publishing Engine
configuration
using Arbortext Publishing Engine
index page, 26

.tmx files
loading automatically, 285, 287

troubleshooting custom applications
Arbortext Publishing Engine ACL, 160
Arbortext Publishing Engine Java, 124
Arbortext Publishing Engine JavaScript,
131
Arbortext Publishing Engine VBScript,
145

Index 301

	About This Guide
	Prerequisite Knowledge
	Technical Support
	Documentation for PTC Products
	Global Services
	Comments
	Documentation Conventions

	Arbortext Publishing Engine and its Components
	Technical Overview of Arbortext Publishing Engine
	Distributed Computing and the Client/Server Model
	Web Clients and the HTTP Protocol
	Java Servlets and Servlet Containers
	Arbortext Publishing Engine as a Java Servlet
	Arbortext Publishing Engine as a Web Application
	Arbortext Publishing Engine as a Transaction Processor
	Internal Components of Arbortext Publishing Engine
	Arbortext PE sub-process Pools
	Arbortext PE Applications
	Arbortext Publishing Engine as a Document Conversion Server
	Arbortext Publishing Engine as a Publishing Server
	Arbortext Publishing Engine Java Client SDK
	Monitoring and Reporting Using a Web Browser
	Logging and Tracking

	Supporting Documentation

	The Arbortext PE Request Manager
	Understanding the Internal Structure of Arbortext PE Request Manager
	Initialization
	Request Processing
	Transaction Management
	Arbortext PE sub-process Pool Management
	Arbortext PE sub-process Pool Attributes
	Arbortext PE sub-process Pool Parameters
	Terminating the Arbortext PE Request Manager

	Predefined Dynamic Components
	Predefined Request Selectors
	Predefined Cache Managers
	Predefined Queue Managers
	Predefined Request Handlers
	Predefined Request Functions
	Pre-Defined Queues
	Arbortext Queue Request Functions
	Pre-Defined Notifiers

	Customizing the Arbortext PE Request Manager
	Writing a Custom Cache Manager
	Writing a Custom Queue Manager
	Writing a Custom Request Handler
	Writing a custom Request Function
	Writing a Custom Initializer
	Writing a Custom Request Selector
	Writing a Custom Queue
	Writing a Custom Notifier

	The Arbortext PE sub-process
	Implementing Arbortext PE Applications
	Concurrency
	Installing an Arbortext PE Application
	Sample Applications
	The Allowed Functions List
	The Arbortext PE sub-process Application Context
	Support for Custom Applications with the APP Engine

	Writing Arbortext PE Applications in Java
	Initialization
	Request Processing
	Termination
	Creating a Java Arbortext PE Application
	The E3ApplicationRequest Class
	The E3ApplicationResponse Class
	The E3ApplicationConfig Class
	Calling the Conversion Processor From a Java Arbortext PE Application
	Sample Java Arbortext PE Application
	Troubleshooting Java Applications for Arbortext Publishing Engine

	Writing Arbortext PE Applications in JavaScript
	Creating a JavaScript Arbortext PE Application
	Testing JavaScript Syntax in Arbortext Publishing Engine Interactive
	Calling the Conversion Processor from a JavaScript Arbortext PE Application
	Sample JavaScript Arbortext PE Application
	Troubleshooting JavaScript Arbortext PE Applications

	Writing Arbortext PE Applications in VBScript
	Passing Parameters
	Constructing a Response
	Retrieving the Configuration Parameters
	Testing VBScript Syntax in Arbortext Publishing Engine Interactive
	Calling the Conversion Processor from a VBScript Arbortext PE Application
	Sample VBScript Arbortext PE Applications
	Troubleshooting VBScript Arbortext PE Applications

	Writing Arbortext PE Applications in ACL
	Passing Parameters
	Constructing a Response
	Retrieving the Configuration Parameters
	Testing ACL Syntax with Arbortext Publishing Engine Interactive
	Calling the Conversion Processor from an ACL Arbortext PE Application
	Sample ACL Arbortext PE Applications
	Troubleshooting ACL Arbortext PE Applications

	Arbortext Publishing Engine Document Conversion
	Document Conversion Parameters
	Loading a Document for Conversion
	Conversion Processing
	Conversion Result
	Customizing Document Conversion
	Troubleshooting Conversion Processing

	Arbortext Publishing Engine Clients
	Using Adapters with Arbortext Publishing Engine
	Connecting to a Repository Adapter

	Using the Java Client SDK
	Installing the Java Client SDK
	Overview of the Java Client SDK
	The Java Client SDK Package
	Sample Java Client SDK Code
	Testing the Java Client SDK

	Troubleshooting Tips
	Checking the Publishing Configuration Report
	Enabling Tracing in compose.acl
	Enabling Publishing Debugging

	Arbortext Publishing
	Introduction
	Starting a Publishing Operation
	Publishing Operation Components

	Content Pipelines
	Developing and Configuring Content Pipelines
	Creating Content Pipelines with ACL

	Content Compilers
	The Arbortext Formatting Engine and Arbortext Advanced Print Publisher
	Producing PostScript and PDF from DVI
	Producing HTML
	Producing HTML Help

	The Publishing Framework
	The Outer Layer of the Publishing Framework
	The Inner Layer of the Publishing Framework
	The Publishing Framework Hook
	Print and Print Preview
	How Arbortext PE server uses the Publishing Framework
	Writing your own Outer Layer Module
	Modifying the Inner Layer
	Debugging the Publishing Framework

	Arbortext Publishing Engine Client Composer
	Synchronous and Asynchronous Operations
	Immediate and Queued Operations
	Arbortext Publishing Engine Client Composer Operation
	Significant Parameters for the Arbortext Publishing Engine Client Composer
	Client Composer Parameter Types
	The Client Composition Extension
	Queuing Support
	Debugging the Client Composer

	Arbortext Publishing Engine Server Composer
	Publishing Applications
	Arbortext Publishing Engine Server Composer
	The Server Composition Extension
	Debugging the Server Composer

	Server Configuration for Publishing
	Overview
	Content of the Publishing Configuration Document

	Implementing Programs and Scripts for Arbortext Publishing Engine
	Custom Applications
	Overview of Custom Programs and Scripts
	Description of the Custom Directory Structure
	Using the Custom Directory for Custom Applications
	Description of the Application Directory Structure
	Using the Application Directory for Custom Applications
	Deploying Zipped Customizations
	Specifying the JavaScript Interpreter Engine

