
Customizer's Guide
8.1.0.0

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
"PTC") are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes. Information described herein is
furnished for general information only, is subject to change without notice, and should not be construed as a
warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the
piracy of PTC software products, and we pursue (both civilly and criminally) those who do so using all legal
means available, including public and private surveillance resources. As part of these efforts, PTC uses data
monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our software.
This data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection and
transmission of such data (including to the United States), cease using the illegal version, and contact PTC to
obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

Contents

About This Guide ..9

Custom Applications.. 11
Overview of Custom Programs and Scripts ...12
Description of the Custom Directory Structure...13
Using the Custom Directory for Custom Applications ...24
Description of the Application Directory Structure ..25
Using the Application Directory for Custom Applications ..28
Deploying Zipped Customizations ..29
Specifying the JavaScript Interpreter Engine...31

Customizing Your Site's Profiling Configuration..33
Customizing Your Site's Profiling Configuration ...34
Profiling Overview...34
.pcf (Profile Configuration File)...35
Configuring Profiles ..36
Profiling API ...41
Profiling DTD Element Reference ..46

Customizing Help ..55
Customizing Tag Help ...56

Customizing PDF Publishing ..59
PDF Publishing Overview..60
Using PTC ALD Publishing Engine for PDF ..60
Using FOSI Publishing Engine for PDF...60
Watermarks..61
Creating PDF Bookmarks Using Arbortext Styler...61
Creating PDF Bookmarks Using FOSI..61
Creating Document Properties...64
Choosing PDF Configuration Options...64
Linking Between PDF Files..67
Configuring Security Options ...68
Adding Fonts Used by Graphics...69
Configuring Fonts for FOSI Publishing..70
PDF DTD Element Usage (FOSI)...72
General Element ..72
Color Element ..84
Font Element..86
Label Element ..99
Documentation Element ..99

Customizing Publishing Rules .. 101

5

Customizing Publishing Rules ... 102
Publishing Rule Output Files.. 102
Publishing Rule Output ... 102
Publishing Rule Parameters .. 103
Adding a Publishing Rule Parameter .. 104
Publishing Rule Set Parameters .. 108
Adding a Publishing Rule Set Parameter .. 110
Overriding Rule Parameters .. 113
Rule and Rule Set Error Handling .. 114
Arbortext Publishing Engine Document Conversion... 114

Working with XUI (XML-based User Interface) Dialog Boxes 115
XUI Overview ... 116
Defining the Dialog Box... 117
Displaying the Dialog Box using the AOM... 117
Describing Dialog Box Controls.. 117
Specifying Dialog Box Layout .. 118
Specifying Event Listeners .. 123
Returning Values from Dialog Boxes .. 126
Manipulating XUI Dialog Boxes using the AOM ... 128
XUI Dialog Boxes and ACL.. 129
Working with Images... 129
Working with Menus.. 131
Working with Toolbars ... 133
Working with Tables .. 134
Working with Trees ... 135
Working with Dockable Dialog Boxes ... 145
Identifying the Parent Window of a Dialog Box .. 146
Embedding XUI Dialog Box Controls in a Document .. 147
XUI Display Recommendations ... 149
XUI Element Reference... 150

Working with ActiveX Controls.. 213
Overview.. 214
Executing ActiveX Controls Using XUI.. 216
Executing ActiveX Controls Using the .dcf File to Bind to an Element
dDrectly.. 220

Running Arbortext Editor in an ActiveX Control ... 230
Integrating Arbortext Editor with Web Pages ... 243

Merging Data from Other Sources .. 249
Data Merging Overview... 250
Merging Data with Arbortext Editor... 250
Query Definitions .. 250
Configuring for Data Merge ... 251
Notes and Limitations.. 254

Working with Arbortext Import/Export.. 255
Configuring for Exporting... 256

6 Customizer's Guide

Configuring for Importing ... 260
Arbortext Import/Export-Related ACL Functions.. 260
Using Arbortext Import/Export in Batch Mode.. 260
Troubleshooting.. 262

Customizing Copying and Pasting from Other Applications... 267
Customizing Copying and Pasting from Other Applications 268
Copy and Paste Overview ... 268
Disabling Copy and Paste ... 270
Modifying the Source Types Used for Copy and Paste... 271
Using Arbortext Import to Customize the MapTemplate Files................................ 272
Implementing Copy and Paste for a Custom Document Type 289
Customizing the Paste Special Dialog Box.. 294
Limitations ... 296

Customizing DITA Support ... 299
Customizing DITA support ... 300
Customizing the DITA Resource Manager .. 300

Index.. 307

Contents 7

About This Guide

The Customizer's Guide provides detailed instructions on how to configure and
customize Arbortext Editor features for use at your site. Examples of typical
customizations are provided throughout the guide to illustrate steps you'll take to
configure Arbortext Editor to address your specific needs. The Customizer's Guide
is a companion to the Programmer's Reference, available in the Arbortext Editor
Help Center.
The information covered in the Customizer's Guide is divided as follows:

• About This Guide—An introduction to this guide and the information it
covers.

• Custom applications—An overview of implementing custom applications
with PTC Arbortext products.

• Customizing your site's profiling configuration— Instructions on configuring
and customizing profiling to be specific for your site.

• Customizing help—Details on how to update PTC Arbortext online help to
be specific to your site.

• Customizing PDF publishing— Information on configuring and customizing
your site's PDF publishing capabilities.

• Customizing Publishing Rules— Information on customizing publishing
rules, rule sets, and rule files.

• Working with XUI (XML User Interface) dialog boxes— Instructions on
creating, displaying, and manipulating dialog boxes in real time by writing and
modifying XML documents.

9

• Working with ActiveX controls— Instructions on defining and implementing
ActiveX controls at your site.

• Merging data from other sources—An overview of the PTC Arbortext data
merging capabilities and references to other sources of information.

• Working with Arbortext Import/Export—An overview of using Arbortext
Import/Export, configuration instructions, a description of the Arbortext
Import/Export API, instructions on using Arbortext Import/Export in batch
mode, migration information, and troubleshooting information.

• Customizing copying and pasting from other applications—Details on how to
customize the use of Arbortext Import/Export to paste content from other
applications as tags conforming to a document type.

• Customizing DITA support—Details on how to customize the Arbortext
Editor user interface for editing DITA documents.

Prerequisite Knowledge
The Customizer's Guide assumes advanced skill using Java, JavaScript, JScript,
VBScript, or COM (Component Object Model). If you're creating an Arbortext
Publishing Engine application, you also need to be familiar with Java servlets,
servlet containers, web servers, the HTTP protocol, and the SOAP protocol.
Arbortext Editor and Arbortext Publishing Engine supporting documentation and
related Javadoc can be found in the Arbortext Editor Help Center. Arbortext
Command Language (ACL) documentation is included in the Help Center, and is
not the focus of the Customizer's Guide.
If you are looking for more general information on programming or scripting
languages, you may want to consult the following resources:

• Thinking in Java, by Bruce Eckel. Published by Prentice Hall PTR.
• Oracle has extensive Java information available at its web site www.oracle.

com/technetwork/java/index.html. The tutorials are especially helpful to
beginners.

• JavaScript: The Definitive Guide, by David Flanagan. Published by O'Reilly
and Associates Inc.

• Mozilla has extensive JavaScript information available at its web site www.
mozilla.org.

• ECMA International (European Computer Manufacturers Association) has the
ECMAScript Language Specification, which is the standard used for
JavaScript, available at its web site www.ecma.ch.

• Microsoft has extensive information about JScript, VBScript, ActiveX
scripting host, and COM available at its web site msdn.microsoft.com.

10 Customizer's Guide

http://java.sun.com
http://java.sun.com
http://www.mozilla.org
http://www.mozilla.org
http://www.ecma.ch
http://msdn.microsoft.com

1
Custom Applications

Overview of Custom Programs and Scripts..12
Description of the Custom Directory Structure ...13
Using the Custom Directory for Custom Applications..24
Description of the Application Directory Structure...25
Using the Application Directory for Custom Applications ...28
Deploying Zipped Customizations...29
Specifying the JavaScript Interpreter Engine ...31

11

Overview of Custom Programs and
Scripts
The Arbortext Editor and Arbortext Publishing Engine installations have directory
structures within them where you can place your custom scripts and programs.
The custom and the application directories are described in the following
sections.

The Custom Directory Structure
The Arbortext-path\custom directory has a subdirectory structure
designed to hold your custom programs and scripts and make them automatically
available during the session. At startup, these subdirectories are searched for Java,
JavaScript, JScript, VBScript, ACL, and composer configuration files. You can
also provide custom document types, entities, fonts, graphics, and native shared
libraries and DLLs. The supported file types are automatically accessed if they
reside in the appropriate subdirectory. Implementing your custom files using this
approach takes advantage of the startup sequence to automatically locate your
custom files. The Arbortext-path\custom directory and its subdirectories
are explained in detail in this chapter.

The Application Directory Structure
The Arbortext-path\application subdirectory can contain custom
applications as well as application software distributed by Arbortext. The
application directory must have one or more uniquely named subdirectories,
each containing a specific configuration file, application.xml, that conforms
to a specific format. At startup, the application directory is searched for
subdirectories and the presence of a valid application.xml file. In the
uniquely named subdirectory, all subdirectories of the custom directory are
supported. The custom application in a application then uses these
subdirectories in the same way as the custom directory structure. You can also
have additional subdirectories needed to support the implementation of this type
of custom application. Implementing your custom application using this approach
takes advantage of the startup sequence, supports delivering a completely self-
contained custom application, and offers the option of setting the conditions for
whether the application should be loaded. The application directory is also
explained in this chapter.

12 Customizer's Guide

Description of the Custom Directory
Structure
When Arbortext Editor or an Arbortext PE sub-process starts, it can access custom
files placed in specific directories. At startup, it automatically looks for compiled
Java files (.class and .jar files), JavaScript, JScript, VBScript, ACL,
document type, publishing configuration and other types of files within the
Arbortext-path\custom directory structure.
You can have one or more custom directories outside the Arbortext-path
install tree. To specify a path list for their locations, set the APTCUSTOM
environment variable. The custom directory must be located using a file system;
HTTP references are not supported.
At startup, some search paths are automatically prepended with the path to a
custom subdirectory. Startup automatically sets some of these search paths using
a symbolic variable as a path specification. You can use symbolic parameters to
represent a search path in the context of the default search path, the location of the
install tree, or the locale.
If a directory supports more than one type of file, the file types are processed in
the following order:

• .acl (Arbortext Command Language) files
• .js (JavaScript or JScript) files
• .class (Java) files
• .vbs (VBScript) files
For each file type, its files are processed in alphabetical order by file name.
The Arbortext-path\custom directory is processed at startup. If you add
custom applications and document types after startup, they're not recognized
during the session. If you're using Arbortext Editor, it needs to be closed and
restarted. If you're using Arbortext Publishing Engine, you need to stop and restart
the Arbortext Publishing Engine to re-initialize the Arbortext PE sub-processes.

custom.xml File
At the top level of the custom directory is the custom.xml file. Following is
the default version of this file:
<?xml version="1.0" encoding="UTF-8"?>
<!--Arbortext, Inc., 1988-2009, v.4002-->
<ApplicationConfiguration
xmlns="http://www.arbortext.com/namespace/doctypes/appcfg">
<Information>
<!--The following name will be shown in the New dialog
as the category for all document types in this
custom directory that do not specify a category.-->

Custom Applications 13

help5056.html
help5056.html
help2031.html

<Name>Custom Directory Name</Name>
</Information>
</ApplicationConfiguration>

This file is only used when you have a custom document type in the custom\
doctypes subdirectory, and you have not designated a category name for the
document type in the associated document type configuration (.dcf) file’s
NewDialog element. In this case, the name in the custom.xml file’s Name
element is used as the Category name for the document type(s) in the custom\
doctypes subdirectory in the New Document dialog box.

Subdirectory Structure
The following list describes each custom subdirectory and how it's used.
Arbortext Editor and Arbortext Publishing Engine look in these directories for any
references that use a relative path or have no specified path.

• classes subdirectory

Holds compiled Java .class and .jar files.

TheArbortext Editor and Arbortext Publishing Engine JVM Java class path
holds a list of directories and paths to .jar files. Any files matching *.jar
are prepended to the JVM Java class path. Then the classes parent
directory is prepended, putting it first in the JVM Java class path.

In cases where a class file occurs in more than one .jar file, you can extract
the preferred .class file from its .jar file and place it in a subdirectory
path of the classes directory to control which one takes precedent.

• composer subdirectory

Holds publishing configuration files (.ccf, .ent, and .xml files) and can
support a catalog file. Supports one level of subdirectories.

The default path is Arbortext-path\composer. If there are any
subdirectories of the custom\composer directory, those subdirectories are
prepended to the publishing configuration path. Then the custom\
composer parent directory is prepended to the path. If the custom\
composer directory contains a catalog file, that directory is also
prepended to the catalog path.

• datamerge subdirectory

Holds data merge configuration (.dmf) files specifying queries and their
components. The .dmf file structure is discussed in the Customizer's Guide.

• dialogs subdirectory

Holds dialog files that can be accessed from custom applications, such as one
that uses the AOM Application.createDialogFromFile method.

14 Customizer's Guide

The Arbortext-path\samples\XUI\preferences\pref_
exts.zip contains a sample application that adds a tab to the Preferences
window as a way to extend preferences for custom applications. Refer to the
readme.txt file for more information.

If there are any subdirectories of the custom\dialogs directory, those
subdirectories are prepended to the dialog path. Then the custom\dialogs
parent directory is prepended to the dialog path.

• ditarefs subdirectory

Holds content referenced by DITA documents when the reference is not
specified as either an absolute path name or a path name relative to the current
document directory. For example, the ditarefs subdirectory could hold
content referenced by topic references, content references, and so forth.
Supports one level of subdirectories.

The default DITA reference path is Arbortext-path\ditarefs. The
DITA references path can be set in the File Locations category of the Tools ▶▶
Preferences dialog box. You can also use the set ditapath option or the
APTDITAPATH environment variable to set the default path for DITA
references. If there are any subdirectories of the custom\ditarefs
directory, those subdirectories are prepended to the path. Then the custom\
ditarefs parent directory is prepended to the path.

Note
Graphic references from DITA documents are resolved using the graphics
path list.

• dictionaries subdirectory

Holds user-defined dictionary files that can be used by the spelling checker.
Supports one level of subdirectories.

The default path is Arbortext-path\lib\proximity\userdict. If
there are any subdirectories of the custom\dictionaries directory,
those subdirectories are prepended to the dictionary path. Then the custom\
dictionaries parent directory is prepended to the dictionary path.

• doctypes subdirectory

Holds a custom catalog file and document type files. Supports one level of
subdirectories. Each document type should reside in a uniquely named
subdirectory of doctypes. The subdirectory should also contain a catalog
file for the custom document type. A doctypes subdirectory can also
contain a subset of the complete document type file set. You can place a

Custom Applications 15

help6488.html
help6487.html

document type configuration file .dcf or stylesheets in a \custom\
doctypes\doctype directory.

You can add a stylesheet to the list of stylesheets that displays when you make
a publishing request using one of the File ▶▶ Publish choices. Arbortext Editor
and Arbortext Publishing Engine search each \custom\doctypes\
doctype directory and aggregate the list of stylesheets. For example, you
can add stylesheets for the asdocbook built-in document type (asdocbook)
by placing them in Arbortext-path\custom\doctypes\
asdocbook.

If a document does not specify an Editor view stylesheet with a stylesheet
association PI, Arbortext Editor will first search first the document directory,
then the relevant \custom\doctypes\doctype directory, and finally the
original location for the doctype directory.

If the subdirectory contains only a .dcf file, it must conform to a naming
convention that expects the subdirectory and .dcf file name to reflect the
base document type name. For example, you could customize the default
asdocbook asdocbook.dcf file, and put it in Arbortext-path\
custom\doctypes\asdocbook\asdocbook.dcf to override the
built-in .dcf. Note that the document type subdirectory and file name must
be the same as the default document type name for Arbortext Editor and
Arbortext Publishing Engine to find all the relevant document type files.

A DCF file can reference other files, such as the .pcf, demo.xml, and
template.xml files. Custom versions of these files can be placed with the
.dcf in \custom\doctypes\doctype. If Arbortext Editor and
Arbortext Publishing Engine find a .dcf in the \custom\doctypes\
doctype location, relative path references are resolved by first searching the
same directory as the .dcf and then by searching the document type directory
in the original location.

The default catalog path is Arbortext-path\doctypes. If there are any
subdirectories of the custom\doctypes directory that contain a catalog
file, those subdirectories are prepended to the catalog path. Then the
custom\doctypes parent directory is prepended to the catalog path.

You can place custom tag template files (.tpl) in a custom\doctypes\
doctype\tagtemplates directory. The custom\tagtemplates
directory can also be used as a more generally available location for tag
templates.

Any document type from the custom\doctypes directory is also added to
the list of available document types that are displayed in the File ▶▶ New dialog
box.

• entities subdirectory

16 Customizer's Guide

Holds file entities. Supports one level of subdirectories.

A file entity is any structurally complete document unit saved as a file. File
entities commonly have an .xml file extension.

The default entity path is Arbortext-path\entities. If there are any
subdirectories of the custom\entities directory, those subdirectories are
prepended to the entity path. Then the custom\entities parent directory
is prepended to the entities path.

• fonts subdirectory

Holds custom AFM or TFM font metric files (.afm and .tfm).

The default fonts path is Arbortext-path\fonts. If there are fonts in
custom\fonts, the path is prepended. If the APTTEXFONTS environment
variable is set, the custom\fonts directory is prepended to it.

• formats subdirectory

Holds custom PubTex format files (.fmt).

The default PubTex format path is Arbortext-path\formats. If there
are .fmt files in custom\formats, the path is prepended. If the
APTTEXFMTS environment variable is set, the custom\formats directory
is prepended to it.

• framesets subdirectory

Holds custom framesets for Publish ▶▶ For Web. Supports one level of
subdirectories. Framesets are defined in the document type configuration file.

The default frameset path is Arbortext-path\framesets. If there are
any subdirectories of the custom\framesets directory, those
subdirectories are prepended to the framesets path. Then the custom\
framesets parent directory is prepended to the frameset path.

• graphics subdirectory

Holds graphic files. Supports one level of subdirectories.

The default graphics path is Arbortext-path\graphics. If there are
any subdirectories of the custom\graphics directory, those subdirectories
are prepended to the graphics path. Then the custom\graphics parent
directory is prepended to the graphics path.

• importexport subdirectory

Holds Arbortext Import/Export Import project files.
• inputs subdirectory

Holds source files for custom macros, program fixes, or other customizations
in a custom.tmx. Refer to Using .tmx files for more information.

Custom Applications 17

help13030.html
help769.html
help5040.html
help6923.html
help10085.html

Document type and document .tmx files can be placed in the custom\
doctypes directory.

Also holds .tex files and source files for hyphenation exception and pattern
rules in .exc and .pat files.

The default source path is Arbortext-path\inputs. Then the
Arbortext-path\custom\inputs directory is prepended to it.

• lib subdirectory

Holds custom versions of the .pdfcf PDF configuration file. The default
path for .pdfcf files is Arbortext-path\lib. Then the Arbortext-
path\custom\lib directory is prepended to it. For more information on
creating .pdfcf files, refer to the Customizer's Guide.

In addition, the lib subdirectory can hold .wcf files for custom window
classes. For more information on creating .wcf files for window classes, refer
to the Creating custom window class preferences files in the Arbortext Editor
help.

The lib subdirectory can also hold custom versions of the following files:

charent.cf

charmap.cf

installprefs.acl

prted.pro

pubview.cf

pubview.fnt

tfmfont.cf

tfmscaling.cf

tfontsub.cf

wcharset.cf

wfontsub.cf

xcharset.cf

xfontsub.cf

You can specify more than one charent.cf file, as the effects are
cumulative. Refer to the Setting paths for new character set files and
APTCUSTOM environment variable topics in the online help for more
information.

18 Customizer's Guide

The custom\lib directory also has locale\locale-name
subdirectories. The default path is the appropriate locale subdirectory of
Arbortext-path\lib\locale. The locale-specific subdirectory of the
custom\lib\locale directory is prepended to the default locale path.

The locale\locale-name can hold custom versions of the .pdfcf PDF
configuration file. For more information on creating .pdfcf files, refer to the
Customizer's Guide.

Each locale\locale-name directory can hold custom versions of the
following files:

charent.cf

installprefs.acl

ixlang.cf

pubview.cf

pubview.fnt

tfmfont.cf

tfmscaling.cf

tfontsub.cf

wcharset.cf

wfontsub.cf

xcharset.cf

xfontsub.cf

The custom\lib directory also has a subdirectory to hold native shared
libraries for platform-specific use:

○ dll

Holds Windows dynamic link libraries, or DLL files (.dll).

The path to this directory is prepended to the system PATH environment
variable.

The custom\lib directory can have an ixlang subdirectory, which holds
a custom ixlang.cf file and index mapping files like those found in
Arbortext-path\lib\ixlang.

• publishingrules subdirectory

Holds publishing rules .prcf files which contain definitions of publishing
rules and publishing rule sets.

• pubview subdirectory

Custom Applications 19

Holds pubview.cf and pubview.fnt files.

The default path is Arbortext-path\pubview. Then the Arbortext-
path\custom\pubview directory is prepended to it.

• scripts subdirectory

Holds .acl (Arbortext Command Language), .vbs (VBScript), and .js
(JavaScript and JScript) files. Supports one level of subdirectories.

The scripts in this directory can be called from scripts or applications in the
custom\init directory, which is processed at startup time. Scripts placed
here can be accessed using the source or require ACL commands. A
customized menu item or button can call a script in custom\scripts when
invoked.

If there are any subdirectories of the custom\scripts directory, those
subdirectories are prepended to the load path. Then the custom\scripts
parent directory is prepended to the load path.

• stylermodules subdirectory

Holds Arbortext Styler stylesheet modules. Any modules stored in this
directory are automatically available to Arbortext Styler.

• tagtemplates subdirectory

Holds .tpl files. You can also put custom tag templates you want associated
with a particular document type into a custom\doctypes\doctype\
tagtemplates directory or in the original location of the document type's
doctype\tagtemplates directory.

If the user clicks the New button from the Tag Templates dialog box, Arbortext
Editor will use the first directory with write access for that user in the tag
template path.

If the APTTAGTPLDIR environment variable is set, this path is prepended to
it.

• init subdirectory

Holds .acl, .js, .class, and .vbs files.

The init subdirectory is processed last at startup time. All files of the
supported application types are executed. No nested subdirectories of
custom\init are supported. This directory is processed after the other
Arbortext-path\custom subdirectories so that its scripts and
applications can rely on paths already established during startup.

If you are putting custom applications on the Arbortext PE server, use the
init directory for your custom .acl, .js, .class files.

20 Customizer's Guide

help9049.html
help7998.html
help497.html

In the startup process, the custom\init directory is processed after
_main.acl but before arbortext.wcf. See the online help topic Startup
command files for complete startup processing information.

The supported application types are:

○ .acl (Arbortext Command Language) files

Errors are reported to Arbortext Editor or recorded by Arbortext
Publishing Engine to be sent to its HTTP client.

○ .js (JavaScript or JScript) files

Errors are reported to Arbortext Editor or recorded by Arbortext
Publishing Engine to be sent to its HTTP clients. You need to specify the
JavaScript interpreter engine to use in processing .js files. Refer to
Specifying the JavaScript Interpreter Engine on page 31 for more
information.

○ .class (Java) files

Java .class files in this directory must be compiled Java classes that are
not part of a named package. You can also put a .class file in custom\
init that calls into a .jar file located in the custom\classes
directory.

The Java class must also implement a public static void
main(String[] args) method, which will be called with an empty
string array. If the .class file does not implement this method, an error
is reported to Arbortext Editor or recorded by Arbortext Publishing Engine
to be sent to its HTTP client.

○ .vbs (VBScript) files

Errors are reported to Arbortext Editor.
• editinit subdirectory

Holds .acl, .js, .class, and .vbs files. Note that when you run
Arbortext Editor with the -c option, any applications in this subdirectory are
not executed at startup.

All files of the supported application types are executed each time a non-
ASCII document is opened for editing. Files in this directory act on a
document opened in the Edit window. File in this directory act on a document
opened using ACL when the 0x8000 flag is used with the doc_open
function. File in this directory act on a document opened using AOM when the
OPEN_EDITINIT flag is used with the Application.openDocument method.

The editinit subdirectory is processed before any document type
command files, document type instance command files, and document
command files.

Custom Applications 21

The supported application types are:

○ .acl (Arbortext Command Language) files

Errors will be reported if the interface is running interactively, otherwise
they will be suppressed.

○ .js (JavaScript or JScript) files

Errors will be reported if the interface is running interactively, otherwise
they will be suppressed.

○ .class (Java) files

Java .class files in this directory must be compiled Java classes that are
not part of a named package. The Java class must also implement a
public static void main(String[] args) method, which is
called with an empty string array. You can put a .class file in custom\
init that calls into a .jar file located in the custom\classes
directory. Errors will be reported if the interface is running interactively,
otherwise they will be suppressed.

○ .vbs (VBScript) files

Errors will be reported if the interface is running interactively, otherwise
they will be suppressed.

Error Reporting for the custom\init Directory
Errors caused by mistakes in custom code in the Arbortext-path\custom\
init directory are reported with both the error message and the name of the
initialization file causing the error. Note the following:

• If Arbortext Editor is not running interactively (batch mode), no errors are
reported and the errors are not logged.

• Arbortext Publishing Engine records errors and reports them to its HTTP
clients in an HTML error page.

• ACL, JavaScript, and Java class errors are reported to the Arbortext Editor
interface or held by Arbortext Publishing Engine to be sent to HTTP clients
making requests.

Additional Information
If you are using the AOM, refer to the documentation for
Application.getCustomDirectory. Refer to XUI Overview on page 116
for information on extending the Arbortext Editor Preferences dialog box for your
custom application.

22 Customizer's Guide

The following set command options and environment variables affect custom
path search lists. They are documented in the online help.

set catalogpath

set composerpath

set dialogspath

set ditapath

set entitypath

set framesetpath

set graphicspath

set javaclasspath

set libpath

set loadpath

set pdfconfigfile

set tagtemplatepath

set userdictpath

Related Topics
• Using the custom directory for custom applications on page 24
• Description of the application directory structure on page 25
• Startup command files
• The following set command options and environment variables affect

custom path search lists:

○ set catalogpath

○ set composerpath

○ set dialogspath

○ set ditapath

○ set entitypath

○ set framesetpath

○ set graphicspath

○ set javaclasspath

○ set libpath

○ set loadpath

Custom Applications 23

help5716.html

○ set pdfconfigfile

○ set tagtemplatepath

○ set userdictpath

○ APTTEXFONTS environment variable
For information on creating and implementing custom applications, see the
Programmer's Reference and the Customizer's Guide.
If you are using the AOM, refer to the documentation in the Programmer's
Reference for Application.getCustomDirectory.
Refer to XUI Overview on page 116 for information on extending the Arbortext
Editor Preferences dialog box for your custom application.

Using the Custom Directory for Custom
Applications
The Arbortext-path\custom subdirectory structure provides the means to
implement custom applications. Where your application should be placed depends
on the application purpose and programming language.
If you're implementing custom applications or scripts, the following information
will assist you in determining the approach and location for your files:

• A custom Java program can be placed in custom\init, which supports a
.class file that must implement a public static void main
(String[] args) method. The method will be called at startup with no
arguments (an empty String array). If an error occurs, it's reported
interactively for Arbortext Editor or sent to the HTTP client for the Arbortext
Publishing Engine.

A custom Java program can also be placed in custom\classes, which
supports .class or .jar files.

We recommend putting Java applications in the custom\classes directory
and calling or initializing them from the custom\init directory.

Paths to .jar files in custom\classes are automatically prepended to the
embedded Arbortext Editor Java class path. Then the path to custom\
classes is prepended, putting it first in the search order.

• A custom JavaScript, JScript, VBScript, or ACL application can be placed in
custom\init or in custom\scripts. If you place your scripts in the
custom\scripts directory, you can call them from a script or scripts you
place in custom\init (which is processed at startup). Any code that exists
outside a function definition in a script from custom\init is executed at

24 Customizer's Guide

startup time. Errors are reported if running interactively, otherwise they're
suppressed.

You can create a simple JavaScript example file called simple_init.js. The
script should contain the following line:
Application.alert("Hello from JavaScript");

Put the simple_init.js file in Arbortext-path\custom\init.
When the startup process loads scripts from custom\init, you will see a dialog
box showing the Hello from JavaScript message.

Description of the Application Directory
Structure
The Arbortext-path\application subdirectory supports installing an
application into the Arbortext Editor and Arbortext Publishing Engine install
trees. Arbortext Editor and the Arbortext Publishing Engine automatically search
for subdirectories of the application directory at startup.
Arbortext-path\application must contain a uniquely named
subdirectory for each distributed application. Arbortext recommends using the
naming pattern for a unique qualified Java class name:
com.company-name.application-name

Each unique subdirectory of the application directory must also contain an
application.xml configuration file which describes various aspects of the
application, such as its release version and supported versions of Arbortext
products. At startup, Arbortext Editor and the Arbortext Publishing Engine search
the application directory for any subdirectories containing an
application.xml configuration file. The application.xml file contents
provide the criteria to determine whether the application should be loaded. The
application directory must be located using a file system; HTTP references
are not supported.

Subdirectory Structure
A subdirectory of the application directory can be structured the same as the
custom directory to take advantage of automatic Arbortext Editor and Arbortext
Publishing Engine startup processes. For example, if the uniquely named directory
contains graphics or entities directories, those directories are
automatically added to the search paths constructed at startup.
An application path could be something like:
application\com.company-name.application-name

Refer to the Description of the custom directory structure on page 13 for the
names and descriptions of each supported subdirectory.

Custom Applications 25

Note
When Arbortext Editor or the Arbortext Publishing Engine constructs search
paths, subdirectories of the custom directory take precedence over any
corresponding subdirectories under the application directory. When
search lists are constructed at startup, the first path in any search list will be
the appropriate custom directory followed by any applicable directory under
the application directory. For example, in constructing the graphics
search path list at startup, custom\graphics would precede
application\com.arbortext.sample\graphics. An
application\graphics directory with no application.xml file
will be ignored during startup.

When implementing a custom application using the application directory
structure, you can add supplemental directories as needed to support your
application. However, your application code must be aware of these directories
and how to use them.

Application Startup File
The Arbortext-path\doctypes\appcfg\application.xml file
provides a basic template for defining information about the custom application.
You can make a copy of doctypes\appcfg\application.xml to use as a
template to create the file that will eventually be distributed with the application.
The application.xml file must be placed in the application's top level
directory, for example:
Arbortext-path\application\com.company.application-package-name\application.xml

In the template application.xml file, you can specify a list of elements that
describe the application. If the custom application determines its criteria is not met
and the application is not to be loaded, then these values are ignored. The base
element for the file is the ApplicationConfiguration element. This
element has a required attribute called installType that determines the type of
Arbortext Editor installation for which this application is supported. The default
value is any meaning the application is supported in both the full and compact
installations of Arbortext Editor. The other supported value is full meaning the
application is only supported in the full installation of Arbortext Editor.
The following other elements are supported in the application.xml file:

• Name (required)
• Description

• LicenseNumber is only for an application distributed by Arbortext
• Version (required)

26 Customizer's Guide

• Date

• Copyright

• Vendor

• RequiredApplications is for other applications that are required for
this application to run correctly. You must enter the qualified name for the
application in the qualifiedName attribute and a human-readable name in the
name attribute.

• SupportedProducts

A Product element has attributes for specifying the name (required),
minimum version (required), and maximum version of the Arbortext product
that supports the custom application or application. The Product
specification helps the launching Arbortext product determine whether it
should load this custom application by matching criteria specified in this
section.

The name must be one or more of the following:

○ Arbortext Editor
○ Arbortext Publishing Engine
○ Arbortext Architect
○ Arbortext Editor with Styler

The version must follow the convention used by Arbortext products, such as
5.2, 5.2 M040, or 5.3.

• SupportedPlatforms

The section is reserved for future use. Windows is currently the only supported
platform.

• GlobalParameters

Parameter contains ParameterName and ParameterValue elements
for specifying any global variables that the application may need when it's
launched.

Related Topics
If you are using ACL, refer to the following ACL function descriptions:

• application_name function

• get_custom_dir function

• get_custom_property function

Custom Applications 27

help10017.html
help10019.html
help10020.html

• get_user_property function

• set_user_property function

If you are using the AOM, refer to the documentation for
Application.getCustomDirectory. Refer to XUI Overview on page 116
for information on extending the Arbortext Editor Preferences dialog box for your
custom application.
The following attributes from the Application interface are also useful:

• haveWindows

• initDone

• isE3

• customProperties

• userProperties

• name

Using the Application Directory for
Custom Applications
The Arbortext-path\application subdirectory provides the means to
implement a custom application that uses a special configuration file to determine
whether it should be loaded at startup. The application directory uses the
same principles of structure as the custom directory.
The Arbortext-path\application directory is processed at startup. If
you add a custom application after startup, you must exit and restart Arbortext
Editor or stop and restart the Arbortext Publishing Engine to have it recognized.
You also have the option to issue the f=init function to re-initialize the
Arbortext PE sub-processes. Refer to Configuration Guide for Arbortext
Publishing Engine for more information.
Rules for using the application directory are:

• Your custom application must be contained in a uniquely named subdirectory
of the application directory.

• You must have an application.xml configuration file in the uniquely
named subdirectory that sets the conditions for loading the application.

• The same set of subdirectories supported by the custom directory are
supported for the uniquely named subdirectory of the application

28 Customizer's Guide

help10021.html
help10022.html

directory. At startup, the supported directories are automatically detected and
used in constructing search paths.

• Any other subdirectory of the application directory will be ignored at
startup. For example, an application\graphics subdirectory with no
application.xml file will be ignored during startup.

Arbortext has developed proprietary custom applications that are deployed using
the application subdirectory structure. A uniquely named subdirectory
contains all the necessary components to run an application within Arbortext
Editor as well as the Arbortext Publishing Engine.
The following information will help determine an approach for a custom
application.

• You can have additional subdirectories for your custom application. You are
not limited to the subdirectories supported by the custom directory.
However, these additional directories are not automatically recognized during
the startup process.

• Processing each unique application's subdirectories follows the same rules for
processing custom subdirectories. Recall that the application's subdirectories
come after the custom subdirectories in constructing any applicable search
paths for the session.

• If you decide not to use a particular supported subdirectory, you can improve
performance by omitting the directory to reduce the length of a search path
that would contain it.

• You can use the APTAPPLICATION environment variable to set the path to
one or more application directories.

• An application should not write data to its own application directory. An
application user may not have write permission access to this application
directory, for example, any C:\Program Files directories on Windows
(the location where Arbortext Editor and the Arbortext Publishing Engine are
typically installed).

Deploying Zipped Customizations
You can deploy not only custom directories, but also application and
content management system adapters directories in a compressed zip file. Using a
zip file to distribute your customizations has the following advantages:

• You can host your customizations on a web server.

Custom Applications 29

help6190.html

In this case, use the HTTP or HTTPS URL to the zip file as the value for the
APTCUSTOM environment variable.

• Your customizations will be available to users when they cannot access your
network.

If you use a shared network folder to host your customizations, users do not
have access to those customizations when the network is unavailable. If you
use a zip file to distribute your customizations, Arbortext Editor unzips those
customizations to a directory in the Arbortext Editor cache directory
(.aptcache\zc). At start up, Arbortext Editor checks to see whether the
zip file has been updated. If it has, Arbortext Editor downloads and
uncompresses the updated customizations. If not, Arbortext Editor continues
to use the customizations stored in the local cache. If the network is
unavailable to a user, your customizations are still available to that user in the
local cache. Note that the user must also have a fixed Arbortext Editor license
on their system to work away from the network.

• Network traffic might be reduced.

Since the zip file containing your customizations is only downloaded once
over the network, and then only if it has been updated, traffic on your network
might be reduced. If you store your unzipped customizations in a shared
network folder, Arbortext Editor might have to access that folder several times
over the course of a session.

• Customizations stored in a compressed zip file are harder to change
accidentally than customizations stored in a directory structure.

Note that you cannot use a zip file to distribute a customized
installprefs.acl in the custom\lib directory. You can use the
APTINSTALLPREFS environment variable to specify the location of a custom
installprefs.acl file.
Note also that you cannot include the following font configuration files in the lib
subdirectory of a zipped custom directory:

• charent.cf

• wcharent.cf

• wfontsub.cf

• charmap.cf

These files are processed before a zipped custom directory when Arbortext
Editor starts up, so the files cannot be processed when deployed in that way.

30 Customizer's Guide

Specifying the JavaScript Interpreter
Engine
Both JavaScript and JScript files have a .js file extension. By default, Arbortext
Editor and the Arbortext Publishing Engine interpret .js files as Rhino
JavaScript files. You should specify the JavaScript interpreter for a JavaScript or
JScript .js file. This is especially important if you have .js files of both types.
We recommend adding a comment line to your script that specifies either the
Rhino JavaScript engine (the default) or the Microsoft JScript engine as shown in
the following examples. The first line of your .js file must be a comment
starting with //.
To specify the Rhino JavaScript interpreter:
// type="text/javascript"

To specify the Microsoft JScript interpreter:
// type="application/jscript"

The specification can be enclosed in a script tag. Both of the following examples
are a valid specification for JScript:
// <script type="application/jscript">
// type="application/jscript"

You can also specify the JavaScript interpreter using the ACL set
javascriptinterpreter command. You can specify it in an ACL file
placed in the Arbortext-path\custom\init directory, where it will be
processed at startup. For information on setting the interpreter using ACL, see the
online help topic for set javascriptinterpreter.

Custom Applications 31

2
Customizing Your Site's Profiling

Configuration
Customizing Your Site's Profiling Configuration..34
Profiling Overview ...34
.pcf (Profile Configuration File) ...35
Configuring Profiles ...36
Profiling API..41
Profiling DTD Element Reference ...46

33

Customizing Your Site's Profiling
Configuration
Profiling sections of documents let you designate that certain sections contain
information targeted at a specific audience or contain information that only applies
when a particular set of circumstances exists. This chapter describes how to
configure profiling specific to your site’s needs.

Profiling Overview
Profiling is a means to provide specific content for a selected audience or for a
specific application. Using profiling, authors can include all document variations
in one file, and use profiles to control what elements appear in published versions
of a document. By comparing the selected audience with each element's audience
profile, Arbortext Editor strips out irrelevant content and assembles a custom
publication.
Individual profiles specify that content can have one or more than one profile of a
particular class. Classes may contain standard and unique profiles.

• Standard individual profiles apply one or more profiles in a class to an
element.

• Unique individual profiles apply one and only one profile in a class to an
element.

Two types of profile groups exist. Apply profile groups specify a collection of
individual profiles defined as a named profile group an author can apply to an
element in a single step. Set profile groups specify a collection of individual
profiles an author can choose at publishing time in a single step.
Authors apply profile values to elements at editing time by setting certain element
attributes to specific values as defined in profile configuration (.pcf) files.
Individual document types reference the .pcf file containing the profiling
definitions defined for the document type. Multiple document types can reference
a single .pcf file.
You can configure colored shading to differentiate between profile, profile groups,
or individual values. Refer to Using shading for profiled elements for further
information.

34 Customizer's Guide

help27680.html

.pcf (Profile Configuration File)
A profile configuration file (.pcf) is an XML document specifying profile values
that can be applied to any elements (or a limited number of elements) in a
document type. A document type's .dcf file specifies the .pcf file to use for the
document type's profiling configuration. Several document types can use the same
.pcf file for their profiling configurations.
A .pcf file has the following structure:

• A top-level <Profiles> element contains all of the <ProfileClasses>
elements in the configuration file.

• <ProfileClasses> elements define the profile classes of related
individual profiles and groups of individual profiles for applying at editing
time and setting at publishing time. <ProfileClasses> elements contain
the <Profile>, <ApplyProfileGroup>, and <SetProfileGroup>
elements.

If you are working with profile shading, you can set a value for the
conflictShadingBackground attribute for a <ProfileClasses> element to
provide a conflict color. This color will be applied to an element in a
document if it has been assigned multiple profile values, each configured with
different shading colors.

Note
Although it is possible to specify a conflict color on any
<ProfileClasses> element in the profile configuration file (.pcf),
the color must be defined on the first <ProfileClasses> element to
be effective.

• <Profile> elements define individual profiles that authors can apply to
elements at editing time and select to produce profiled output. With the
<Profile> element, you can specify:

○ The specific elements to which the profile is restricted
○ The specific elements from which the profile is restricted
○ Sub classes, or folders, of related profiles
○ Allowed values for the profile
○ That the profile is restricted to one and only one profile value
○ Shading colors

Customizing Your Site's Profiling Configuration 35

Set the shadingBackground attribute for the whole profile (Profile
element), a profile sub-category (ProfileFolder child element), or a
profile’s individual values (Allowed child element)

• <ApplyProfileGroup> elements specify groupings of individual profiles
the author can apply to elements at editing time.

• <SetProfileGroup> elements specify groupings of individual profiles the
author can set at publishing time. Individual profiles can be included and
excluded using logical expressions.

Configuring Profiles
This section covers the profile configuration process and provides examples of
profile configurations.

Configuration Process
Before actually configuring your profiling, determine the proper profiles to create
for your site. Consider the following items:

• Create profiles so that your biggest possible audience does not require that any
profiles are applied. This will cut down on the time needed to profile a
document.

• Determine whether it will be more work to profile a document to include
elements or exclude elements. It may create less work for authors if you create
a NOT Model 123 profile instead of a Model 123 profile.

• Avoid creating profiles that are subsets of one another. For example, in the
Security profile class, do not create a general Employees profile and
specific Managers and Trainees profiles. This may cause problems for
those applying the profiles. Instead of creating the general Employees
profile, create the Managers and Trainees profiles.

Use the following procedures to create or update a profiling configuration file.

Specifying the .pcf File to Use
1. Using Arbortext Architect or Arbortext Editor, open the .dcf file of the

document type for which you want to configure profiles.
2. Locate the Profiling element. If the file doesn't include a Profiling

element, add one.
3. Place your cursor next to the Profiling element and choose Edit ▶▶Modify

Attributes. Enter the name of the .pcf file containing the profiling
configuration you want to use with this document type and choose OK. (If the

36 Customizer's Guide

.pcf file is not in the same directory as the .dcf file, enter the full path and
file name of the .pcf file.)

4. Save the document and close Arbortext Architect or Arbortext Editor.

Configuring the Profiles
1. Using Arbortext Architect or Arbortext Editor, open the .pcf file in which

you want to configure profiles.
2. If this is a new (empty) .pcf file, add the top-level Profiles element.
3. Profiles are categorized within ProfileClasses elements that define the

profiles elements can have. Create a new ProfileClasses element. A
child Profile element is automatically created and you are prompted to edit
the Profile element's attributes. (You must have the Edit ▶▶ Force Required
Attributes Entry preference selected for the Modify Attributes dialog box to
open automatically.)

4. Type a descriptive name for the attribute in the alias field. This is the profile
name that will appear in Arbortext Editor profiling dialog boxes for assigning
profiles and publishing documents.

5. Type a valid attribute name in the attribute field. You must specify a common
attribute that can appear on every element in the DTD, and it must have a
declared value of CDATA.

6. Choose OK to create the profile.
7. Define the allowed values this profile can have by placing the cursor next to

the Profile element and inserting a child Allowed element and value
attribute for each possible value.For example, if you specified the os attribute
of the Profile element, you might want to specify values of Windows and
UNIX for the value attributes of two Allowed elements.

8. Repeat the previous steps to configure additional profile classes.
9. When you've completed adding profiles to the configuration file, save and

close the .pcf file.

Configuring Profile Shading
1. Using Arbortext Architect or Arbortext Editor, open the .pcf file in which

you want to configure profiles.
2. Locate the Profile element for which you wish to set shading. You can

choose to set a shading color for the whole profile (Profile element), a
profile sub-category (ProfileFolder child element), or for a profile’s
individual values (Allowed child element).

3. Place your cursor next to the element for which you wish to set shading, and
choose Edit ▶▶ Modify Attributes.

Customizing Your Site's Profiling Configuration 37

4. In the Modify Attributes dialog box, select a color value for the
shadingBackground attribute.

5. Choose OK to exit the dialog box.
6. Locate the ProfileClasses element for which you wish to provide a

conflict color.This color will be applied to an element in a document if it has
been assigned two profile values, each configured with different shading
colors.

Note
Although it is possible to specify a conflict color on any
<ProfileClasses> element in the profile configuration file (.pcf),
the color must be defined on the first <ProfileClasses> element to
be effective.

7. Choose Edit ▶▶ Modify Attributes. In the Modify Attributes dialog box, select a
color value for the conflictShadingBackground attribute.

8. Choose OK to exit the dialog box.
9. When you've finished configuring profile shading, save and close the .pcf

file.

Profiling Configuration Examples
A sample .pcf file accompanies the sample axdocbook template. The .pcf file
is stored at Arbortext-path\doctypes\axdocbook\axdocbook.pcf.
Several of the following examples are included in axdocbook.pcf.

Nesting Profiles
Profile classes can contain folders containing more folders and profiles. Using
such a structure provides a categorization of related profiles. In this example,
several Windows platforms are categorized in a parent Windows folder.

38 Customizer's Guide

Example of nested profiles in the Apply Profiles dialog box.
This profiling configuration is created with the following markup:
<Profile attribute="os" alias="Operating System">
<ProfileFolder name="Windows">
<Allowed value="Windows XP"/>
<Allowed value="Windows 2000"/>
<Allowed value="Windows Server 2003"/>
</ProfileFolder>
<Allowed value="Unix"/>
</Profile>

Restricting Profiles to or from Specific Elements
By restricting profiling to only certain elements, you can ensure that information
is always included or included in only certain circumstances. In this example, if
the toc element has a role attribute set to the value required, the element
cannot be profiled by the users level of expertise. This ensures that the Table of
Contents is always included when the document is published. If the user attempts
to profile a toc element with its role attribute set to the value required, the
profiles will be unavailable:

Example of restricted profile values.
This profiling configuration is created with the following markup:
<Profile attribute="userlevel" alias="User Level">
<NotProfileElement element="toc">
<AttributeTest name="role" value="required"/>
</NotProfileElement>
<RadioChoice>
<Allowed value="Novice"/>
<Allowed value="Typical"/>
<Allowed value="Expert"/>
</RadioChoice>

Customizing Your Site's Profiling Configuration 39

</Profile>

Using Logical Expressions when Configuring Profiles
Set profile groups define a collection of individual profiles an author can choose
at publishing time in a single step. When creating set profile groups, you can use
logical expressions to specify publishing that is dependant on profile value
relationships. When using logical expressions, ensure that the names assigned to
the SetProfileGroup elements clearly communicate to the user the profiles that
will be published.
In this example, different user levels are grouped. Elements profiled for all of the
user levels represented by the selected group will be published.

Example of set profile groups.
This profiling configuration is created with the following markup:
<SetProfileGroup name="Novice and Typical User Levels">
<LogicalExpression>
<LogicalGroup operator="OR">
<ProfileRef alias="User Level" value="Novice"/>
<ProfileRef alias="User Level" value="Typical"/>
</LogicalGroup>
</LogicalExpression>
</SetProfileGroup>
<SetProfileGroup name="Expert and Typical User Levels">
<LogicalExpression>
<LogicalGroup operator="OR">
<ProfileRef alias="User Level" value="Expert"/>
<ProfileRef alias="User Level" value="Typical"/>
</LogicalGroup>
</LogicalExpression>
</SetProfileGroup>
<SetProfileGroup name="Typical Windows Customer">
<LogicalExpression>
<LogicalGroup operator="AND">
<ProfileRef alias="User Level" value="Typical"/>
<LogicalGroup operator="OR">
<ProfileRef alias="Operating System" value="Windows XP"/>
<ProfileRef alias="Operating System" value="Windows 2000"/>

40 Customizer's Guide

<ProfileRef alias="Operating System" value="Windows Server 2003"/>
</LogicalGroup>
<ProfileRef alias="Security Level" value="Customer"/>
</LogicalGroup>
</LogicalExpression>
</SetProfileGroup>

Profiling API
Profiles are organized into folders and sub-folders containing one or more profile
values. You can visualize the resulting structure as a tree of information, with each
profile (along with its folders, sub-folders, and allowed values) being a branch of
the tree. Each folder, sub-folder, or value is considered to be a node (or
profilenode) on the tree. The profile tree is a hierarchical structure containing
profilenode objects and branches that link the different profilenodes
with each other. Each branch has a top-level root node with sub-folder nodes (if
any) and value nodes that represent the leaves of the tree.
The profiling API consists of ACL functions that walk a profile tree and traverse
the profilenodes to determine the following information:

• The different properties of each profilenode. (For example, to determine
the type of node the profilenodeis.

• Relative location information about the profilenode such as the node's
ancestors, children, and so on.

A profilenode can be one of the following types:

• STANDARD_PROFILE, RADIO_PROFILE or FOLDERED_PROFILE —
The type assigned to the top-level (root) profilenode.

A profile is of type RADIO_PROFILE if takes on radio choices as allowed
values (unique profiles). A profile is of type FOLDERED_PROFILE if it
contains folders. Otherwise, the profile is of type STANDARD_PROFILE.

• PROFILE_FOLDER
• ALLOWED_VALUE
The following elements in a profile configuration file are assigned a
profilenode value as defined in the following table:

Customizing Your Site's Profiling Configuration 41

Types of Profilenodes

Element Profilenode Type and Value
<Profile> • STANDARD_PROFILE = 1

• RADIO_PROFILE = 2
• FOLDERED_PROFILE = 3

<ProfileFolder> PROFILE_FOLDER = 4
<Allowed> ALLOWED_VALUE = 5
Unrecognized markup INVALID_PROFILE = 0

The following ACL functions support profiling and allow for site-specific
customizations of Arbortext Editor profiling capabilities. Refer to the Arbortext
Editor online help for detailed descriptions of each function.

Profilenode Functions
profilenode_ancestors(profilenode, arr)

Returns the number of folders that are ancestors of the node identified by the
specified node.
profilenode_attr (profilenode)

Returns the name of the profile attribute for the specified node.
profilenode_children_nodes(profilenode, arr)

Returns the number of nodes that are children of the specified node.
profilenode_default_value(profilenode)

Returns the default value for a RADIO_PROFILE node as specified in the profile
configuration file.
profilenode_default_value_node(profilenode)

Returns the default value profilenode for a RADIO_PROFILE node as specified
in the profile configuration file.
profilenode_element_allowed(profilenode, tagname)

Returns 1 if the element can be profiled using the profilenode.
profilenode_element_attr_tests(profilenode, tagname,
arr)

Returns the number of attribute name(s) and value(s) for an element that a
particular profile could be applied to or not applied to.
profilenode_elements_list(profilenode, arr, not_
indicator)

Returns the number of elements that a particular profile could be applied to or not
applied to.

42 Customizer's Guide

profilenode_is_foldered(profilenode)

Returns 1 if the root node of the specified node is a FOLDERED_PROFILE node.
profilenode_is_radiochoice(profilenode)

Returns 1 if the root node of the specified node is a RADIO_PROFILE node.
profilenode_is_standard(profilenode)

Returns 1 if the root node of the specified node is a STANDARD_PROFILE
node.
profilenode_name (profilenode)

Returns the profile alias, folder name, or profile value of a profilenode.
profilenode_parent (profilenode)

Returns the profilenode of the immediate ancestor of the specified node.
profilenode_rootnode (profilenode)

Returns the top-level or root node for that profile class.
profilenode_shadingbackground(profilenode)

Returns the shading color for the specified profile node.
profilenode_type (profilenode)

Identifies a profilenode's TYPE.
profilenode_valid (profilenode)

Returns 1 if the specified node is a valid profilenode identifier.
profilenode_value_nodes(profilenode, arr)

Returns the number of value profilenodes for the specified node.
profilenode_value_separator(profilenode)

Returns the value separator corresponding to the specified node. The default value
is a semicolon.
profilenode_values (profilenode, arr)

Returns the number of allowed values for the specified node.

Profile Functions
profile_alias (attr[, doc])

Returns the alias name for the specified profile attribute.
profile_aliases (arr[, doc])

Returns the number of profile aliases defined in the current (or other) profiling
configuration file.
profile_allowed (alias, oid)

Returns 1 if the specified element can be profiled using the specified profile.
Returns 0 if the element cannot be profiled, or if either oid or alias is invalid.
profile_attr (alias[, doc])

Customizing Your Site's Profiling Configuration 43

Returns the name of the profile attribute for the specified profile.
profile_attrs (arr[, doc])

Returns the number of profile attributes defined in the configuration file
associated with the profiling session.
profile_config ([doc])

Returns a document identifier for the current (in-memory) profiling configuration
file.
profile_conflictshadingbackground([doc])

Returns the conflict shading color for the profile for the specified document.
profile_default_value(alias[, doc])

Returns the default value for the specified RADIO_PROFILE.
profile_default_value_node(alias[, doc])

Returns the default value profilenode for the specified RADIO_PROFILE.
profile_element_allowed(alias, tagname[, doc])

Returns 1 if the specified element can be profiled using the specified profile.
profile_element_attr_tests(alias, tagname, arr[, doc])

Returns the number of attribute name(s) and value(s) for the specified element that
the specified profile can be applied to or not applied to.
profile_elements_list(alias, arr, not_indicator[, doc])

Returns the number of elements the specified profile could be applied to or not
applied to.
profile_is_foldered (alias[, doc])

Returns 1 if the specified profile class is a FOLDERED_PROFILE.
profile_is_radiochoice(alias[, doc])

Returns 1 if the specified profile class is a RADIO_PROFILE.
profile_is_standard (alias[, doc])

Returns 1 if the specified profile class is a STANDARD_PROFILE.
profile_resolution (oid, logical_expression)

Returns 1 if the specified element would be included if the profile was resolved
using the specified logical expression.
profile_rootnode (alias[, doc])

Returns the profilenode of type STANDARD_PROFILE, RADIO_PROFILE, or
FOLDERED_PROFILE of a profile class.
profile_rootnodes (arr[, doc])

Returns the number of profilenodes of type STANDARD_PROFILE, RADIO_
PROFILE or FOLDERED_PROFILE in the current (or other) profile
configuration file.
profile_shadingbackground(alias[, doc])

44 Customizer's Guide

Returns the shading color of the profile attribute for the specified alias..
profile_type (alias[, doc])

Returns an integer identifying the profile type of the specified alias.
profile_valid (alias[, doc])

Returns 1 if the specified alias is a valid profile.
profile_value_node (alias, value[, doc])

Returns the allowed value profilenode for the specified value in the profile class
identified by the specified alias.
profile_value_nodes (alias, arr[, doc])

Returns the number of allowed value profilenodes for the profile class identified
by the specified alias.
profile_value_separator(alias[, doc])

Returns the value separator for the specified profile. The default value is a
semicolon.
profile_values (alias, arr[, doc])

Returns the number of allowed values for the profile class identified by the
specified alias.
profile_values_shadingbackground(alias, arr[, doc[,
IncludeProfileElement]])

Returns the colors for the profile attribute for the specified alias.

Profile Group Functions
apply_profile_group (apply_profile_group_name, arr[,
doc])

Returns the number of profile classes that are included in the specified apply
profile group.
apply_profile_group_allowed(apply_profile_group_name,
oid, arr[])

Returns 1 if the profile group apply_profile_group_name, is allowed on the
element oid.
apply_profile_group_value_nodes(apply_profile_group_
name, arr[, doc])

Returns 1 if the specified profile group is allowed on the specified element.
apply_profile_groups (arr[, doc])

Returns the number of apply profile groups specified in the profile configuration
file.
set_profile_group (set_profile_group_name[, doc])

Returns the profile configuration file markup for the specified set profile group

Customizing Your Site's Profiling Configuration 45

set_profile_groups (arr[, doc])

Returns the number of set profile groups specified in the profile configuration file.
set_profile_groups_expressions(arr[, doc])

Returns the number of set profile groups, and the profile classes and relationships
between profile values for the corresponding resolution group specified in the
profiling configuration file.

Profiling DTD Element Reference
The location of the profiling document type definition is Arbortext-path\
doctypes\profiling\profiling.dtd.

Allowed Element
Synopsis
Mixed content model:
Allowed
Empty

Attributes:
value CDATA #REQUIRED

Description
The <Allowed> element specifies the only allowed value for a profile.
The element has no child elements.
The <Allowed> element has the following attribute:

• value = CDATA

The allowed value for the parent profile.

ApplyProfileGroup Element
Synopsis
Mixed content model:
ApplyProfileGroup
(ProfileRef)+

Attributes:
name CDATA #REQUIRED

Description
The <ApplyProfileGroup> element specifies a named apply profile group.

46 Customizer's Guide

The element can have the following child element:
<ProfileRef>

The <ApplyProfileGroup> element has the following attribute:

• name = CDATA

Specifies the name of the profile group.

AttributeTest Element
Synopsis
Mixed content model:
AttributeTest
EMPTY

Attributes:
name CDATA #REQUIRED
value CDATA #IMPLIED

Description
The <AttributeTest> element specifies whether an attribute test must be
performed.
The element has no child elements.
The <AttributeTest> element has the following attributes:

• name = CDATA

Specifies the attribute name to test.
• value = CDATA

Specifies the value to test for. If value is not specified, and the tested attribute
has any declared value, the test will return TRUE. If value is set to
ATI#UNDECLARED, the test will return TRUE only if the test attribute is
undefined.

LogicalExpression Element
Synopsis
Mixed content model:
LogicalExpression
(LogicalGroup | LogicalNOT)

Attributes:
None

Customizing Your Site's Profiling Configuration 47

Description
The <LogicalExpression> element specifies a logical expression to use in a
set profile group.
The element can have the following child elements:
<LogicalGroup>, <LogicalNOT>
The <LogicalExpression> element has no attributes.

LogicalGroup Element
Synopsis
Mixed content model:
LogicalGroup
((ProfileRef | LogicalGroup | LogicalNOT),
(ProfileRef | LogicalGroup | LogicalNOT)+)

Attributes:
operator (AND | OR | XOR | EQUAL) #REQUIRED

Description
The <SetProfileGroup> element defines a logical expression group
The element can have the following child elements:
<ProfileRef>, <LogicalGroup>, <LogicalNOT>
The <LogicalGroup> element has the following attribute:

• operator = AND | OR | XOR | EQUAL

Specifies the logical operator to use. The operators have the following
resolutions when comparing values A and B:

○ AND—A logical conjunction. The expression is true if both A and B are
true.

○ OR—A logical disjunction (an inclusive OR). The expression is true if A,
B, or both, are true.

○ XOR—A logical inequivalence (an exclusive OR). The expression is true
if either A or B is true, but false if both A and B are true.

48 Customizer's Guide

○ EQUAL—A logical equivalence. The expression is true if both A and B
are true, or if both are false.

LogicalNOT Element
Synopsis
Mixed content model:
LogicalNOT
(ProfileRef| LogicalGroup)

Attributes:
None

Description
The <LogicalNOT> element specifies logical negation of an expression. That
is, for value A, the expression is true if A is false and the expression false if A is
true.
The element can have the following child elements:
<ProfileRef>, <LogicalGroup>
The <LogicalNOT> element has no attributes.

NotProfileElement Element
Synopsis
Mixed content model:
NotProfileElement
(AttributeTest*)

Attributes:
element NMTOKEN #REQUIRED

Description
The <NotProfileElement> element defines the elements to be restricted
from having a particular profile.
The element can have the following child element:
<AttributeTest>

The <NotProfileElement> element has the following attribute:

• element = NMTOKEN

Customizing Your Site's Profiling Configuration 49

Specifies the name of the element from which the profile is restricted.

Profile Element
Synopsis
Mixed content model:
Profile
((ProfileElement* | NotProfileElement*),
((ProfileFolder | Allowed)+ | RadioChoice))

Attributes:
attribute NMTOKEN #REQUIRED
alias CDATA #REQUIRED
valueSeparator CDATA ";"

Description
The <Profile> element defines the profiles that are available to apply to an
element.
The element can have the following child elements:
<ProfileElement>, <NotProfileElement>, <ProfileFolder>
The <Profile> element has the following attributes:

• attribute = NMTOKEN

Defines the attribute in which to store the profile values. This can be an
attribute value defined in the document type or a namespaced attribute value.

• alias = CDATA

Specifies the name of the profile.
• valueSeparator = CDATA

Specifies the delimiter used to separate multiple profile values specified on a
particular attribute. The default value is a semicolon (;).

ProfileClasses Element
Synopsis
Mixed content model:
ProfileClasses
((Profile+, ApplyProfileGroup*, SetProfileGroup*))

Attributes:
none

50 Customizer's Guide

Description
The <ProfileClasses> element defines the profiles that are available to
apply to an element.
The element can have the following child elements:
<Profile>, <ApplyProfileGroup>, <SetProfileGroup>
The <ProfileClasses> element has no attributes.

• authorModifiable = true | false

Specifies whether the author is allowed to modify the profile during an editing
session.

ProfileElement Element
Synopsis
Mixed content model:
ProfileElement
(AttributeTest*)

Attributes:
element NMTOKEN #REQUIRED

Description
The <ProfileElement> element defines the elements to which the profile is
restricted.
The element can have the following child element:
<AttributeTest>

The <ProfileElement> element has the following attribute:

• element = NMTOKEN

Specifies the name of the element to which the profile is restricted.

ProfileFolder Element
Synopsis
Mixed content model:
ProfileFolder
(ProfileFolder+ | Allowed+)

Attributes:
name CDATA #REQUIRED

Customizing Your Site's Profiling Configuration 51

Description
The <ProfileFolder> element specifies the folder structure of a hierarchical
(foldered) profile. Folders can contain folders.
The element can have the following child elements:
<ProfileFolder>, <Allowed>
The <ProfileFolder> element has the following attribute:

• name = CDATA

Specifies the name of the folder.

ProfileRef Element
Synopsis
Mixed content model:
ProfileRef
Empty

Attributes:
alias CDATA #REQUIRED
value CDATA #REQUIRED

Description
The <ProfileRef> element specifies the profile to use in a group.
The element has no child elements.
The <ProfileRef> element has the following attributes:

• alias = CDATA

The alias name associated with the profile being referenced.
• value = CDATA

The allowed value associated with the profile being referenced.

Profiles Element
Synopsis
Mixed content model:
Profiles
(ProfileClasses+)

Attributes:
none

52 Customizer's Guide

Description
The <Profiles> element is a the top-level element of the .pcf file.
The element can have the following child element:
<ProfileClasses>

The <Profiles> element has no attributes.

RadioChoice Element
Synopsis
Mixed content model:
RadioChoice
(Allowed*)

Attributes:
None

Description
The <RadioChoice> element specifies that a profile can only accept one value
from a give list of values.
The element can have the following child element:
<Allowed>

The <RadioChoice> element has no attributes.

SetProfileGroup Element
Synopsis
Mixed content model:
SetProfileGroup
(ProfileRef | LogicalExpression)

Attributes:
name CDATA #REQUIRED

Description
The <SetProfileGroup> element specifies a combination of profile settings
to be used during publishing or resolution.
The element can have the following child elements:
<ProfileRef>, <LogicalExpression>
The <SetProfileGroup> element has the following attribute:

Customizing Your Site's Profiling Configuration 53

• name = CDATA

Specifies the name of the set profile group.

54 Customizer's Guide

3
Customizing Help

Customizing Tag Help..56

55

Customizing Tag Help
Tag help is the help that appears when you place the mouse pointer over a tag in
your document and press SHIFT+F1 or Help. Tag help describes the elements
declared in the document type that is being used.

Location of Tag Help Files
Tag help files are stored in a \help subdirectory of a document type's directory
in Arbortext-path\doctypes. Arbortext-path is the directory where
Arbortext Editor is installed. The doctypes directory in Arbortext-path in
turn contains directories for the individual distributed document types. Each of
those directories has a \help subdirectory.
As an illustration, if Arbortext Editor resides in the directory c:\Program
Files\PTC Arbortext\Editor, tag help for a document type would reside
in c:\Program Files\PTC Arbortext\Editor\doctypes\dtddir\
help, where dtddir is the name of the directory containing a particular
document type.
More specifically, if your document type is a customized document type installed
in the directory c:\apps\doctypes\mydoc, the document type’s tag help
files will be stored in c:\apps\doctypes\mydoc\help.

Tag Help File Types
To create and modify help for element tags using Arbortext Editor, create and save
the text for each tag in a separate file, typically using the same document type as
that which the help supports. If the document type does not easily support text
elements, PTC recommends using a document type such as XHTML.
For example, create help files supporting the memo SGML document type using
the memo SGML document type. Create help files supporting the ATI XML
DocBook document type using the ATI XML DocBook document type.

Creating Tag Help for a New Document Type
Use the following steps for creating tag help for a new document type.

1. Create a new document using the same document type as you are
documenting. If the document type does not easily support text elements, use a
document type such as XHTML.

2. Author your help text for a given tag. Use a separate file for each individual
tag's help.

3. Save the document to the help subdirectory for your document type with the
tag name as the file name and the appropriate extension for the document type.

56 Customizer's Guide

For example, if you author a help file for an element body using the memo
document type, save it in a file named body.sgm. If you author a help file
for an element sect1 using the ATI XML DocBook document type, save it in
a file named sect1.xml

Save the file in the help subdirectory of doctypedir, where doctypedir is the
directory where the document type resides.

4. Test the help file for a tag in a document based on that document type. Place
the mouse pointer over the tag for which you've created help, and press SHIFT
+F1. The new tag help is displayed.

Customizing Tag Help for an Existing Document Type
Use the following procedure to customize tag help for an existing document type,
such as a document type delivered with Arbortext Editor.

1. Set the environment variable APTHELPPATH to specify a directory in which
you will store the custom help files.

2. Copy the existing tag help files to this new directory.
3. Use Arbortext Editor to update the copies of the files as necessary.
4. Test your customized help by placing the mouse pointer over a tag and

pressing SHIFT+F1. The customized tag help is displayed.

Customizing Help 57

4
Customizing PDF Publishing

PDF Publishing Overview ..60
Using PTC ALD Publishing Engine for PDF ...60
Using FOSI Publishing Engine for PDF ...60
Watermarks ..61
Creating PDF Bookmarks Using Arbortext Styler ...61
Creating PDF Bookmarks Using FOSI ..61
Creating Document Properties ...64
Choosing PDF Configuration Options..64
Linking Between PDF Files ..67
Configuring Security Options..68
Adding Fonts Used by Graphics ...69
Configuring Fonts for FOSI Publishing ..70
PDF DTD Element Usage (FOSI) ...72
General Element ...72
Color Element ...84
Font Element ..86
Label Element...99
Documentation Element...99

59

PDF Publishing Overview
There are several ways in which you can create PDF files with Arbortext Editor
and Arbortext Styler or Arbortext Publishing Engine:

• With the PTC ALD publishing engine, you can publish PDF directly from an
XML file or generate from intermediate PostScript source.

• With the FOSI publishing engine, you can publish PDF directly from an XML
file.

Note
The FOSI and XSL-FO print engines are on sustained support and do not
receive enhancements or maintenance fixes. PTC ALD is the recommended
engine for print output.

See Choosing PDF Configuration Options on page 64 for information about how
to set configuration choices.
See Publishing Engine Overview and Print and PDF Configuration Files in
Arbortext Editor help for an explanation of print engines and PDF configuration
files.

Using PTC ALD Publishing Engine for
PDF
You may publish PDF or PostScript output. Separate configuration files support
these actions.
For information about PDF configuration files supported by the PTC ALD print
engine, please refer to PDF Configuration Files for PTC ALD on page 65

Using FOSI Publishing Engine for PDF
You can publish PDF with the FOSI publishing engine by sending publishing
requests to Arbortext Publishing Engine and specifying the FOSI print engine in
the stylesheet, by having Arbortext Styler running with Arbortext Editor, or by
having a Print Composer license on Arbortext Editor.

60 Customizer's Guide

Note
The FOSI and XSL-FO print engines are on sustained support and do not
receive enhancements or maintenance fixes. PTC ALD is the recommended
engine for print output.

Watermarks
Watermarks can underlay output pages for formatting, printing, or publishing a
PDF. The methods for specifying watermarks for PDF differ between the PTC
Arbortext Layout Developer and FOSI engines.

Watermarks when Publishing with PTC ALD
In Arbortext Styler, you may create a page region that holds text or a graphic, and
set it to underlay the main content region of a page. Refer to Defining Page
Regions in Arbortext Styler help for information on creating regions for a page
set.

Watermarks when Publishing with FOSI
Set the APTWATERMARKTEXT environment variable to the value you want to
appear as the watermark text. Refer to the APTWATERMARKTEXT online help
topic for information on using it.

Creating PDF Bookmarks Using Arbortext
Styler
PDF bookmarks created in this way are supported in PDF output generated by the
PTC ALD, FOSI, and XSL-FO publishing engines.
In Arbortext Styler, you can elect to generate a table of contents (TOC) whose
entries will form the bookmarks in your PDF. This can be separate from the main
table of contents for the document if required and be configured to include your
own set of entries. Refer to Table of Contents Overview in Arbortext Styler help
for information.

Creating PDF Bookmarks Using FOSI
You can create bookmarks using markup illustrated in the following example in
your stylesheet.

Customizing PDF Publishing 61

You can open the PDF to the first page, open the bookmark panel, and scale the
page to fit in the window by placing the following anywhere in a document (or in
a FOSI that places it anywhere in the document) using the following
atidmd:DocView example:
<atidmd:DocumentMetaData source="atend">
<atidmd:DocView bookmarks="auto" mode="bookmarks"
fit="fitPage" destination="">
</atidmd:DocView>
</atidmd:DocumentMetaData>

The destination attribute defaults to the page on which the
atidmd:DocView tag appears. If a valid named destination name is placed in
the destination attribute, the document will open at the page on which the
named destination appears. A named destination can be created by inserting a link
target at the desired point in the document, or adding an ID to a tag at that
location.

Note
If DocView is specified in the stylesheet, it takes priority over the
destination attribute value.

You can also generate an atidmd:DocumentMetaData node at the beginning of a
document with a source=”atend” attribute, and also an atidmd:
DocumentMetaData node at the end of the root node content. Have the FOSI
produce the following at beginning of the document, which has the effect of
disabling automatic bookmarks:
<atidmd:DocumentMetaData source="atend">
<atidmd:DocView mode="bookmarks" fit="fitPage" destination="">
</atidmd:DocView></para>
</atidmd:DocumentMetaData>

Then have the FOSI produce the following at the end of document:
<atidmd:DocumentMetaData>
<atidmd:Outline>
<atidmd:Bookmark>
<atidmd:Title>Book title</atidmd:Title>
<atidmd:Bookmark>
<atidmd:Title>Chapter 1 Title</atidmd:Title>
</atidmd:Bookmark>
<atidmd:Bookmark>
<atidmd:Title>Chapter 2 Title</atidmd:Title>
</atidmd:Bookmark>
</atidmd:Bookmark>
<atidmd:Bookmark state="closed">
<atidmd:Title>List of Figures</atidmd:Title>
<atidmd:Bookmark>
<atidmd:Title>Figure 1</atidmd:Title>

62 Customizer's Guide

</atidmd:Bookmark>
<atidmd:Bookmark>
<atidmd:Title>Figure 2</atidmd:Title>
</atidmd:Bookmark>
</atidmd:Bookmark>
</atidmd:Outline>
</atidmd:DocumentMetaData>

The text variables used for links (such as bookmarks.txt in the following
example) must be declared hotlinks to provide the bookmark destination using the
_gtlink PI.
<stringdecl textid="docinfo.txt">
<stringdecl textid="chapter-bookmarks.txt" hotlink="1">
<stringdecl textid="book-title.txt">
<stringdecl textid="bookmarks.txt" hotlink="1">
<stringdecl textid="figures.bookmark.txt" hotlink="1">
Book eic:
<usetext source='!<atidmd:DocumentMetaData source="atend"></atidmd:DocumentMetaData>!'
placemnt="before"></usetext>
<savetext textid="chapter-bookmarks.txt" placemnt="before" conrule="\\">
<savetext textid="bookmarks.txt" placemnt="after"
conrule='!<atidmd:Bookmark><atidmd:Title>!,book-title.txt,!</atidmd:Title>!,
chapter-bookmarks.txt,!</atidmd:Bookmark>!'>
<usetext source='!<atidmd:DocumentMetaData><atidmd:DocInfo>!,docinfo.txt,!</atidmd:DocInfo>
<atidmd:Outline>!,bookmarks.txt,
!<atidmd:Bookmark state="closed"><atidmd:Title>List of Figures</atidmd:Title>!,figures.bookmark.txt,
!</atidmd:Bookmark></atidmd:Outline></atidmd:DocumentMetaData>!'
placemnt="after"></usetext>

Note
The Arbortext Document Metadata namespace description is available from
the Arbortext web site:
www.arbortext.com/namespace/DocumentMetaData/

The Arbortext XSL FO Extensions namespace description is available from
the Arbortext web site:
www.arbortext.com/namespace/XslFoExtensions/

Customizing PDF Publishing 63

http://www.arbortext.com/namespace/DocumentMetaData/
http://www.arbortext.com/namespace/XslFoExtensions/

Creating Document Properties

With Arbortext Styler
For information on how to define standard or user-defined metadata and document
properties for a PDF file in your Arbortext Styler stylesheet, refer to Passing
Metadata to PDF Output in Arbortext Styler help.
Metadata definitions in the .style file are supported in all print and PDF
outputs — PTC ALD, FOSI, and XSL-FO.

With FOSI
You can generate document properties for the PDF by placing FOSI information
anywhere in a document (or in a FOSI that places it anywhere in the document).
An example showing the use of atidmd:DocInfo is given below:
<atidmd:DocumentMetaData>
<atidmd:DocInfo>
<atidmd:Entry>
<atidmd:Key>Title</atidmd:Key><atidmd:Value>Moby Dick</atidmd:Value>
</atidmd:Entry>
<atidmd:Entry>
<atidmd:Key>Author</atidmd:Key><atidmd:Value>Herman Melville</atidmd:Value>
</atidmd:Entry>
</atidmd:DocInfo>
<atidmd:DocumentMetaData></para>

Choosing PDF Configuration Options
When Arbortext Editor and Arbortext Publishing Engine publish PDF files, they
use an XML configuration file (a .appcf for PTC ALD, a .pdfcf file for
FOSI) to specify PDF options.
When publishing PDF, you can choose a PDF configuration file by:

• choosing a PDF configuration file in the Publish PDF File dialog box.
• specifying a default PDF configuration file using the set pdfconfigfile

command (documented in the Arbortext Command Language Reference).
You can use or modify one of the PDF configuration files distributed with
Arbortext Editor and Arbortext Publishing Engine or create a custom PDF
configuration file.

64 Customizer's Guide

Note
The FOSI and XSL-FO print engines are on sustained support and do not
receive enhancements or maintenance fixes. PTC ALD is the recommended
engine for print output.

PDF Configuration Files for PTC ALD
The distributed configuration files are:

• Arbortext-path\app\standard.appcf

Supports publishing of PDF
• Arbortext-path\app\postscript.appcf

Supports printing to a PostScript printer and generating a PostScript file
You can save a custom version of files if you wish to tailor your own PDF
publishing process/output. Open the file in Arbortext Editor (without a stylesheet),
make changes, then save the custom file, with the same file extension, in any of
these locations:

• Publishing PDF from Arbortext Editor or Arbortext Styler — you can browse
for a custom file, or locate it in the APTCUSTOM\app directory where PTC
ALD will find it

• Publishing PDF via Arbortext Publishing Engine — a custom file must be
located on the PE server, in any of these locations:

○ Arbortext-path\app

○ any APTCUSTOM\app directory
○ an application or custom doctype\nnn directory, where nnn is the short

doctype name of the doctype of the document being published.
Custom .appcf files must contain a single Print and a single Format
element, although these do not require child elements to be valid.
See PDF Configuration File for the APP Engine (.appcf) in the User's Guide to
Arbortext Styler and Print and PDF Configuration Files in Arbortext Editor help
for information about custom configuration files.

PDF Configuration Files for FOSI
The distributed configuration files are:

• Arbortext-path\lib\standard.pdfcf

Customizing PDF Publishing 65

This is the default PDF configuration file and configures the PDF file for
general use. Embedding is turned on but also specifies a NeverEmbed list of
the core 14 fonts.

Compression is set to AUTO (choose the smaller of JPEG or ZIP
compression).

The target raster image resolution is 600 DPI for raster images exceeding the
threshold of 900 DPI.

• Arbortext-path\lib\screen.pdfcf

Configures the PDF file for screen display, with embedding turned on but also
specifies a NeverEmbed list of the core 14 fonts.

Compression is set to JPEG.

The target raster image resolution is 300 DPI for raster images exceeding the
threshold of 450 DPI.

• Arbortext-path\lib\print.pdfcf

Optimizes PDF file for printing, with embedding turned on but also a
NeverEmbed list of the core 14 fonts.

Compression is set to ZIP (the default).

The target raster image resolution is 1200 DPI for raster images exceeding the
threshold of 1800 DPI.

• Arbortext-path\lib\smallfile.pdfcf

Turns off embedding.

Compression is set to JPEG.

The target raster image resolution is 200 DPI for raster images exceeding the
threshold of 300 DPI.

Note
PDF configuration files are distributed by locale and are located in
Arbortext-path\lib\locale\lang, where lang is the locale name.

You can create a custom PDF configuration file (custom-file-
name.pdfcf) and put it in Arbortext-path\custom\lib, where it will
be automatically accessible when Arbortext Editor or Arbortext Publishing Engine
starts. You can also put a set pdfconfigfile statement in a custom ACL file
placed in Arbortext-path\custom\init\custom-file-name.acl,
where it will be loaded at start time.

66 Customizer's Guide

The structure and content of the .pdfcf PDF configuration file is explained in
PDF DTD Element Usage (FOSI) on page 72 and the sections that follow it.

Linking Between PDF Files
The procedures that follow show how to link from a PDF to a page number and a
named destination in another PDF file.

Note
Linking to a page number or named destination only applies when publishing
to PDF directly from XML using Arbortext Publishing Engine.

To Link to a Page Number in the Target PDF
1. In Arbortext Editor, choose Insert ▶▶ Link/Xref and choose Browse the Web in

the Resource Manager.If you are working in a non-DITA document, the menu
option will be Insert ▶▶ Link, followed by Web.

2. Insert a URL that specifies the PDF file (the URL must include.pdf)
followed by #page= and the page number (for example,
mydoc.pdf#page=30).

3. Click the Insert button.

To Link to a Named Destination in the Target PDF
If the target is on an element that is also included in the table of contents, such as a
Title tag, the link will target the table of contents instead of the location in the
document. The two anchors have the same name, and only the first is recognized.

1. In the target document, select the element that will be the target of the link and
give it an ID attribute, for example mytarget.If you are working in a non-
DITA document, you can also use Insert ▶▶ Link Target to insert the ID.

2. In the source document, choose Insert ▶▶ Link/Xref and choose Browse the Web
in the Resource Manager. If you are working in a non-DITA document, the
menu option will be Insert ▶▶ Link, followed by Web.

3. Insert a URL that specifies the PDF file (the URL must include.pdf)
followed by #nameddest= and the link target name (for example,
mydoc.pdf#nameddest=mytarget).

4. Click the Insert button.

Customizing PDF Publishing 67

Configuring Security Options
If you want to apply security options to PDF files you create, you need to modify
the PDF configuration file to specify the security options.

Security Options for PTC ALD Publishing
1. Make a copy of a PDF configuration file (you can choose

standard.appcf from Arbortext-path\app).
2. Save the copy of the file to APTCUSTOM\app.
3. The Security element in the .appcf file includes options for configuring

document protection. Add this element hierarchy to the required Print
element: Print PDFPrinter Security

4. Use the attributes of the Security element to set security for your output
PDF. For example, set the value of the userPassword or masterPassword
attributes to the required string to provide password protection.

5. Save the file.
6. When publishing your PDF with the PTC ALD engine, select your custom

configuration file in the Config File field of the Publish to PDF File dialog box.

Security Options for FOSI Publishing
PDF security options are explained in Security Element on page 82.

1. Make a copy of a PDF configuration file (you can choose a .pdfcf from
Arbortext-path\lib).

2. Open Arbortext Architect, and choose Edit ▶▶ PDFCF. Open your .pdfcf file.
3. Locate the Security element, and choose Edit ▶▶ Modify Attributes.
4. Type a password as the userPassword. This restricts access to the PDF file to

users who have the userPassword.
5. Type another password as the masterPassword if you plan to set any of the

other security settings in the Modify Attributes dialog box to yes. For example,
you can set noPrint to yes to prevent users from printing the PDF file or set
noModify to yes to prevent users from modifying the PDF file.

6. Click OK to exit the Modify Attributes dialog box.
7. Choose File ▶▶ Save, and then File ▶▶ Close to exit Arbortext Architect.
8. Place the .pdfcf file in the custom\lib directory in the install tree.
9. Start Arbortext Editor and open a document.
10. Choose File ▶▶ Publish ▶▶ PDF File.

68 Customizer's Guide

11. If you put your .pdfcf file in the custom\lib, you can select it from the
Configuration File list .

12. Leave View PDF File selected, and then click OK.
13. When Adobe Acrobat opens the document, a prompt indicates that the file is

protected and asks for a password. Type the password you set as the
userPassword into the Password field.When the document opens, you can
check that you are unable to perform the actions you prevented in the .pdfcf
file. For example, if you set noModify to yes, the menu options for Cut, Copy,
and Delete are unavailable.

Adding Fonts Used by Graphics
In .eps, .drw, and .cgm graphic formats, it's possible that a font within these
files may not appear in PDF output, even though the graphic file has a properly
defined font. There are three approaches for handling fonts within graphics:

• Confine fonts used in these graphics to the basic PDF 14 (Helvetica, Courier,
Times-Roman, Symbol, and their variants), which are handled correctly.

• For fonts other than the basic PDF 14, embed the fonts in your .eps, .drw,
and .cgm file . Embedded fonts are also handled correctly.

• For fonts other than the basic 14 that can't be embedded, use the procedure for
font configuration that follows.

If working with the PTC ALD engine, make the required changes in
Arbortext-path\pstill.

If working with the FOSI engine, you can copy the Arbortext-path\
pstill directory to another location before making changes. If you do, set
the APTPSTILLPATH environment variable to the path of the alternate
location.

To Add PFA or PFB Fonts
1. In a command prompt window, navigate to the Arbortext-path\pstill

directory.
2. Run the batch file SetPath.bat in the command window, from this

directory. This file extracts the path to this \pstill directory.
3. If you have copied the \pstill directory elsewhere, navigate to that

location.
4. Run instfonts.exe from the same command window as you ran

SetPath.bat.
5. To add fonts, place PFA or PFB files in the PSFonts subdirectory. Then

update the font files by entering:

Customizing PDF Publishing 69

instfonts UPDATE

The script updates the special font files used by PStill.
You can install a TTF file if it's not protected against conversion. Check your font
license to see if it is allowed.

To Add TTF Fonts:
1. In a command prompt window, navigate to the Arbortext-path\pstill

directory.
2. Run the batch file SetPath.bat in the command window, from this

directory. This file extracts the path to this \pstill directory.
3. If you have copied the \pstill directory elsewhere, navigate to that

location.
4. Run instfonts.exe from the same command window as you ran

SetPath.bat.
5. Install a TTF font by entering:

instfonts TTFFULLINSTALL full-path-to-TTF-file postscript-name

or, you can enter:
instfonts TTFINSTALL full-path-to-TTF-file postscript-name
instfonts UPDATE

The PostScript name is the name referenced in the .eps, .drw, or .cgm file.
The name is case-sensitive.

To Create Fonts for the Basic 14 PDF Fonts:
1. In a command prompt window, navigate to the Arbortext-path\pstill

directory.
2. Run the batch file SetPath.bat in the command window, from this

directory. This file extracts the path to this \pstill directory.
3. If you have copied the \pstill directory elsewhere, navigate to that

location.
4. Run instfonts.exe from the same command window as you ran

SetPath.bat.
5. Create font files for the basic PDF 14 fonts by entering:

instfonts CREATE

Configuring Fonts for FOSI Publishing
The Font element in the PDF configuration file lets you configure font locations,
map .tfm file names to fonts, and enable font substitutions, embedding, and
subsets. Consult the PDF DTD Element Usage (FOSI) on page 72 for detailed
information on the elements and their attributes.

70 Customizer's Guide

Arbortext Command Language and the Arbortext Publishing Engine use font
metrics to lay out the text of a document into paragraphs and pages. However, a
real font is necessary for rendering the page. A real font is a raster or vector font.
A raster font (a .pk file) contains pixels for all characters in the font rasterized to
a particular resolution. A vector font (a type 1 or true type font) contains
instructions for drawing the character outlines.
The FontName element specifies real fonts. These font names may contain
Unicode characters. The FontName element has a select attribute that sets the
data condition for a particular operating system. If you use select, the value
must match one of the tokens generated by the application (for example
Windows), called the selection criteria. A select attribute may include more
than one token. If any of them is equal to any of the selection criteria tokens, then
the FontName matches. If a select attribute is empty or not present, then a
match is assumed. The encoding attribute specifies the encoding to use with the
specified font. Eight-bit and multi-byte formats are supported.
The FontName element can name a system font or a font outline file (TTF, PFA,
or PFB). The type of file is specified in the type attribute, and the path and file
name is specified in the path attribute. If the type is SYS, the path is ignored. If
path contains a relative path, the search is relative to the custom\fonts
subdirectory. The contents of the FontName tag for a font outline file should be
the name of the font as represented in the outline file.
The FontName element has a simulate attribute that can specify the kind of
simulation (such as bold or italic) to apply to the font. The simulateMode
attribute specifies how to apply the simulation, either by modifying the font
display within the PDF (by displaying characters at an angle for italic or through
multiple registrations for bold) or by setting a flag that tells the PDF viewer to
render the simulation.
The Map element associates the name of a .tfm file with a font. Multiple real
fonts may be listed, but Arbortext Editor and Arbortext Publishing Engine use
only the first match. This allows the select attribute to determine which font is
used on a given platform.
For fonts that are not specified in FontName, are not mapped in this file, and do
not have the specified font face available, you can use the Simulation
elements Bold and Italics to simulate bold and italic faces. Use simulated
bold, italic, and bold-italic font styles for CJK fonts and Arial Unicode MS, which
don't have bold or italic faces.
The Locations element can specify directories where the direct PDF process
searches for font files.
The FontPath element specifies PK raster font files. The dpi attribute specifies
the resolution of the fonts. The contents of the element are the path to the .pk file
relative to the pixels directory.

Customizing PDF Publishing 71

You can specify Substitute to use a different font in the PDF file than was
used in the original file. The substitute font must have the same font metrics as the
original font. Arbortext Editor and Arbortext Publishing Engine use the first
replacement that matches the selection criteria.
Embedding lets you select the fonts that are embedded or prevent embedding in
the PDF file. The subsetting attribute allows you to control whether to embed
the whole font or just the characters needed by the PDF file.

PDF DTD Element Usage (FOSI)
FOSI publishing supports the elements described in the following sections for
configuring PDF options. The document type for FOSI PDF configuration files
(.pdfcf) is located at:
Arbortext-path\doctypes\pdfconfig\pdfconfig.dtd

The elements are organized according to the hierarchy within the DTD.

Pdfconfig Document Type
The <Pdfconfig> document type is a PDF configuration XML document.
The <Pdfconfig> document type can have the following child elements:

Child elements of Pdfconfig

General Element
on page 72

Optional

Color Element
on page 84

Optional

Font Element
on page 86

Optional

Documentation Element
on page 99

Optional

Label Element
on page 99

Optional

General Element
The <General> element controls a variety of aspects of the PDF file.

72 Customizer's Guide

The <General> element has the following child elements:

Child elements of General

Annotations Element
on page 73

Optional and may be used once

Compatibility Element
on page 74

Optional and may be used once

Compression Element
on page 75

Optional and may be used once

Cropmarks Element
on page 76

Optional and may be used once

Docinfo Element
on page 77

Optional and may be used once

Images Element
on page 78

Optional and may be used once

Merge Element
on page 79

Optional and may be used once

Open Element
on page 80

Optional and may be used once

Security Element
on page 82

Optional and may be used once

The <General> element has one attribute, fixupPageSizes = yes | no. If
set to yes, it reconciles differences in page size between the front and back of a
sheet. The height will be the larger of the two page heights and the width will be
the larger of the two page widths. The default is no.
If a page dimension is increased, the content of the page will be centered within
that dimension. Page dimensions are never decreased.

Annotations Element
The <Annotations> element controls the display f bookmarks, links, and other
features in the PDF file. It’s optional and may be used once.
The <Annotations> element has no child elements.
The <Annotations> element has the following attributes:

Customizing PDF Publishing 73

Attributes of Annotations

Attribute and values Description
enabled = yes | no Allows you to turn off PDF features that

aren't relevant for printing, such as
bookmarks and links. The default is yes.

nameddestToPage = yes | no Setting to yes converts named
destinations to page numbers in PDF links.

Compatibility Element
The <Compatibility> element specifies the type of PDF file that is produced.
It’s optional and may be used once.
The <Compatibility> element may have either a <PDF> or <PDFX> child
element.
The <Compatibility> element has no attributes.

PDF Element
The <PDF> element specifies the version of the PDF file.
The <PDF> element has no child elements.
The <PDF> element has one attribute, level = 1.3 | 1.4 | 1.5 | 1.6. The default
is 1.4. PDF versions 1.3, 1.4, 1.5, 1.6, and 1.7 are supported by Adobe Acrobat
4.0, 5.0, 6.0, 7.0, and 8.0 respectively.

PDFX Element
The <PDFX> element specifies the PDF/X standards series, which provides a
consistent and robust subset of PDF which can be used to deliver data suitable for
commercial printing. The driver can generate output conforming to the following
variations of PDF/X:

• PDF/X-1 and PDF/X-1a, both defined in ISO 15930-1:2001
• PDF/X-3 as defined in ISO 15930-3:2002
PDF/X is specified using the <PDFX> tag within the <Compatibility> tag. If
you specify <PDFX>, you need to set the enabled attribute of the
<Annotations> element to no.

74 Customizer's Guide

Note
PDF/X support is offered as a technology preview. No guarantees are made as
to the correctness or usability of output using the PDF/X options.

For more information on using PDF/X, refer to PDF/X Frequently Asked
Questions available from:
http://www.adobe.com/enterprise/pdfs/acr6_pdfx_faq.pdf

The <PDFX> element has no child elements.

Attributes of PDFX

Attribute and values Description

level = 1:2001 | 1a:2001 |
1a:2003 | 2:2003 | 3:2002 |
3:2003

settings beginning with 1 specify PDF/X-
1, settings beginning with 1a specify
PDF/X-1a, and settings beginning with 3
specify PDF/X-3. The default is 3:2003.

outputIntent = CDATA Specifies the rendering intent.
defaultRGB = CDATA Specifies the ICC profile for converting

RGB images, text, and graphics.
defaultGray = CDATA Specifies the ICC profile for converting

Gray images, text, and graphics.
defaultCMYK = CDATA Specifies the ICC profile for converting

CMYK images, text, and graphics.

Compression Element
The <Compression> element specifies the type and level of compression. It’s
optional and may be used once.
The <Compression> element has no child elements.
The <Compression> element has the following attributes:

Customizing PDF Publishing 75

http://www.adobe.com/enterprise/pdfs/acr6_pdfx_faq.pdf

Attributes of Compression

Attribute and values Description
level = NMTOKEN Specifies the ZIP compression level, which

you can set from 0 (none) to 9 (maximum).
The default is 6. This attribute is ignored if
type = JPEG.

quality = NMTOKEN Specifies the JPEG quality, which you can
set from 1 (lowest) to 100 (highest). The
default is 80. This attribute is ignored if
type = ZIP.

type = ZIP | JPEG | AUTO Specifies the kind of compression. AUTO
chooses whichever is smaller between ZIP
and JPEG. The default is ZIP.

Cropmarks Element
The <Cropmarks> element specifies the characteristics of crop marks and whether
they appear in the PDF output. It’s optional and may be used once.
The <Cropmarks> element has no child elements.
The <Cropmarks> element has the following attributes:

Attributes of Cropmarks

Attribute and values Description

enabled = yes | no Specifies whether to display crop marks in
the output. The default is yes.

pageDims = absolute |
increment

When set to absolute, uses the values
set by pageWidth and pageHeight for the
output page dimension. When set to
increment, pageWidth and pageHeight
are added to the input page dimension to
get the output page dimension. The default
is increment.

pageWidth = CDATA Specify an integer as the output page
width in points; used as input for
pageDims to determine the page
dimension. The default is 144, which is
the equivalent of 2 inches.

pageHeight = CDATA Specify an integer as the output page

76 Customizer's Guide

Attributes of Cropmarks (continued)

Attribute and values Description

height in points; used as input for
pageDims to determine the page
dimension. The default is 144, which is
the equivalent of 2 inches.

gap = CDATA Specify an integer as the distance in points
from the corners of content to each crop
mark. The default is 4.

thickness = CDATA Specify an integer as the rule thickness in
points for the crop mark. Decimal values
are allowed. The default is .25.

length = CDATA Specify an integer as the size in points for
the length of the crop mark. The default is
36.

placement = center | upperLeft
| upperRight | lowerLeft |
lowerRight | useOffsets

Specifies where the page content is placed.
Specifying useOffsets positions the
upper left corner of the contents
xOffset points down from top of page
and yOffset points from the left. The
default is center, which centers the
content on the page.

xOffset = CDATA Specifies the vertical distance in points for
placing the upper left corner of content.
This value is ignored unless placement =
useOffsets.

yOffset = CDATA Specifies the horizontal distance in points
for placing the upper left corner of
content. This value is ignored unless
placement = useOffsets.

Docinfo Element
The <Docinfo> element specifies document properties in the PDF being
created. It’s optional and may be used once.
The <Docinfo> element has one required child element, <Entry>, which
specifies the document property names and their values.
The <Docinfo> element has no attributes.

Customizing PDF Publishing 77

Entry Element
The <Entry> element specifies the document properties that can be set when the
PDF is created. <Entry> is required and repeatable.
The <Entry> element has no child elements.
The <Entry> element has the following attributes:

Attributes of the Entry element

Attributes and values Description

key = CDATA Specifies the document property name. A
key is case-sensitive (i.e. Title, not title).
Key names and values are associated with
the Title, Author, Subject, and Keywords
fields of Document Properties. Other
names and values will be displayed on the
Custom tab of Document Properties for
the PDF.

value = CDATA Specifies the document property value.

Images Element
The <Images> element specifies how graphics are handled in the PDF file. It’s
optional and may be used once.
The <Images> element has one optional child element, <DownSample>.
The <Images> element has two attributes:

Attributes of the Images element

Attribute and values Description

passthrough = bmp | BMP | gif |
GIF | jpg | JPG | jpeg | JPEG |
png | PNG | tif | TIF | tiff |
TIFF

specifies the graphic types to be passed
through to the PDF document without
processing (as long as cropping is not
required).

rasterize = cgm | CGM specifies the graphic type to be rasterized.
Currently only supports CGM graphics.

78 Customizer's Guide

DownSample Element
The <DownSample> element controls how raster images are handled. It’s
optional and may be used once.
The <DownSample> element has no child elements.
The <DownSample> element has the following attributes and values:

Attributes of the DownSample element

Attribute and values Description
targetDpi = NMTOKEN Specifies the dots per inch (DPI) that a

graphic's resolution will be reduced to
when its resolution is larger than the value
specified by the threshold attribute.

threshold = NMTOKEN When a graphic's resolution is larger than
the specified value, the resolution of the
graphic is reduced to the targetDpi
value.

Merge Element
The <Merge> element allows inserting existing PDFs into the PDF being
created. It’s optional and may be used once.
The <Merge> element has one required child element, <Insert>, which
specifies the insertion instructions.
The <Merge> element has no attributes.

Insert Element
The <Insert> element specifies the instructions for inserting existing PDFs into
the PDF being created. By default, PDFs are inserted on a recto page with even
padding at the end of the document. If no destination or placement is provided,
then the PDF will be inserted after the entire document that is being published to
PDF. <Insert> is required and repeatable.
The <Insert> element has no child elements.
The <Insert> element has the following attributes:

Customizing PDF Publishing 79

Attributes of the Insert element

Attribute and values Description

path = CDATA Specifies the path and file name of the
PDF document to insert.

start = recto | verso | none Specifies the page layout position for
inserting the PDF. The default is recto.

pad = even | odd | none Specifies the padding to use to complete
the inserted section.

destination = CDATA Specifies the target destination within the
PDF where the referenced PDF should be
inserted.

placement = before | after Specifies whether to place an inserted PDF
before or after the entire document.

Open Element
The <Open> element controls the characteristics of the PDF file when it is
opened. It’s optional and may be used once.
The <Open> element has no child elements.
The <Open> element has the following attributes:

Attributes of the Open element

Attribute and values Description

mode = none | bookmarks |
thumbnails | fullscreen

Specifies a method for displaying the
document, including settings for the
navigation pane. The default is none.

fit = fitPage | fitWidth |
actualSize

Specifies the initial magnification view in
the PDF viewer relative to its display area.
fit is ignored if mode is fullscreen.
fitPage displays the entire page in the
window. fitWidth displays the page
scaled to the width of the window.
actualSize displays the page at 100%.
The default is fitPage.

destination = CDATA Specifies the page displayed when the
document is opened. Specify a named
destination or a page number. A page
number must be preceded by page=. The

80 Customizer's Guide

Attributes of the Open element (continued)

Attribute and values Description

default is the first page.
displayTitle = yes | no By default, Adobe Acrobat displays the

PDF file name in the title bar. If
displayTitle is set to yes, Acrobat will
display the document title instead.

pageLayout = default | single |
twoup

Setting pageLayout to default displays
the document according to Acrobat's
settings for opening a document. Setting
pageLayout to single displays a single
page when the document is opened.
Setting pageLayout to twoup displays
two pages side-by-side when the
document is opened. The default is
single.

continuous = yes | no The setting of continuous is ignored if
pageLayout is set to default. Otherwise, if
continuous is set to no, only a single page
or pair of pages will be shown at any
given time. Scrolling to the bottom will
cause an abrupt change to the next page or
pages. If set to yes, the page transitions
will be shown. For PDF versions 1.4 or
lower, continuous=no is not supported for
pageLayout=twoup.

facing = yes | no The setting of facing is ignored unless
pageLayout is set to twoup. Otherwise, if
facing is no, the document will be
displayed starting with the first page on
the left. Each pair of pages will be the
recto and verso of a sheet. If facing is
yes, the first page will appear by itself
and subsequent pairs of pages will be the
verso of one page and the recto of the next
page.

Use the following guidelines:

Customizing PDF Publishing 81

• Setting pageLayout=default ignores the other settings.
• For a single page non-scrolling view, use pageLayout=single and

continuous=no (ignores facing).
• For a single page scrolling view, use pageLayout=single and continuous

=yes (ignores facing).
• For a two page scrolling view that starts with first page on the left side, use

pageLayout=twoup, continuous=yes, and facing=no.
• For a two page scrolling view that starts with first page on the right side and

then continues with facing pages, use pageLayout=twoup, continuous=yes,
and facing=yes.

• For a two page non-scrolling view that starts with the first page on the left
side, use pageLayout=twoup, continuous=no, and facing=no.

• For a two page non-scrolling view that starts with the first page on the right
side and then continues with facing pages, use pageLayout=twoup,
continuous=no, and facing=yes.

Security Element
The <Security> element limits access to the PDF file. It’s optional and may be
used once.
The <Security> element has no child elements.
The <Security> element has the following attributes and values:

Attributes of the Security element

Attribute and values Description

userPassword = CDATA Specifies a user password that is needed to
view the PDF file.

Note
When using a password, the PDF file is
encoded using 128-bit encryption (40-
bit encryption when 1.3 compatibility
is used).

masterPassword = CDATA Specifies a password to override security
restrictions (noPrint, noModify, noCopy,
noAnnots, noForms, noAccessible,
noAssemble, noHiresPrint) that are applied
when the PDF file is created This
password must be different than the user

82 Customizer's Guide

Attributes of the Security element (continued)

Attribute and values Description

password.
noPrint = yes | no When set to yes, prevents printing of the

PDF file. You must also specify a
masterPassword when this attribute is set
to yes.

noModify = yes | no When set to yes, prevents modifying of
the PDF file. You must also specify a
masterPassword when this attribute is set
to yes.

noCopy = yes | no When set to yes, prevents copying and
extracting text and graphics, and disables
the accessibility interface of the PDF file.
You must also specify a masterPassword
when this attribute is set to yes.

noAnnots = yes | no When set to yes, prevents adding or
changing comments or form fields in the
PDF File. You must also specify a
masterPassword when this attribute is set
to yes.

noForms = yes | no When set to yes, prevents changing form
fields in the PDF file. You must also
specify a masterPassword when this
attribute is set to yes.

noAccessible = yes | no When set to yes, prevents extracting text
and graphics in the PDF file for
accessibility purposes (such as for a screen
reader program). You must also specify a
masterPassword when this attribute is set
to yes.

Customizing PDF Publishing 83

Attributes of the Security element (continued)

Attribute and values Description

noAssemble = yes | no When set to yes, prevents inserting,
deleting, or rotating pages, and creating
bookmarks and thumbnails in the PDF file.
You must also specify a masterPassword
when this attribute is set to yes.

noHiresprint = yes | no When set to yes, prevents high-resolution
printing of the PDF file. If noprint = yes,
printing is restricted to the “print as image”
option. You must also specify a
masterPassword when this attribute is set
to yes.

For detailed information about attribute inter-dependencies see Adobe
documentation.

Color Element
The <Color> element controls how color is handled on a black and white
printer. It’s optional and may be used once.
The <Color> element has one optional child Convert Element on page 85.
The <Color> element has the following attributes:

Attributes of the Color Element

Attribute and values Description
monochrome = yes | no Setting to yes replaces all foreground

colors (except white) with black, and
background colors are rendered as shades
of gray.

defaultRGB = CDATA Specifies the ICC profile for converting
RGB images, text, and graphics.

defaultGray = CDATA Specifies the ICC profile for converting
Gray images, text, and graphics.

defaultCMYK = CDATA Specifies the ICC profile for converting
CMYK images, text, and graphics.

The default input from Arbortext Editor is RGB, so all text is RGB. Graphics are
not converted.

84 Customizer's Guide

The color profile settings (defaultRGB, defaultGray, defaultCMYK) for the
Color element override the color profile settings for the <PDFX> element. You
can set defaultRGB = sRGB to revert to the color handling used in versions prior
to 5.2 of Arbortext Editor and Arbortext Publishing Engine.

Convert Element
The <Convert> element specifies the mapping of color conversion. It’s optional
and may be used once.
The <Convert> element may have the optional <Model> and <Spot> child
elements. The <Hue> element is not implemented.
The <Convert> element has no attributes.

Model Element
The <Model> element transforms any color from the source color model to the
target color model. It’s optional and repeatable.
The <Model> element has no child elements.
The <Model> element has the following attributes:

Attributes of the Model element

Attribute and values Description

from = RGB | CMYK | Grayscale |
all

The only source color model supported is
RGB. Specifying from = all only
converts RGB source.

to = RGB | CMYK | Grayscale The target model supports only
Grayscale or CMYK.

Spot Element
The <Spot> element specifies the mapping of one specified color to another
specified color. It’s optional and repeatable.
The <Spot> element specifies the mapping using the child elements <CMYK>,
<Grayscale>, or <RGB>. Specify the mapping by using the form source,target.
The source color will be replaced with the target color.
The <Spot> element has no attributes.

CMYK Element
The <CMYK> element specifies the eight digit hexadecimal representation of a
color based on eight bits each of cyan, magenta, yellow, and black.

Customizing PDF Publishing 85

The <CMYK> element has no child elements.
The <CMYK> element has no attributes.

Grayscale Element
The <Grayscale> element specifies the three digit hexadecimal representation
of grayscale based on twelve bit grayscale value.
The <Grayscale> element has no child elements.
The <Grayscale> element has no attributes.

RGB Element
The <RGB> element specifies the six digit hexadecimal representation of a color
based on eight bits each of red, green, and blue.
The <RGB> element has no child elements.
The <RGB> element has no attributes.

Font Element
The element configures font locations, maps .tfm file names to fonts,
and enables font substitutions, embedding and subsets.
The element has the following child elements:

Child elements of the Font element

DefaultFont Element
on page 87

Optional and may be used once

EmbedAlways Element
on page 88

Optional and may be used once

EmbedNever Element
on page 91

Optional and may be used once

Locations Element
on page 93

Optional and may be used once

Map Element
on page 93

Optional and repeatable

Simulation Element
on page 95

Optional and may be used once

Substitute Element
on page 97

Optional and repeatable

86 Customizer's Guide

The element has one attribute, bitmapResolution. The default
target resolution for bitmap fonts is 600 DPI.

DefaultFont Element
The <DefaultFont> element specifies the default font used when creating
PDF files. It’s optional and may be used once.
The <DefaultFont> element has one optional child element, <FontName>.
The <DefaultFont> element has no attributes.

FontName Element
The content of the <FontName> element specifies a system or font outline file.
It’s optional and repeatable.
The <FontName> element has no child elements. The <Simulation> element
overrides <FontName>.
The <FontName> element has the following attributes:

Attributes of the FontName element

Attribute and values Description

select = CDATA Specifies the operating system on which
the FontName is used. The value must
match one of the tokens generated by the
application (for example, “Windows”).
You can specify more than one selection.
If any of the selections is equal to any of
the selection criteria tokens, then the
FontName matches. If this attribute is
empty or not present, a FontName match
is assumed.

encoding = CDATA Indicates the encoding to be used with the
specified font. Multi-byte (Unicode and
PostScript CMaps) and 8-bit (cp125x,
where x = 0-8; iso8859-x, where x = 1-10,
13-16) formats are supported.

simulate = normal | bold |
italic | bolditalic

Specifies a font face to simulate. For
example, if a font does not have a bold
face font, you could specify bold. The
default is normal.

simulateMode = PDF | reader Specifies how to apply the simulation.
PDF modifies the font within the PDF, by
slanting the output for italics or using

Customizing PDF Publishing 87

Attributes of the FontName element (continued)

Attribute and values Description

multiple registrations of characters for
bold. reader sets a flag that tells the
PDF viewer to render the simulation,
which will work with standard PDF fonts.
The default is reader.

Note
If you choose reader, it only applies
to standard PDF fonts, which have
metrics built into the PDF reader.

type = SYS | TTF | PFA | PFB Specifies the type of font, system (SYS) or
a font outline file (.ttf, .pfa, or .pfb
file). The default is SYS.

path = CDATA Specifies the path and file name to the
type of file (.ttf, .pfa, or .pfb)
specified by type. If type = SYS, the path
is ignored. If you specify a relative path,
the path is relative to the custom
directory.

metrics = CDATA Specifies the metrics file (.afm or .pfm)
to be used when type = PFA or PFB. If
you do not specify a metrics file,
Arbortext Editor searches for a .afm file
with the same base file name as the PFA in
the specified path.

EmbedAlways Element
The <EmbedAlways> element specifies the fonts that are embedded in the PDF
file. However, <EmbedNever> takes precedence over <EmbedAlways>.
The <EmbedAlways> element has one child element, <FontName>.

88 Customizer's Guide

The <EmbedAlways> element has the following attributes and values:

Attributes of the EmbedAlways element

Attribute and values Description

allFonts = yes | no When set to yes, embeds all fonts except
fonts specified in <EmbedNever>. If you
want to embed some fonts, list them in the
FontName child element.

subsetting = yes | no When set to yes, embed only the
characters needed in a particular PDF file,
based on the percentage of the font used.
When set to no, embed the whole font.

subsetPercent = NMTOKEN Controls whether the whole font is
embedded (100%) or just the characters
needed by the PDF file, specified by a
percentage of the font used. If the number
of characters used exceeds this number, the
entire font is embedded. (See the
screen.pdfcf file for an example.)

ifEmbedFails = ignore | warn |
abort

Controls what happens in the PDF creation
process when embedding fails.

FontName Element
The content of the <FontName> element specifies a system or font outline file.
It’s optional and repeatable.
The <FontName> element has no child elements. The <Simulation> element
overrides <FontName>.
The <FontName> element has the following attributes:

Customizing PDF Publishing 89

Attributes of the FontName element

Attribute and values Description

select = CDATA Specifies the operating system on which
the FontName is used. The value must
match one of the tokens generated by the
application (for example, “Windows”).
You can specify more than one selection.
If any of the selections is equal to any of
the selection criteria tokens, then the
FontName matches. If this attribute is
empty or not present, a FontName match
is assumed.

encoding = CDATA Indicates the encoding to be used with the
specified font. Multi-byte (Unicode and
PostScript CMaps) and 8-bit (cp125x,
where x = 0-8; iso8859-x, where x = 1-10,
13-16) formats are supported.

simulate = normal | bold |
italic | bolditalic

Specifies a font face to simulate. For
example, if a font does not have a bold
face font, you could specify bold. The
default is normal.

simulateMode = PDF | reader Specifies how to apply the simulation.
PDF modifies the font within the PDF, by
slanting the output for italics or using
multiple registrations of characters for
bold. reader sets a flag that tells the
PDF viewer to render the simulation,
which will work with standard PDF fonts.
The default is reader.

Note
If you choose reader, it only applies
to standard PDF fonts, which have
metrics built into the PDF reader.

type = SYS | TTF | PFA | PFB Specifies the type of font, system (SYS) or
a font outline file (.ttf, .pfa, or .pfb
file). The default is SYS.

90 Customizer's Guide

Attributes of the FontName element (continued)

Attribute and values Description

path = CDATA Specifies the path and file name to the
type of file (.ttf, .pfa, or .pfb)
specified by type. If type = SYS, the path
is ignored. If you specify a relative path,
the path is relative to the custom
directory.

metrics = CDATA Specifies the metrics file (.afm or .pfm)
to be used when type = PFA or PFB. If
you do not specify a metrics file,
Arbortext Editor searches for a .afm file
with the same base file name as the PFA in
the specified path.

EmbedNever Element
The <EmbedNever> element specifies the fonts that you do not want embedded
in the PDF file. When <EmbedAlways> is specified, <EmbedNever> takes
precedence over <EmbedAlways>.
The <EmbedNever> element has one child element, <FontName>.
The <EmbedNever> element has no attributes.

FontName Element
The content of the <FontName> element specifies a system or font outline file.
It’s optional and repeatable.
The <FontName> element has no child elements. The <Simulation> element
overrides <FontName>.
The <FontName> element has the following attributes:

Customizing PDF Publishing 91

Attributes of the FontName element

Attribute and values Description

select = CDATA Specifies the operating system on which
the FontName is used. The value must
match one of the tokens generated by the
application (for example, “Windows”).
You can specify more than one selection.
If any of the selections is equal to any of
the selection criteria tokens, then the
FontName matches. If this attribute is
empty or not present, a FontName match
is assumed.

encoding = CDATA Indicates the encoding to be used with the
specified font. Multi-byte (Unicode and
PostScript CMaps) and 8-bit (cp125x,
where x = 0-8; iso8859-x, where x = 1-10,
13-16) formats are supported.

simulate = normal | bold |
italic | bolditalic

Specifies a font face to simulate. For
example, if a font does not have a bold
face font, you could specify bold. The
default is normal.

simulateMode = PDF | reader Specifies how to apply the simulation.
PDF modifies the font within the PDF, by
slanting the output for italics or using
multiple registrations of characters for
bold. reader sets a flag that tells the
PDF viewer to render the simulation,
which will work with standard PDF fonts.
The default is reader.

Note
If you choose reader, it only applies
to standard PDF fonts, which have
metrics built into the PDF reader.

type = SYS | TTF | PFA | PFB Specifies the type of font, system (SYS) or
a font outline file (.ttf, .pfa, or .pfb
file). The default is SYS.

92 Customizer's Guide

Attributes of the FontName element (continued)

Attribute and values Description

path = CDATA Specifies the path and file name to the
type of file (.ttf, .pfa, or .pfb)
specified by type. If type = SYS, the path
is ignored. If you specify a relative path,
the path is relative to the custom
directory.

metrics = CDATA Specifies the metrics file (.afm or .pfm)
to be used when type = PFA or PFB. If
you do not specify a metrics file,
Arbortext Editor searches for a .afm file
with the same base file name as the PFA in
the specified path.

Locations Element
The <Locations> element can provide additional directories to add to the
search path for locating font files such as AFM, PFA, TTF, and so on. It’s optional
and can only be used once.
The <Locations> element has one optional child element, <Path>.
The <Locations> element has no attributes.

Path Element
The <Path> element supplies a directory to add to the search path for locating
font files such as AFM, PFA, TTF, and the like. It’s optional and repeatable.
The <Path> element has no child elements.
The <Path> element has no attributes.

Map Element
The <Map> element maps the .tfm file names to fonts that will be embedded in
the PDF file. It’s optional and repeatable.
The <Map> element must specify one of the child elements, <FontName> or
<FontPath>.
The <Map> element has the following attributes and values:

Customizing PDF Publishing 93

Attributes of the Map element

Attribute and values Description

tfm = CDATA Associates a .tfm file with a real font.
Although you can list multiple real fonts,
only the first match is used.

adj = yes | no Not supported.

FontName Element
The content of the <FontName> element specifies a system or font outline file.
It’s optional and repeatable.
The <FontName> element has no child elements. The <Simulation> element
overrides <FontName>.
The <FontName> element has the following attributes:

Attributes of the FontName element

Attribute and values Description

select = CDATA Specifies the operating system on which
the FontName is used. The value must
match one of the tokens generated by the
application (for example, “Windows”).
You can specify more than one selection.
If any of the selections is equal to any of
the selection criteria tokens, then the
FontName matches. If this attribute is
empty or not present, a FontName match
is assumed.

encoding = CDATA Indicates the encoding to be used with the
specified font. Multi-byte (Unicode and
PostScript CMaps) and 8-bit (cp125x,
where x = 0-8; iso8859-x, where x = 1-10,
13-16) formats are supported.

simulate = normal | bold |
italic | bolditalic

Specifies a font face to simulate. For
example, if a font does not have a bold
face font, you could specify bold. The
default is normal.

simulateMode = PDF | reader Specifies how to apply the simulation.
PDF modifies the font within the PDF, by
slanting the output for italics or using
multiple registrations of characters for

94 Customizer's Guide

Attributes of the FontName element (continued)

Attribute and values Description

bold. reader sets a flag that tells the
PDF viewer to render the simulation,
which will work with standard PDF fonts.
The default is reader.

Note
If you choose reader, it only applies
to standard PDF fonts, which have
metrics built into the PDF reader.

type = SYS | TTF | PFA | PFB Specifies the type of font, system (SYS) or
a font outline file (.ttf, .pfa, or .pfb
file). The default is SYS.

path = CDATA Specifies the path and file name to the
type of file (.ttf, .pfa, or .pfb)
specified by type. If type = SYS, the path
is ignored. If you specify a relative path,
the path is relative to the custom
directory.

metrics = CDATA Specifies the metrics file (.afm or .pfm)
to be used when type = PFA or PFB. If
you do not specify a metrics file,
Arbortext Editor searches for a .afm file
with the same base file name as the PFA in
the specified path.

FontPath Element
The <FontPath> element specifies PK fonts (.pk files). The contents of the
<FontPath> element specify the path and file name of the .pk file relative to
the pixels directory.
The <FontPath> element has no child elements.
The <FontPath> element has one attribute, dpi = CDATA. The dpi attribute
specifies the font resolution.

Simulation Element
The <Simulation> elements can apply bold or italic simulation to fonts that
are not specified in FontName, are not mapped in this configuration file, and do
not have the specified font face available. It’s optional and can only be used once.

Customizing PDF Publishing 95

The <Simulation> element has the optional child elements Bold and
Italics.
The <Simulation> element has no attributes.

Bold Element
The <Bold> element controls simulation of fonts that do not have the specified
font face available. Bold simulation is controlled by this element if a font was
specified in the <FontName> element, with its simulateMode attribute set to
PDF and its simulate attribute set to bold. It’s optional and can only be used
once.
If the font was not specified in a <FontName> element, the <Bold> element
controls bold simulation if no bold face is found for the font.
The <Bold> element has no child elements.
The <Bold> element has the following attributes:

Attributes of the Bold element

Attribute and values Description

enable = yes | no Specifies whether to apply bold
simulation. The default is yes.

percent = CDATA Specifies the percentage of the font size to
use as the offset for multiple registrations
of the font for simulating bold. The default
is 5 percent.

threshold = CDATA Specifies the font point size above which
the offset will be constant to avoid
problems with large offsets on large font
sizes. The threshold value will be used to
calculate the offset. The default is 14
points.

Italics Element
The <Italics> element controls simulation of fonts that do not have the
specified font face available. Italics simulation is controlled by this element if a
font was specified in the <FontName> element, with its simulateMode
attribute set to PDF and its simulate attribute set to italic. It’s optional and
can only be used once.
If the font was not specified in a <FontName> element, the <Italics>
element controls italics simulation if no italic face is found for the font.

96 Customizer's Guide

The <Italics> element has no child elements.
The <Italics> element has the following attributes:

Attributes of the Italics element

Attributes and values Description

enable = = yes | no Specifies whether to apply italics
simulation. The default is yes.

angle = CDATA Specifies the angle of the text to simulate
italic. The setting is applied
counterclockwise from a vertical position.
The default value is -18.8 degrees.

Substitute Element
The <Substitute> element specifies a different font for producing the PDF
file than was used in the original document. The replacement font must have the
same font metrics as the original font. The original font name should be followed
by the name of one or more real font names. The first matching replacement font
found will be used. Arbortext Editor and Arbortext Publishing Engine use the first
replacement font that matches the selection criteria. It’s optional and repeatable.
The <Substitute> element has one child element, <FontName>, which
specifies the source and target font mapping. The target <FontName> is required
and repeatable.
The <Substitute> element has no attributes.

FontName Element
The content of the <FontName> element specifies a system or font outline file.
It’s optional and repeatable.
The <FontName> element has no child elements. The <Simulation> element
overrides <FontName>.
The <FontName> element has the following attributes:

Customizing PDF Publishing 97

Attributes of the FontName element

Attribute and values Description

select = CDATA Specifies the operating system on which
the FontName is used. The value must
match one of the tokens generated by the
application (for example, “Windows”).
You can specify more than one selection.
If any of the selections is equal to any of
the selection criteria tokens, then the
FontName matches. If this attribute is
empty or not present, a FontName match
is assumed.

encoding = CDATA Indicates the encoding to be used with the
specified font. Multi-byte (Unicode and
PostScript CMaps) and 8-bit (cp125x,
where x = 0-8; iso8859-x, where x = 1-10,
13-16) formats are supported.

simulate = normal | bold |
italic | bolditalic

Specifies a font face to simulate. For
example, if a font does not have a bold
face font, you could specify bold. The
default is normal.

simulateMode = PDF | reader Specifies how to apply the simulation.
PDF modifies the font within the PDF, by
slanting the output for italics or using
multiple registrations of characters for
bold. reader sets a flag that tells the
PDF viewer to render the simulation,
which will work with standard PDF fonts.
The default is reader.

Note
If you choose reader, it only applies
to standard PDF fonts, which have
metrics built into the PDF reader.

type = SYS | TTF | PFA | PFB Specifies the type of font, system (SYS) or
a font outline file (.ttf, .pfa, or .pfb
file). The default is SYS.

98 Customizer's Guide

Attributes of the FontName element (continued)

Attribute and values Description

path = CDATA Specifies the path and file name to the
type of file (.ttf, .pfa, or .pfb)
specified by type. If type = SYS, the path
is ignored. If you specify a relative path,
the path is relative to the custom
directory.

metrics = CDATA Specifies the metrics file (.afm or .pfm)
to be used when type = PFA or PFB. If
you do not specify a metrics file,
Arbortext Editor searches for a .afm file
with the same base file name as the PFA in
the specified path.

Label Element
The <Label> element provides a title for the PDF configuration file. The
<Label> element is optional and may only be used once.
The <Label> element has no child elements or attributes.

Documentation Element
The <Documentation> element provides content that describes the PDF
configuration file.
The <Documentation> element has no child elements or attributes. The
<Documentation> element is optional and may only be used once.

Customizing PDF Publishing 99

5
Customizing Publishing Rules

Customizing Publishing Rules .. 102
Publishing Rule Output Files .. 102
Publishing Rule Output .. 102
Publishing Rule Parameters ... 103
Adding a Publishing Rule Parameter... 104
Publishing Rule Set Parameters ... 108
Adding a Publishing Rule Set Parameter ... 110
Overriding Rule Parameters ... 113
Rule and Rule Set Error Handling ... 114
Arbortext Publishing Engine Document Conversion ... 114

101

Customizing Publishing Rules
See Publishing Rules Overview and its related topics in the Arbortext Editor or
Arbortext Publishing Engine Interactive online help for general information about
creating, using, and managing publishing rules. You will need to be familiar with
how publishing rules work to better understand this documentation.

Publishing Rule Output Files

Publishing Rule Output
The output of a publishing rule consists of the requested published document,
referenced content, and optional logs. The output can include the following:

• The published output as specified by the publishing rule, which is one of the
following, depending on the type of publishing operation:

○ a standalone file, such as PDF or HTML Help output.
○ a file with an additional directory, such as HTML File or RTF output. The

directory, named filename_files, contains graphics and other
external references if they exist. The directory is not produced if the
published content has no external references.

○ an output directory containing output files and subdirectories for Web
output. The directory contains the set of files comprising the content and a
set of subdirectories containing supporting files, such as graphics and CSS
stylesheets.

• an optional rule log that is placed in the same directory as the published output
for the rule. It contains information about the publishing process, including the
part of the Event Log that describes the execution of the publishing rule. The
log name will be the same as the rule's output file name (including file
extension) or directory name with an appended .rulelog.xml extension.

Publishing Rule Set Output
The output of a publishing rule set is a directory containing:

• a set of subdirectories, one for each publishing rule. Each subdirectory
contains the publishing rule output according to type of operation, as described
in the previous section.

102 Customizer's Guide

an optional rule log, also described in the previous section, can be placed in
the same directory as the published output for each rule being published.

• a manifest file can be placed in the rule sets’s top level output directory. The
rule set manifest.xml contains identifying information about the rule set
itself, then lists each publishing rule in the rule set. For each rule, the manifest
will list the rule's name, location, type and other static information. It will also
list the path to the rule's output directory or output file, whether output for the
rule succeeded, and how many errors and warnings were written to the Event
Log (which is included in the rule log) while the rule was executing.

Publishing Rule Parameters
Publishing rule parameters are stored in the rule’s definition in its rule file. The
publishing rule parameters control the names of output files or directories and
whether to generate log files for the publishing rule. Rule parameter values may
contain several variables, defined as follows:

• %n is the publishing rule name
• %u is a discretionary sequential numbering applied by a rule set processor to

ensure a directory name is unique.%u is an empty string when a rule runs
alone.

• %s is the period with file extension for a published output file (whether or not
it’s accompanied by a directory of referenced content), as specified by the
rule’s rule.outputSuffix parameter value. If the rule produces a
directory,%s is the empty string.

When a rule executes, the publishing rule processor substitutes the appropriate
value for these variables in each rule parameter. To specify a literal % in your
parameter value, use %%.

Customizing Publishing Rules 103

Publishing Rule Parameters

Parameter Name Parameter Values
rule.generateLog Determines whether a rule will generate a rule log

.rulelog.xml
If set to yes, then the rule will generate a rule log.
If set to no (the default), then no log is generated.
The rule set parameter generateRuleLogs can
override this parameter.

rule.outputSuffix Specifies the file extension used for published files.
Specific types of output have default file extensions,
so this parameter would be used to override the
default values or supply a value for a rule with no
default file extension for its output.
These files extensions are used as the default values
for publishing:
• .pdf for PDF
• .htm for HTML
• .rtf for exporting to RTF
• .ps for PostScript
• .chm for HTML Help
• .xml for publishing using XSL
Publishing for Web produces an output directory.

rule.outputTarget This parameter specifies the file or directory where
the published output will be written for a publishing
rule.
The default is %n%u%s.
It may be an absolute or relative path.
The ruleTargetPattern and
ruleTargetOverride for a rule set can override
this parameter.

Adding a Publishing Rule Parameter
Any publishing parameter can be set using the Advanced tab for the publishing
rule. This example uses a publishing rule from the sample publishing rules file
located at:
Arbortext-path\samples\publishingrules\sample.prcf

104 Customizer's Guide

You will need to put it into a supported publishing rules directory accessible to
your system, either your home directory or a custom\publishingrules
directory, so that Arbortext Editor can find it automatically. If you are not sure of
the location of your home directory, you can choose Help ▶▶ Session and find Home
directory in the list.
The following example shows how to add the rule.generateLog publishing
rule parameter to the Advanced tab for a sample publishing rule.

1. Open Tools ▶▶ Administrative Tools ▶▶ Publishing Rules and choose a rule.

2. Choose Modify to open Modify Publishing Rule.
3. On the Name tab, all rule or rule set identification information is displayed.

4. Choose the Publish tab to view the publishing settings for the rule.

Customizing Publishing Rules 105

5. Choose the Advanced tab. The list displays all the advanced parameters and
their values for the rule. Some of the parameters already selected will be listed
here. If some parameters are using defaults, they may not be listed.

106 Customizer's Guide

6. Choose Add to add the rule.generateLog publishing rule parameter.

Click Save to save the rule.generateLog parameter to the list of
Advanced parameters.

7. Click Save again to save the parameter with the rule definition. The next time
you publish with this rule, the rule log file will be generated along with the
PDF file.

Customizing Publishing Rules 107

Publishing Rule Set Parameters
Rule set parameters are stored in the rule set's definition in its rule file. The
publishing rule set parameters control how paths are handled, directory naming
conventions for multiple rules, and generating logs and manifest files. Rule set
parameter values may contain several variables, defined as follows:

• %n is the publishing rule name
• %u is a discretionary sequential numbering applied by a rule set processor to

ensure a directory name is unique.%u is an empty string when a rule runs
alone.

• %s is the period with file extension for a published output file (whether or not
it’s accompanied by a directory of referenced content), as specified by the
rule’s rule.outputSuffix parameter value. If the rule produces a
directory,%s is the empty string.

When a rule set is executed, the publishing rule processor substitutes the
appropriate value for these variables in each rule set parameter. To specify a literal
% in your parameter value, use %%.

Rule Set Parameters

Parameter Name Parameter Values
absoluteManifest
Paths

Determines whether paths to output files and
directories are specified in the manifest file as
absolute or relative paths, if a manifest file is
generated (see generateManifest).
If set to on, paths to output files and output
directories in the rule set manifest will be specified as
absolute paths.
If set to off (the default), paths to output files or
directories in the rule set manifest will be specified as
relative paths. The paths will be relative to the top
level directory for the rule set.
Paths to files or directories that are outside the rule
set's output directory will always be specified as
absolute paths.

generateManifest Determines whether a manifest file is generated for
the output of a rule set.
If set to yes, manifest.xml is written to the top
level rule set output directory, which lists the results
of the rule set execution.

108 Customizer's Guide

Rule Set Parameters (continued)

Parameter Name Parameter Values
If set to no (the default), a manifest file is not
generated.

generateRuleLogs Determines whether each rule in a rule set will
generate a rule log.
If set to yes, then every rule in the rule set will
generate a rule log.
If set to no (the default), then each rule in the set will
generate a log according to the value of its
rule.generateLog parameter.

outputMode This parameter has the value separate, which
means the output for each rule in a rule set is placed in
a separate directory.

outputModePattern Specifies the string to be used in constructing an
output directory for a rule in a rule set.
The default is rule-%n%u.
For example, if set to output%u, each output
directory would be named ouputn (output0,
output1, output2 and so on).

outputTarget This parameter specifies the directory where the rule
set output will be written.
The default is ruleset-%n, where %n is the rule set
name.
It may be an absolute or relative path.

Customizing Publishing Rules 109

Rule Set Parameters (continued)

Parameter Name Parameter Values
ruleTargetOverr
ide

Determines whether to override the
rule.outputTarget parameter of each rule in
the rule set, and replace it with the value of
ruleTargetPattern.
If set to yes, then each rule parameter value for
rule.outputTarget is replaced by the value of
the rule set parameter ruleTargetPattern.
If set to no (the default), then the
rule.outputTarget for the rule is obeyed.
For example, if a rule is named rule23, and the rule
set specifies ruleTargetPattern as output-
%n, specifying yes means that output-rule23
will be substituted as the output directory.

ruleTargetPattern Specifies the value to replace each rule’s
rule.outputTarget parameter, if
ruleTargetOverride is also set to yes.
The default is %n%u%s.
For example, if a rule is named rule23, and
ruleTargetPattern is set to output-%n and
ruleTargetOverride is set to yes, output-
rule23 will be substituted as the output directory.

Adding a Publishing Rule Set Parameter
This example uses the publishing rule set from the sample publishing rules file
located at:
Arbortext-path\samples\publishingrules\sample.prcf

You will need to put it into a supported publishing rules directory accessible to
your system, either your home directory or a custom\publishingrules
directory, so that Arbortext Editor can find it automatically. If you are not sure of
the location of your home directory, you can choose Help ▶▶ Session and find Home
directory in the list.
The following example shows how to add the absoluteManifestPaths rule
set parameter to the Advanced tab for the sample publishing rule set.

1. Open Tools ▶▶ Administrative Tools ▶▶ Publishing Rules and choose the rule set.

110 Customizer's Guide

2. Choose Modify to open Modify Publishing Rule Set.
3. On the Name tab, all rule or rule set identification information is displayed.

4. Choose the Rules tab to view the list of publishing rules in the rule set.

Customizing Publishing Rules 111

5. Choose the Advanced tab. The list displays the advanced parameters and their
values for the rule. If some parameters are using defaults, they may not be
listed.

6. Choose Add to add the absoluteManifestPaths publishing rule set
parameter.

112 Customizer's Guide

Click Save to save the absoluteManifestPaths parameter to the list of
Advanced parameters.

7. Click Save again to save the parameter with the rule definition. The next time
you publish with this rule set, the manifest file will be generated using
absolute paths.

Overriding Rule Parameters
A rule set can override a rule parameter by specifying a parameter with the
following syntax:
override:file:rule:parameter=override-value

• file (optional)

Specifies the rule file Unique ID assigned to the rule file when it was created.

If omitted, the override will apply to the first publishing rule matching the rule
specification.

• rule

Specifies the rule name.
• parameter

Specifies the parameter name that will have its value replaced by the override-
value.

• override-value

Specifies the value that will replace the value for parameter in the rule.
A rule set can override the same parameter for every rule it contains by specifying
a rule set parameter:
override:all:parameter=override-value

• parameter

Specifies the parameter name that will have its value replaced by the override-
value for every rule in the rule set.

• override-value

Customizing Publishing Rules 113

Specifies the value that will replace the value for parameter in every rule.
For example, override:all could specify the debug parameter for every rule
in the rule set by setting override-all:debug to the value 1.

Rule and Rule Set Error Handling
Error handling for rules and rule sets:

• Any rule parameter covered in the preceding documentation that has an
invalid value will be logged in the rule log as a Warning message. Publishing
processing will use the parameter's default value instead.

• Any rule parameter that is not recognized by the rule processor will be
ignored, presuming the intent is to pass it on to the publishing framework.

• Any rule set parameter covered in the preceding documentation that has an
invalid value will be logged in the manifest as a Warning message. Publishing
rule processing will use the default value instead.

• Any rule set parameter not covered in the preceding documentation (not
recognized by the rule processor) will be logged in the rule set manifest (if one
is generated) as a Warning message.

Arbortext Publishing Engine Document
Conversion
If you are using a client application and the f=convert function to send
publishing requests to the Arbortext PE server, you can control the rule set
parameters to be used during publishing on the Arbortext PE server. To use the
rule set parameters as defined in the rule file, specify use-ruleset-
parameters=yes on the HTTP f=convert request.
If you specify use-ruleset-parameters=yes, then Arbortext Publishing
Engine will use the parameter values specified in the rule set definition in the rule
file. If a parameter required for publishing processing is not specified in the rule
file, the default value will be used.
If you specify use-ruleset-parameters=no (the default), then Arbortext
Publishing Engine will ignore all rule set parameters in a rule file for f=
convert requests, and it will use all default values for rule set parameters.
For more information on using f=convert, see the Arbortext Publishing Engine
Document Conversion chapter of the Programmer's Guide to Arbortext Publishing
Engine.

114 Customizer's Guide

6
Working with XUI (XML-based User

Interface) Dialog Boxes
XUI Overview.. 116
Defining the Dialog Box.. 117
Displaying the Dialog Box using the AOM.. 117
Describing Dialog Box Controls .. 117
Specifying Dialog Box Layout ... 118
Specifying Event Listeners ... 123
Returning Values from Dialog Boxes ... 126
Manipulating XUI Dialog Boxes using the AOM.. 128
XUI Dialog Boxes and ACL .. 129
Working with Images ... 129
Working with Menus .. 131
Working with Toolbars.. 133
Working with Tables... 134
Working with Trees.. 135
Working with Dockable Dialog Boxes .. 145
Identifying the Parent Window of a Dialog Box... 146
Embedding XUI Dialog Box Controls in a Document... 147
XUI Display Recommendations .. 149
XUI Element Reference ... 150

115

XUI Overview
The Arbortext XUI (XML-based User Interface) technology lets an application
programmer create, display, manipulate, and modify dialog boxes in real time by
writing and modifying XML documents. All aspects of a dialog box, including
controls, layout, and event listeners, can be stored in a single XUI XML
document. The document type for XUI XML documents is Arbortext-path\
doctypes\xui\xui.dtd. The Arbortext XUI technology is influenced by the
Mozilla XML User Interface Language (XUL) and its ongoing development
(www.mozilla.org/projects/xul/xul.html).
Each control in a XUI dialog box is associated with an element in an XML
document. For example, to add a check box control to the dialog box, insert a
checkbox element in to the XUI document. A control’s properties are
represented by the attributes of the element. For example, the label attribute of
the checkbox element specifies the label of the check box control in the dialog
box. The checked attribute of the element represents the current status of the
check box control.
The layout of XUI dialog boxes is automatically managed by PTC Arbortext
Editor. The type of the layout and the properties of the layout are specified in the
XUI XML document by inserting layout related elements and attributes. XUI
layout algorithms arrange layout by considering the size of each control and
ensuring that the dialog box is displayed in a balanced manner after resizing.
PTC Arbortext Editor makes use of W3C XML Events to monitor the activities in
the dialog box. The W3C XML Events specification can be found at www.w3.org/
TR/2001/WD-xml-events-20011026. Event listening scripts can be inserted in the
XUI XML document as the content of an element representing an event listener.
A set of AOM interfaces manipulate XUI dialog boxes. For example, the Window
interface represents the frame window of the XUI dialog box. You can use the
hide method to hide the dialog box, the setTitle method to set the window’s
title, and so on. Refer to Manipulating XUI Dialog Boxes using the AOM on page
128 for more details.
XUI dialog boxes can be displayed as standard dialog boxes (overlaying an
application or document), and they can be displayed embedded in a document in
the Edit pane in Arbortext Editor. Refer to Embedding XUI Dialog Box Controls
in a Document on page 147 for details on displaying XUI dialog boxes within
documents. Standard dialog boxes with docking enabled can be dragged into a
Arbortext Editor edit window and docked on one edge of the edit window. Dialog
boxes with docking enabled can contain all controls that are allowed in a standard
dialog box except for toolbars and menubars.

116 Customizer's Guide

http://www.mozilla.org/projects/xul/xul.html
http://www.w3.org/TR/2001/WD-xml-events-20011026
http://www.w3.org/TR/2001/WD-xml-events-20011026

Defining the Dialog Box
You can use Arbortext Architect to interactively define and modify XUI dialog
boxes. With Arbortext Architect open, choose Edit ▶▶ XUI. Open your XUI XML
document. (A sample file is at Arbortext-path\doctypes\xui\
demo.xml.)
With Arbortext Architect displaying the XUI XML document, choose Tools ▶▶
View Dialog. The XUI dialog box will be displayed.
Changing values and settings in the XML document will be reflected immediately
in the dialog box. Likewise, modifying controls in the dialog box will cause
immediate updates to the XML document.
You should save your custom XUI files in the Arbortext-path\custom\
dialogs directory.

Displaying the Dialog Box using the AOM
The AOM Application.createDialogFromFile() method creates XUI
dynamic dialog boxes.
To display a XUI dialog box (in this example, the dialog box is defined in the
XML file C:\Project\find.xml), you can run the following JavaScript
statements:
var dialog = Application.createDialogFromFile("c:\Project\find.xml");
dialog.show();

Another method, Application.createDialogFromDocument(), creates
a XUI dynamic dialog box from an existing DOM Document.
As when defining the XUI dialog box, value and setting changes in the XML
document will be reflected immediately in the dialog box. Likewise, modifying
controls in the dialog box will cause immediate updates to the XML document.
To suspend immediate updates, set the value of View.suspendupdates to TRUE.

Describing Dialog Box Controls
Dialog boxes and their controls are defined using the XUI elements described in
XUI Element Reference on page 150. Refer to that section for detailed
descriptions of each element and its attributes.
For example, the following XUI markup defines this dialog box:

Working with XUI (XML-based User Interface) Dialog Boxes 117

Dialog box with label, textbox, and two button controls.
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN" "xui.dtd">
<window title="Find">
<label label="&Find what:"/>
<textbox multiline="false">
<value></value>
</textbox>
<button label="Find &Next" type="accept"></button>
<button label="Cancel" type="cancel"></button>
</window>

The content of the value element will become the text the user enters into the
text box in the dialog box. A button with the type cancel is activated when the
Esc key is pressed. A button with the type accept is the default button and is
activated when the ENTER key is pressed.

Specifying Dialog Box Layout
XUI supports three layout models: Box, Grid, and Morph.
Layout models are specified by using their corresponding elements.

Layout Model XUI Element
Box layout box
Grid layout grid
Morph layout morph

Box Layout
The Box layout model divides a portion of the dialog box into a series of nested
containers using the <box> element. Each container is oriented horizontally or
vertically. Controls inside each container are listed in order according to the
orientation of the container.
For example, the following dialog box can be expressed by using seven
containers:

Dialog box with the following controls.

118 Customizer's Guide

Box 1 contains the Find What label and its text field.

Box 2 contains the two check boxes.

Container 3 is the Direction radio group.

Box 4 contains the Find Next and Cancel buttons.

Box 5 contains box 2 and container 3.

Box 6 contains box 1 and box 5.

Container 7 is the root (<window>), which contains box 4 and box 6.
This dialog box can be described using XUI as follows:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN" "xui.dtd">
<window orient="horizontal" focus="findtext" modal="false" title="Find">
<box orient="vertical">
<box orient="horizontal">
<label label="Fi&nd What:"/>
<textbox id="findtext">
<value></value>
</textbox>
</box>
<box orient="horizontal">
<box orient="vertical">
<checkbox label="Match &whole word only"></checkbox>
<checkbox label="Match &case"></checkbox>
</box>
<radiogroup label="Direction" resize="both" orient="horizontal">
<radio label="&Up"></radio>
<radio label="&Down"></radio>
</radiogroup>
</box>
</box>
<spacer resize="none" width="4"/>
<box orient="vertical" pack="start">
<button label="&Find Next" type="accept"></button>
<button label="Cancel" type="cancel"></button>
</box>
</window>

The <box> element has attributes for customizing the layout. For example, the
attribute pack specifies how extra space should be distributed. The attribute orient
specifies the baseline of the controls in a box. Refer to <box> Element on page
151 for a detailed description of the <box> element.

Grid Layout
The Grid layout model lets you display a group of controls in rows and columns
using the <grid> element.

Working with XUI (XML-based User Interface) Dialog Boxes 119

For example, the following dialog box uses the Grid layout.

Dialog box with a Grid layout.
This dialog box has two columns and four rows. It is described using XUI as
follows:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN" "xui.dtd">
<window orient="vertical" modal="true" title="Register">
<grid columns="2">
<label label="&Name:"/>
<textbox width="180">
<value></value> </textbox>
<label label="&Organization:"/>
<textbox>
<value></value>
</textbox>
<label label="&Address:"/>
<textbox>
<value></value>
</textbox>
<label label="&Telephone:"/>
<textbox>
<value></value>
</textbox>
</grid>
<spacer height="8" resize="none"/>
<box orient="horizontal" pack="center">
<button label="&OK" type="accept"/>
<button label="Cancel" type="cancel"/>
</box>
</window>

Refer to <grid> Element on page 167 for a detailed description of the <grid>
element.

120 Customizer's Guide

Morph Layout
The Morph layout uses the <morph> element to create a dialog box that
dynamically adjusts the layout of its contents. This makes the Morph layout very
useful for displaying a dialog box with an varying set of controls based on context
or containing a large number of controls.
Consider a dialog box with a Morph layout that initially displays its contents in
the same manner as a Grid layout:

A dialog box with a Morph layout with a single column of label and related
textbox controls.
As the dialog box is resized, the layout may change to include additional columns.
For example:

A dialog box with a Morph layout with two columns of label and related
textbox controls.
When the dialog box is resized so small that all of the elements can no longer be
displayed, the layout changes to a tabbed box. For example:

Working with XUI (XML-based User Interface) Dialog Boxes 121

A dialog box with a Morph layout with tabs, each with a single column of label
and related textbox controls.
This Morph dialog box is described in XML as follows:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN" "xui.dtd">
<window title="Modify Attribute">
<box orient="horizontal">
<box orient="vertical">
<grid morph="true">
<label label="boardno:"/>
<combobox dropdown="true">
<listitem label="usafseal"/>
</combobox>
<label label="graphsty:"/> <textbox/>
<label label="llcordra:"/> <textbox/>
<label label="rucordra:"/> <textbox/>
<label label="reprowid:"/> <textbox/>
<label label="reprode:p"/> <textbox/>
<label label="hscale:"/> <textbox/>
<label label="vscale:"> <textbox/>
<label label="scalefit:"/> <textbox/>
<label label="hplace:"/>
<combobox dropdown="true">
<listitem label="center"/>
<listitem label="left"/>
<listitem label="none"/>
<listitem label="right"/>
</combobox>
<label label="vplace:"/>
<combobox dropdown="true">
<listitem label="bottom"/>
<listitem label="middle"/>
<listitem label="none"/>
<listitem label="top"/>
</combobox>
<label label="coordst:"/> <textbox/>
<label label="coordend:"/> <textbox/>
<label label="rotation:"/> <textbox/>
<label label="security:"/>
<combobox dropdown="true">

122 Customizer's Guide

<listitem label="c"/>
<listitem label="s"/>
<listitem label="u"/>
</combobox>
</grid>
<description label="Element: graphic"/>
</box>
<box orient="vertical">
<button label="OK"/>
<button label="Cancel"/>
<button label="Help"/>
<button label="Validate"/>
<button label="Reset"/>
<button label="Reset All"/>
<button label="Delete"/>
<button label="Delete All"/>
</box>
</box>
</window>

The PTC Arbortext Editor Modify Attributes dialog box is an example of a Morph
layout. While editing a document with PTC Arbortext Editor, choose Edit ▶▶Modify
Attributes. The Modify Attributes dialog box displays all of the attributes for the
current element. If you resize the dialog box, the layout changes to accommodate
the controls.
Refer to <morph> Element on page 180 for a detailed description of the
<morph> element.

Specifying Event Listeners
Since a XUI dialog box is synchronized with its XUI XML document, you can
register DOM events in the document to monitor activities in the dialog box. For
example, when a check box is selected, the checked attribute of the element will
change to true. If you register a DOMAttrModified event on the checkbox
element, you will be informed whenever the check status is changed in the dialog
box.
XUI extends the DOMActivate event to be dispatched when the status of a
control is changed. For example, a DOMActivate event will be dispatched to the
affected element whenever a button is clicked, a check box is selected, an item in
a list box is selected, the content of a text box is changed, and so on. Therefore,
you can register a DOMActivate event listener on a button element to execute
the necessary routines when a button is pushed.
XUI makes use of W3C XML Events. You can register event listeners in the XUI
document as follows:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN" "xui.dtd">
<window>

Working with XUI (XML-based User Interface) Dialog Boxes 123

<button label="OK">
<script type="application/x-javascript" ev:event="DOMActivate">
Application.alert("The OK button is selected");
</script>
</button>
</window>

This document declares the XML Events namespace in the window element. The
script element contains the script that will be executed when the event
specified by the ev:event attribute is dispatched. Therefore, the script element
registers a DOMActivate event listener on the button element, and the body
of the event listener is the content of the script element. When the OK button is
pushed, the JavaScript engine will display a message box with the message “The
OK button is selected”.
The type attribute of the script element specifies the type of the script. XUI
supports JavaScript (Rhino), JScript (Microsoft), and VBScript. Refer to <script>
Element on page 187 for a list of valid script types.

Note
Be aware that XUI can make use W3C UIEvent events, XUI cannot make use
of MouseEvent events, a subclass of UIEvent. MouseEvent is currently
supported only for documents in the Arbortext Editor edit pane.

In addition to DOM Events, you can register AOM WindowEvent events on the
window element. The WindowEvent module has the following event types:

Event type Time to dispatch
WindowLoad Before the dialog box is loaded on the

screen.
WindowClosing After the dialog box title bar’s close

button is selected.
WindowClosed After the dialog box is dismissed.
WindowCreated After the dialog box is created.

(Listeners can only be added to the
Application object.)

WindowActivated After the dialog box gains focus.
WindowDeactivated After the dialog box loses focus.
WindowMinimized After the dialog box is minimized.
WindowRestored After the dialog box is restored from

being minimized.

The following examples show the three ways to register an event listener:

124 Customizer's Guide

Example

Use the listener to associate an event handler with its observer
In this example, the usage attribute <script> is set to indirect. Doing so
disassociates the <script> element from its parent <window> element. If
usage is set to direct (the default), the observer of the handler is the handler's
parent element.
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN" "xui.dtd">
<window>
<button id="ok" label="OK"/>
<script id="select" usage="indirect" type="application/x-javascript">
Application.alert("The OK button is selected");
</script>
<ev:listener event="DOMActivate" observer="ok" handler="#select"/>
</window>

Example

Attach attributes directly to the observer element
As in the previous example, the usage attribute of <script> is set to
indirect, disassociating the <script> element from its parent <window>
element.
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN" "xui.dtd">
<window>
<button label="OK" ev:event="DOMActivate" ev:handler="#select"/>
<script id="select" usage="indirect" type="application/x-javascript">
Application.alert("The OK button is selected");
</script>
</window>

Example

Attach attributes directly to the handler element
The observer is the parent element of the handler. This example illustrates the
simplest way to register an event listener.
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN" "xui.dtd">
<window>
<button label="OK">
<script type="application/x-javascript" ev:event="DOMActivate">
Application.alert("The OK button is selected");
</script>
</button>
</window>

Working with XUI (XML-based User Interface) Dialog Boxes 125

Returning Values from Dialog Boxes
Because the XUI document is updated when any values or states change in the
control it defines, the value of the control can be obtained by evaluating the
content of the XUI document. Based on the XUI DTD, each control type (textbox,
checkbox, and so on) potentially stores its value in a different manner in the
document.
For example, a <textbox> element stores its value as the content of its child
<value> element. A <combobox> element stores it's value in its value
attribute. Refer to XUI Element Reference on page 150 (or the XUI DTD) for
details on each control.
The following examples return the current values of different dialog box controls.

Example

Returning a value from a textbox control
The value of a <textbox> element is stored as the content of the child
<value> element. The following example displays the value in a message
window when the OK button is selected.

<?xml version="1.0" encoding="utf-8"?>
<!--ArborText, Inc., 1988-2003, v.4002-->
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN"
"xui.dtd">
<window orient="horizontal" align="center" modal="false" title="Value Test">
<label label="User ID"/>
<textbox id="userid">
<value></value>
</textbox>
<button label="OK" type="accept">
<script type="application/x-javascript" ev:event="domactivate">
var document = Application.event.target.ownerDocument;
var textnode = document.getElementById("userid").firstChild.firstChild;
if (textnode) {
Application.alert(textnode.nodeValue);
}
else {
Application.alert("[EMPTY]");
}
var dialog = Application.event.view.window;
dialog.close();
</script>
</button>
</window>

126 Customizer's Guide

Example

Returning a value from a combobox control
The value of a <combobox> is stored in its value attribute. The following
example displays the value in a message window when the OK button is selected.

<?xml version="1.0" encoding="utf-8"?>
<!--ArborText, Inc., 1988-2003, v.4002-->
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN"
"xui.dtd">
<window orient="horizontal" align="center" modal="false" title="Value Test">
<label label="Choose a color"/>
<combobox id="color" value="Red" type="dropdownlist">
<listitem label="Red"/>
<listitem label="Orange"/>
<listitem label="Yellow"/>
<listitem label="Green"/>
<listitem label="Blue"/>
</combobox>
<button label="OK" type="accept">
<script type="application/x-javascript" ev:event="domactivate">
var document = Application.event.target.ownerDocument;
var value = document.getElementById("color").getAttribute("value");
Application.alert(value);
var dialog = Application.event.view.window;
dialog.close();
</script>
</button>
</window>

Example

Returning a value from a multiple-selection listbox control
You can select 1 or more values in a multiple-selection <listbox> control. The
following example displays each selected value in a message window when the
OK button is selected.

<?xml version="1.0" encoding="utf-8"?>
<!--ArborText, Inc., 1988-2003, v.4002-->
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN"
"xui.dtd">
<window orient="horizontal" modal="false" title="Value Test">
<label label="Choose Colors"/>
<listbox id="color" width="100" height="100" value="Red" type="multiple">
<listitem label="Red" selected="true"/>
<listitem label="Orange"/>
<listitem label="Yellow" selected="true"/>
<listitem label="Green"/>
<listitem label="Blue"/>

Working with XUI (XML-based User Interface) Dialog Boxes 127

</listbox>
<button label="OK" type="accept">
<script type="application/x-javascript" ev:event="domactivate">
var document = Application.event.target.ownerDocument;
var listbox = document.getElementById("color");
var nodelist = listbox.getElementsByAttribute("selected", "true", 1);
for (var i = 0; i < nodelist.length; i++) {
Application.alert(nodelist.item(i).getAttribute("label"));
}
var dialog = Application.event.view.window;
dialog.close();
</script>
</button>
</window>

For more information on working with events, refer to the Events chapter in the
Programmer's Reference.

Manipulating XUI Dialog Boxes using the
AOM
AOM Window and View interfaces work on both XUI dynamic dialog boxes and
PTC Arbortext Editor Edit windows. A XUI Window object can be obtained when
the dialog box is created. For example, the following JavaScript statement returns
an AOM Window object.
var window = Application.createDialogFromFile("C:\find.xml");

An Edit Window object can be obtained by converting an ACL window ID to its
corresponding AOM Window object. For example:
var window = Acl.getWindow(5);

Whether or not the window with focus is a XUI dialog box or an Edit window,
you can use the following JavaScript statement to get its Window object.
var window = Application.activeWindow;

Once you have the Window object, you can call the methods of the Window
interface to manipulate the window. For example, the following JavaScript code
moves the active window to a specific location:
Application.activeWindow.moveTo(200, 200);

You can find a complete list of methods for the Window interface in the Window
interface chapter of the Programmer's Reference.

Customizing the Preferences Dialog Box
When Arbortext Editor loads the Preferences dialog box, it scans the dialog
search path looking for a file called pref_exts.xml. If any are found, they
will be processed in order. Arbortext Editor opens the file, parses it, and adds the

128 Customizer's Guide

new preferences categories to the XUI document which controls the Preferences
panel. You can use the pref_exts.xml file to extend the Preferences dialog
box for your custom application.
When Arbortext Editor launches, it finds any pref_exts.xml files and adds
one or more new items to the list under Category as specified in the file. When the
user chooses the new category, its relevant preference settings are displayed
adjacent to the right as specified by the designed by the pref_exts.xml file.
The pref_exts.xml file must be placed in a location where Arbortext Editor
can locate it at startup, such as the custom\dialogs directory or in a
dialogs subdirectory of a custom application running under the
application directory. Both of these locations are part of the set
dialogspath by default.
A sample Preference Dialog Extension that you can use as a starter for your
custom application is in the Arbortext-path\samples\xui\
preferences directory. This example uses the custom directory structure and
contains several files to be placed within its subdirectories. The pref_
exts.xml file contains comments that describe the rules and guidelines for
using this capability.

XUI Dialog Boxes and ACL
All XUI dialog boxes support dlgitem_set(), dlgitem_get(), and all
variations of dlgitem_set_xxx() and dlgitem_get_xxx() ACL
functions. The id attribute of the element in the XUI document is the dialog box
control name. If a control has no id specified, the control has no dialog box
control name and cannot be used with dlgitem_set().
For example, if the XUI document contains the following checkbox element:
<checkbox id="full" label="Full Menus"/>

you can use dlgitem_set(win, 'full', 'VALUE', 1) to mark the check
box as checked.
When using any of the dlgitem_set_xxx() functions, the value displayed in
the dialog box control will be updated on-screen. However, the underlying XUI
document will not change. That is, the value in the XUI document will not be
updated by the dlgitem_set_xxx() function.

Working with Images
Images can be used in many areas of XUI dialog boxes, such as in check boxes,
on menus, and on buttons. (However, images are not available on submenu items.)
Images are first defined using image or imagelist elements. The images are
then referenced using the image attribute of the element displaying the image.

Working with XUI (XML-based User Interface) Dialog Boxes 129

The following example uses the image element to define the image c:\temp\
logo1.jpg and display it on a button.
<window>
<imagegroup>
<image id="imageLogo" path="c:\temp\logo1.jpg"/>
</imagegroup>
...
<button image="imageLogo"></button>
...
</window>

When deploying XUI controls, absolute paths to images may be restrictive. For
XUI controls referencing images by name only, Arbortext Editor will first search
the paths defined with the set dialogspath command option (and Advanced
Preference). If the image is not found, Arbortext Editor will search the paths
defined with set graphicspath. Images with relative paths will also be
searched for in directories relative to the paths defined by set dialogspath
and set graphicspath.
Another approach to working with images is to use the imagelist element to
specify that a single graphic file contains multiple images of identical widths and
heights.
For example, if path specifies a graphic file with a width of 48 and height of 16,
and imagewidth is set to a value of 16, imagelist will contain 3 image
elements, each defining an image 16 pixels wide by 16 pixels high.
The following example uses the imagelist element to define three images in
tool_icons.jpg and displays them in a list box.
<window>
<imagegroup>
<imagelist path="tool_icons.bmp" imagewidth="16">
<image id="imageIconCopy"/>
<image id="imageIconCut"/>
<image id="imageIconPaste"/>
</imagelist>
</imagegroup>
...
<listbox>
<listitem image="imageIconCopy">
<listitem image="imageIconCut">
<listitem image="imageIconpaste">
</listbox>
...
</window>

If a menu item has the same command as a toolbar button, then the button's image
is displayed next to the item on the menu. For example, if a toolbar button
element has command set to FileNew and image set to image.jpg, and a
menuitem element also has command set to FileNew, the image image.jpg
will be displayed next to the menu item.

130 Customizer's Guide

Working with Menus
You can create menus using the <menubar> and <menuitem> elements.
Menus can be create on menubars, as shortcut menus, and as dropdown menus.
A <menuitem> can execute the ACL command specified in its command
parameter, or the actions defined in its child <script> element using
menuselected and menupost event listeners. The menuselected listener
can contain the command for the menu item. The menupost listener can disable
the menu item when certain conditions are met. Listeners can also be registered
for the same events on items within a shortcut or dropdown menu. The posting of
a menu for either a menubar or a control will cause the event ITEM_POSTMENU
to be dispatched. The selection of an item will cause the existing ITEM_
CHANGED event to be dispatched.

Menus on Menubars
Menu bar menus can contain any combination of the following types of menu
items:

• Button menu item — Appears as a standard menu selection with an optional
graphic to the left of its label. This is the only type of menu item that can have
child <menuitem> elements.

• Menu separator — A line separating adjacent items.
• Toggle menu item —When activated, the item will display a check mark to

the left of its label.
• Radio menu item — The menu item is displayed as a radio button.

Example

Sample menu bar
The following example creates a menu named Custom that contains the following
menu items:

• A Find menu item that uses ACL to open the Find/Replace dialog box
• An Options menu with the following menu items:

○ A Cut menu item that is disabled if no content in the document is selected.
If content is selected, the Cut menu item becomes available and, when
chosen, will cut the selected content to the clipboard.

○ A Full Menus menu item that toggles the available Arbortext Editor menus

Working with XUI (XML-based User Interface) Dialog Boxes 131

between standard and full menus. Full Menus has a check mark next to it
when enabled.

• A My ACL Function menu item that displays a response dialog box. This item
is a template for inserting your own function.

<window width="150" height="40">
<menubar>
<menuitem label="Custom">
<menuitem label="Find" command="FindReplace"></menuitem>
<menuitem label="Options">
<menuitem label="Cut" shortcut="Ctrl+X" command="EditCut">
<script type="application/x-javascript" ev:event="menupost">
if (Application.activeDocument.textSelection.collapsed == true) {
Application.event.target.enabled=false;
}
else {
Application.event.target.enabled=true;
}</script>
</menuitem>
<menuitem label="Full Menus" type="toggle">
<script type="application/x-javascript" ev:event="menupost">
if (Application.getOption("fullmenus") == "on") {
Application.event.target.checked=true;
}
else {
Application.event.target.checked=false;
}
</script>
<script type="application/x-javascript" ev:event="menuselected">
if (Application.event.target.checked == true) {
Application.setOption("fullmenus", "off");
}
else {
Application.setOption("fullmenus", "on");
}
</script>
</menuitem>
</menuitem>
<menuitem label="-" type="separator">
</menuitem>
<menuitem label="My ACL function"
command="response('Put your ACL function call here')">
</menuitem>
</menuitem>
</menubar>
</window>

Shortcut and Dropdown Menus
You can create shortcut and dropdown menus in the following situations:

132 Customizer's Guide

• Shortcut menu assigned to a tree control and customized in context for its
nodes.

• Shortcut menu assigned to a table control and customized in context for its
cells and rows.

• Dropdown menus for button controls.
• Dropdown menus for toolbar buttons controls.
When implemented, shortcut menus are displayed by placing the mouse cursor
over the control and right-clicking. Shortcut menus are also displayed by pressing
the Application key when the control has focus. Dropdown menus are displayed
by left-clicking on a control and by activating a control when it has focus.
The Acl event notification API supports menus within XUI dialog boxes. Menus
can be specified in menu configuration files as well, but the event management for
these menus does not use the Acl event enhancements. Instead, event
management is specified within the configuration files.
An example application of XUI menus with menu bars, controls, and tool bars is
provided in the following directory:
Arbortext-path\samples\XUI\xuimenusample

Working with Toolbars
XUI provides limited toolbar support. You can create toolbars on dialog boxes
using the <toolbargroup> and <toolbar> elements. A toolbar is made up
of a collection of toolbar buttons defined with the <button> and <checkbox>
elements. Other controls, such as <colordropdown>, <comboxbox>,
<listdropdown> and <textbox> elements can be copied from those
delivered with Arbortext Editor, but they cannot be customized. Refer to the
following file for examples of the toolbars used by Arbortext Editor.
Arbortext-path\lib\dialogs\editwindow.xml

Note
Do not customize the files that ship with Arbortext Editor. Use these files as
templates for site-specific files you store in your \custom directory.

Toolbar buttons invoke ACL functions using their command attributes. AOM calls
and events are not supported.
You can display a XUI toolbar with the ACL function window_load_
component_file() or with the AOM loadComponentFile method of the
Window class.
Use the following ACL functions to control toolbars. (toolbar_id is the value of
the id attribute of the <toolbar> element in the XUI file.)

Working with XUI (XML-based User Interface) Dialog Boxes 133

• Hiding and showing toolbars
dlgitem_hide(win, toolbar_id)
dlgitem_show(win, toolbar_id)

• Hiding and showing a toolbar while also removing and adding the toolbar
name to the View ▶▶ Toolbars menu.
dlgitem_withdraw(win, toolbar_id)
dlgitem_display(win, toolbar_id)

• Removing toolbars
dlgitem_remove_toolbar(win, toolbar_id)

• Temporarily removing or replacing a control in a toolbar. control_id is the id
attribute of the element representing the control in the toolbar.
dlgitem_withdraw(win, control_id)
dlgitem_display(win, control_id)

For example, the following function removes the Toolbar_
InsertMarkup toolbar button in the Arbortext Editor toolbar toolbar2:
dlgitem_withdraw(win, 'Toolbar_InsertMarkup');

Note
When customizing toolbars using these functions, note that Arbortext Editor
distinguishes between toolbar items (such as buttons and separators) by
processing the value of each one’s command= attribute. Objects that have the
same value for the attribute are indistinguishable for purposes of enabling,
disabling, hiding, unhiding, and other kinds of manipulation, even if they have
a different configuration. To ensure that objects are processed differently
based on their configuration, for example to hide one separator and display the
others, each object must have their command= attribute set to a different
value.

For example:
<separator id="Separator-sep1" command="response('a')'"/
> ... <separator id="Separator-OptionalToolBtnSeparator"
withdraw="true" command="response{'b'}"/V

Working with Tables
The <tablecontrol> element displays content in rows and columns. The
child element <header> defines the columns in the table. The child element
<row> defines the table's rows. The <tablecontrol> sortedcolumn attribute
specifies the column to use when sorting rows. (When rows are resorted in a

134 Customizer's Guide

dialog box, the order of the rows in the XUI XML document is not reordered.)
The<tablecontrol> gridlines attribute specifies that rules are displayed
between rows and columns.
If the <tablecontrol> showimages attribute is set to true, images specified
in the <row> elements will appear in the table to the left of each row.

Example

Table control
The following XUI markup defines this table:

<window width="125" height="200" focus="tablecontrol">
<tablecontrol id="tablecontrol" columns="2" value="Newton" gridlines="true">
<header>
<column label="Name"/>
<column label="Country"/>
</header>
<row>
<cell>Newton</cell>
<cell>England</cell>
</row>
<row>
<cell>Plato</cell>
<cell>Greece</cell>
</row>
</tablecontrol>
</window>

Working with Trees
The <treecontrol> element creates a hierarchical outline view of data
displayed as branches off of nodes. Each node in a <treecontrol> structure is
created with a <treenode> element. A <treecontrol> element can have
child <treecontrol> elements.

Working with XUI (XML-based User Interface) Dialog Boxes 135

The <treecontrol> branchimage, extraimage, leafimage, openbranchimage,
and selectedimage parameters let you specify images to appear to the left of node
labels. The same parameters on <treenode> elements override those set on the
<treecontrol> element.

Example

Tree control
The following XUI markup defines this tree control:

<window width="125" height="200" focus="treecontrol">
<treecontrol id="treecontrol" height="100">
<treenode label="Books" selected="true">
<treenode label="Fiction">
<treenode label="Fantasy"></treenode>
<treenode label="Mystery"></treenode>
<treenode label="Science"></treenode>
</treenode>
<treenode label="History" expanded="true">
<treenode label="Egypt"></treenode>
<treenode label="France"></treenode>
<treenode label="Thailand"></treenode>
</treenode>
</treenode>
</treecontrol>
</window>

Selecting Objects in Tree Controls
A XUI tree control has two different selection types or modes: single selection and
multiple selection. The tree control selection mode is set with the seltype attribute
on the treecontrol element. Legal values are single (the default) and
multiple. The selection mode cannot be changed at run time.

136 Customizer's Guide

In single selection mode, the tree control allows only one tree node to be selected
at a time.
Multiple selection allows more than one tree node in the tree control to be selected
at a time. Multiple selection mode is accessible using ACL only. XUI has no
default rules as to how parent and child nodes are handled when selected in
multiple selection mode. Such handling is the responsibility of the custom ACL
application working with the XUI controls.
Detect selection changes by using the dlgitem_add_callback function to
add a callback to the tree control and the check for ITEM_CHANGED events in the
callback function. Use the following functions to work with tree control
selections:

• dlgitem_get_select_array(window, dlgitem, array)

If the tree control is in single selection mode, the array will be populated with
one entry — the list tag of the only selected tree node. If the tree control is in
multiple selection mode, the array will be populated with the list tags of all
selected nodes in the tree control.

• dlgitem_get_selected_appdata(window, dlgitem)

This function returns the application-specific data for the selected node when
in single selection mode. When the tree control is in multiple selection mode,
the function returns the application-specific data for the first node in the
selection. To get the application-specific data of all selected items when in
multiple selection mode, first find all of the selected nodes using dlgitem_
get_selected_listtag_array(), then iterate over the returned list
tags calling dlgitem_get_appdata_at() for each.

• dlgitem_get_selected_listtag(window, dlgitem)

This function returns the list tag of the selected node when the tree control is
in single selection mode. When the tree control is in multiple selection mode,
it returns the list tag of the first selected tree node.

• dlgitem_select_list_at(window, listtag, row)

This function selects the tree node at the position specified. When the tree
control is in single selection mode, the specified tree node will be set as the
only selected node. When the tree control is in multiple selection mode, the
specified tree node is added to the current selection; no nodes are unselected
as a result of this call when a valid row is specified. To select a single node
when the tree control is in multiple selection mode, first clear any selection,
then use this function to select the desired node.

• dlgitem_get_selected_listtag_array(window, dlgitem,
array)

Working with XUI (XML-based User Interface) Dialog Boxes 137

This function returns an array containing the list tags of all selected nodes in
the tree control. When the tree control is in single selection mode the array
contains a single value — the list tag of the only selected node in the tree
control. When the tree control is in multiple selection mode, the array contains
the list tags of each selected node.

Dragging and Dropping Tree Control Content
You can perform standard Windows drag and drop operations on XUI tree control
items. XUI tree control drag and drop operations are accessible using ACL only.
Drag and drop operations let you transfer data to and from the XUI tree control
from and to other applications that also support drag and drop operations.
Two types of data can be transferred using a drag-and-drop operations:

• Text data — A block of text.
• File data — One or more file path names.
When a drag and drop operation begins in a XUI tree control, an ACL application
is responsible for determining the type of data format that will be used, as well as
providing the actual data. When a XUI tree control is the target of a drag and drop
operation, the ACL application is responsible for examining the data available and
determining how it is to be processed once it is dropped on the tree control. The
meaning and the handling of the data in a drag and drop operation is completely
up to the custom ACL application.
Drag and drop functionality is enabled by handling the following drag and drop
events in your custom ACL application:

• DRAGDROPBEGIN— Signals the beginning of a drag and drop operation in a
XUI tree control. This event is raised when the left mouse button is clicked
and held down over a selected item in the source tree control and the mouse is
moved. A handler for this event must be provided to allow a XUI tree control
to be a drag-and-drop source. (That is, to have drag and drop operations begin
in the tree control.)

DRAGDROPBEGIN has the following event handler:

ondragdropbegin(windowdlgitemddArray[])

Parameters:

○ window— The identifier of the window containing the tree control.
○ dlgitem— The tree control item for which the event is occurring.
○ ddArray[]— The array to be filled with data. If the data format is DDF_

TEXT, only the first element of the array contains data. All other entries in
the array will be ignored for text data. If the data format is DDF_FILE,
each element of the array contains an appropriate file path.

138 Customizer's Guide

Return values:

○ -1— The drag and drop operation failed to start.
○ 0— The drag and drop operation started successfully with a data format

of DDF_TEXT.
○ 1— The drag and drop operation started successfully with a data format

of DDF_FILE.
• DRAGDROPENTER— Signals a drag and drop operation has entered the target

tree control. This event is raised when the mouse is first moved into the tree
control during a drag and drop operation. The handler function for this event
determines what the drop effect would be if a drop were attempted at the
current position.

DRAGDROPENTER has the following event handler:

ondragdropenter(windowdlgitemddFmtddArray[]keyMod
slisttag)

Parameters:

○ window— The identifier of the window containing the tree control.
○ dlgitem— The tree control item for which the event is occurring.
○ ddFmt— The format of the drag and drop data. A value of 0 means DDF_

TEXT data. A value of 1 means DDF_FILE data.
○ ddarray[]— The array containing data. If the data format is DDF_TEXT,

only the first element of the array contains data. All other entries in the
array will be ignored for text data. If the data format is DDF_FILE, each
element of the array contains an appropriate file path.

○ keyMods—A bitmask specifying what relevant keys are being pressed
during the drag and drop operation. This mask can be a combination of the
following values:

◆ 0—No keys are pressed.
◆ 1— CTRL key is pressed.
◆ 2— SHIFT key is pressed.
◆ 4— ALT key is pressed.

○ listtag— The tree control item to which the drop location is relative. The
ACL application controls whether data is inserted before, after, or into this
item. listtag may be empty if the drop position is not over a tree item.

Return values:

○ 0—A drop is not allowed at the current location.

Working with XUI (XML-based User Interface) Dialog Boxes 139

○ 1—A drop of the data at the current location would result in data being
copied.

○ 2—A drop of the data at the current location would result in data being
moved.

The mouse cursor is set to standard Windows drag and drop cursors depending
on the value returned.

• DRAGDROPOVER— Signals a drag and drop operation is over the target tree
control. This event is raised when the mouse is over the tree control during a
drag and drop operation. This handler function determines what the drop effect
would be if a drop were attempted at the current position.

DRAGDROPOVER has the following event handler:

ondragdropover(windowdlgitemddFmtddArray[]keyMod
slisttag)

Parameters:

○ window— The identifier of the window containing the tree control.
○ dlgitem— The tree control item for which the event is occurring.
○ ddFmt— The format of the drag and drop data. A value of 0 means DDF_

TEXT data. A value of 1 means DDF_FILE data.
○ ddarray[]— The array containing data. If the data format is DDF_TEXT,

only the first element of the array contains data. All other entries in the
array will be ignored for text data. If the data format is DDF_FILE, each
element of the array contains an appropriate file path.

○ keyMods—A bitmask specifying what relevant keys are being pressed
during the drag and drop operation. This mask can be a combination of the
following values:

◆ 0—No keys are pressed.
◆ 1— CTRL key is pressed.
◆ 2— SHIFT key is pressed.
◆ 4— ALT key is pressed.

○ listtag— The tree control item to which the drop location is relative. The
ACL application controls whether data is inserted before, after, or into this
item. listtag may be empty if the drop position is not over a tree item.

Return values:

○ 0—A drop is not allowed at the current location.
○ 1—A drop of the data at the current location would result in data being

copied.

140 Customizer's Guide

○ 2—A drop of the data at the current location would result in data being
moved.

The mouse cursor is set to standard Windows drag and drop cursors depending
on the value returned.

• DRAGDROPLEAVE— Signals a drag-and-drop operation has left the target
tree control. This event is raised when the mouse cursor leaves the tree
control. Handle this event when you want to provide custom behavior when
the drag and drop operation leaves a tree control.

DRAGDROPLEAVE has the following event handler:

ondragdropleave(windowdlgitem)

Parameters:

○ window— The identifier of the window containing the tree control.
○ dlgitem— The tree control item for which the event is occurring.

ondragdropenter does not return a value.
• DRAGDROPDROP— Signals a drop has occurred in the target tree control.

This event is raised when a drop operation is to occur. Handle this event to
insert the dropped data.

DRAGDROPENTER has the following event handler:

ondragdropenter(windowdlgitemddFmtddArray[]keyMod
slisttag)

Parameters:

○ window— The identifier of the window containing the tree control.
○ dlgitem— The tree control item for which the event is occurring.
○ ddFmt— The format of the drag and drop data. A value of 0 means DDF_

TEXT data. A value of 1 means DDF_FILE data.
○ ddarray[]— The array containing data. If the data format is DDF_TEXT,

only the first element of the array contains data. All other entries in the
array will be ignored for text data. If the data format is DDF_FILE, each
element of the array contains an appropriate file path.

○ keyMods—A bitmask specifying what relevant keys are being pressed
during the drag and drop operation. This mask can be a combination of the
following values:

◆ 0—No keys are pressed.
◆ 1— CTRL key is pressed.
◆ 2— SHIFT key is pressed.

Working with XUI (XML-based User Interface) Dialog Boxes 141

◆ 4— ALT key is pressed.
○ listtag— The tree control item to which the drop location is relative. The

ACL application controls whether data is inserted before, after, or into this
item. listtag may be empty if the drop position is not over a tree item.

Return values:

○ 0—A drop is not allowed at the current location.
○ 1—A drop of the data at the current location would result in data being

copied.
○ 2—A drop of the data at the current location would result in data being

moved.

The mouse cursor is set to standard Windows drag and drop cursors depending
on the value returned.

• DRAGDROPEND— Signals a drag and drop operation that started in the tree
control has ended. This event is raised after the DRAGDROPDROP event only
when the drag and drop operation started in this tree control. The event
handler for this event should modify the tree control based on the resulting
drop effect of the drag and drop operation. For example, if the drop effect
result of the drag and drop operation is 2, meaning the drop succeeded as a
move operation, the drop target will have inserted the data. This handler
should delete the source data to complete the move operation.

DRAGDROPEND has the following event handler:

ontreectrldragdropend(windowdlgitemdropEff)

Parameters:

○ window— The identifier of the window containing the tree control.
○ dlgitem— The tree control item for which the event is occurring.
○ dropEff— The resulting drop effect of the drag and drop operation:

◆ 0— The drop was not allowed or was cancelled.
◆ 1— The drop succeeded as a copy operation.
◆ 2— The drop succeeded as a move operation.

ontreectrldragdropend does not return a value.

Example

Drag and drop example
A sample application demonstrating how to use the XUI tree control drag-and-
drop and multiple selection functionality is included in the following directory.
Arbortext-path\samples\XUI\

142 Customizer's Guide

The sample consists of the following files:

• treectrldddlg.xml—A XUI file defining a dockable window
containing a tree control. The tree control is populated with some sample
items.

• spaceimglist7.bmp—A bitmap graphic containing several images used
for tree control items.

• treectrlddtest.acl—An ACL file which loads the dockable window
described in treectrldddlg.xml and handles drag-and-drop
functionality for it.

Use the following steps to run this sample application:

1. Copy treectrldddlg.xml and spaceimglist7.bmp to your
\custom\dialogs directory.

2. Copy treectrlddtest.acl to your \custom\scripts directory.
3. Start Arbortext Editor.
4. At the Arbortext Editor command line, enter:

source treectrlddtest.acl

Awindow containing a tree control docked to the left side of the Arbortext
Editor window will be displayed.

This sample can demonstrate the transfer of both text and file data to and from the
tree control by dragging and dropping the data. For drag-and-drop operations that
originate in the tree control, the convention used in this sample is:

• If a tree item has application-specific data associated with it, the application-
specific data is a file path and the tree item should be dragged and dropped as
file data.

• If a tree item has no application-specific data associated with it, the tree item
should be dragged and dropped as text data with the item label as the data.

Initially, the tree control contains a set of sample items that have no application-
specific data.
For multiple selection, no dragging and dropping is allowed if a parent-child
combination is selected. This sample application provides no rules for how this
should be handled, so it is not allowed.

• Demonstrating dragging and dropping text data within the tree control:

1. Select an item in the tree control.
2. Click the left mouse button on the selected item and drag it over another

item in the tree control.
3. Release the left mouse button to move the item. over an item in the tree

control. (Pressing CTRL while dragging and dropping copies the item.)

Working with XUI (XML-based User Interface) Dialog Boxes 143

When a drag and drop operation beginning in the tree control results in a
move operation, the original item will be deleted from the tree control
automatically. The ACL application does not need to handle removing the
item.

• Demonstrating dragging and dropping text data to Arbortext Editor:

1. Select an item in the tree control.
2. Click the left mouse button on the selected item and drag it over the

Arbortext Editor Edit window.
3. Release the left mouse button over the Arbortext Editor window to drop

the data into Arbortext Editor. The item label text will be copied into the
Arbortext Editor window.

Pressing CTRL during the drag and drop operation has no effect. For
dragging and dropping text data, Arbortext Editor always performs a copy
operation.

• Demonstrating dragging and dropping text data from an external application:

1. Start WordPad.
2. Open a document in WordPad or type some text in an empty document.
3. Select some text in the WordPad document and drag and drop it over the

tree control. The text will be inserted as an item in the tree control at the
drop location and removed from the original document. Pressing CTRL
while dragging and dropping copies the text to the tree control while
leaving it in the original document.

Arbortext Editor does not support dragging and dropping text from an Edit
window to a tree control. Text can only be dragged and dropped between
Edit windows.

• Demonstrating dragging and dropping file data from an external application:

1. Open Windows Explorer and navigate to a directory containing some files.
Make sure the files do not contain critical data and they are backed up.

2. Select one or more files in Windows Explorer and drag and drop them to
the tree control. Each file will be inserted as an item in the tree control.
The file name will be used as the item label and the application-specific
data of the item will be set to the file path. The original files will also
remain in their original locations.

144 Customizer's Guide

• Demonstrating dragging and dropping file data to an external application:

1. Select a file item in the tree control placed there in the previous
demonstration.

2. Drag and drop the file to a different directory in Windows Explorer. The
file will move from the original location to the new location. (The original
tree control item will remain, however.) Pressing CTRL during the drag and
drop operation will place a copy of the file in the new location.

• Demonstrating dragging and dropping file data to Arbortext Editor:

1. Select a file item in the tree control placed there in the first file
demonstration.

2. Drag the tree control item over Arbortext Editor and drop it. The file will
open in Arbortext Editor.

Working with Dockable Dialog Boxes
Dockable dialog boxes can be displayed standalone or be dragged into a Arbortext
Editor edit window and docked on one edge of the edit window. If you drag a
docked dialog box away from the edge of the edit window, the dialog box
undocks. A dockable dialog box can contain all controls that are allowed in a
standard dialog box except for toolbars and menubars. (<menubar> and
<toolbar> elements in the file are ignored.)
The markup for a dockable dialog box is the same as that for a standard dialog
box. Dockable dialog boxes are specified using the attributes enabledocking and
dock of the <window> element.

• enabledocking— Specifies the edges of the edit window the dialog box can
dock to.

The default value of enabledocking is none. If enabledocking is none, the
XUI file will be displayed as a non-dockable (standard) dialog box.

• dock— Specifies the docking state of the dockable dialog box.

The default value of dock is none. The value of dock must be one of the
locations specified by enabledocking. Otherwise, dock will be ignored.

The following example shows a valid pairing of attributes:
<window enabledocking="leftright" dock="left" >
...
</window>

Whether a dialog box is dockable or not is determined at the dialog box creation
time. After a dialog box is created, the dialog box cannot change between
dockable and undockable even if enabledocking is modified or the AOM
enableDocking method is called.

Working with XUI (XML-based User Interface) Dialog Boxes 145

The modal attribute in the <window> element takes precedence over the
enabledocking attribute. If modal has a value of true, the XUI file will be
displayed as a standard modal dialog box regardless of the value of
enabledocking.

Geometry
When a dockable dialog box is docked in an edit window, users still can resize the
dialog box by dragging the splitter separating the docked dialog box and the edit
window.
Arbortext Editor remembers three sizes for each dockable dialog type:

• the size when the dialog box is docked horizontally
• the size when the dialog box is docked vertically
• the size when the dialog box is floating
Therefore, when a dockable dialog box is displayed or docked, Arbortext Editor
will set the dialog box size to the size of the previous dialog box of the same type.

Example
Refer to the dockable dialog box example contained in the file:
Arbortext-path\samples\XUI\dockableDialog.xml

Dockable Dialog Boxes and the AOM
The methods to create and display a dockable dialog box are the same as those for
a standard dialog box. For example:
var dialog = Application.createDialogFromFile('c:\temp\myxuifile');
dialog.dock = 0; // override the dock attribute in the XML file
dialog.show();

Identifying the Parent Window of a Dialog
Box
The methods Application.createDialogFromFile() and
Application.createDialogFromDocument() each take a parameter,
parent, for specifying the parent window of the dialog box. If the parent is not
specified, the default parent is the current active window.
The parent parameter is useful when a user creates a dockable dialog box in a
document type startup file or a document startup file. At the time these startup
files are executed, the active document is the document to be brought up, and the
edit window for the document is not yet displayed.

146 Customizer's Guide

Users can get the new edit window from the active document and assign the
correct parent to the new dockable dialog box as follows:
var parent = Application.activeDocument.defaultView.window;
var window = Application.createDialogFromFile('my.xml',null,parent);
window.dock = window.DOCK_LEFT;
window.show();

Embedding XUI Dialog Box Controls in a
Document
You can embed XUI dialog box controls in the content of a document displayed in
Arbortext Editor. Users can use these controls to interact with other data sources,
take advantage of ActiveX controls, select values from restricted lists, and so on.
Use the following steps to embed XUI dialog box controls in a document.
(Examples follow.)

1. Create a XUI file defining the dialog box controls you want embedded in the
document. Use events in <script> elements to define the actions to occur
when the events are triggered.

2. Determine which element in your DTD you want to replace with the contents
of the XUI file defining the dialog box controls.

3. Add a <XuiControl> element to the <Specials> section of the DTD's
.dcf file specifying the element in the DTD you want to replace with the
contents of the XUI file.

The <XuiControl> element has the following attributes:

• element— The name of the element to be associated with an embedded
XUI control.

• xuiFileName— The file that describes the XUI dialog box controls.
• condition—An XPath expression specifying whether to create the

dialog box controls based on one or more attributes or values. If the
expression evaluates to TRUE, the controls will be created or attached to. If
the expression evaluates to FALSE, the controls will not be used.

4. Create a new document based on the DTD and insert the chosen element.

The XUI controls appear in the Edit pane embedded in the flow of the
document. The Document Map shows the element with an icon signifying it as
embedded XUI markup. Hover the mouse pointer over the icon to display the
name of the XUI file referenced by the element.

Working with XUI (XML-based User Interface) Dialog Boxes 147

By default, the XUI controls are displayed embedded in the document. You can
display the XUI markup inline instead of the rendered controls using the ACL
set command set dialogdisplay=off. set dialogdisplay=on will
again display the embedded controls.
When using embedded XUI dialog box controls, be aware that only one
occurrence of a specific element's dialog box can be displayed at one time. If the
same element appears in multiple open windows, only one occurrence of the
element will be displayed as an embedded XUI control.

Example

Embedded combo box
This example shows how to embed a combo box in a document. The user can
select an item from the combo box and have it inserted at the current cursor
location.

1. Create a XUI file defining the combo box. In the following example, the script
element causes the chosen value to be inserted at the current cursor location.
The XUI file is saved as units.xml.
<?xml version="1.0" encoding="utf-8"?>
<!--ArborText, Inc., 1988-2003, v.4002-->
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.1//EN"
"xui.dtd">
<window orient="vertical"
modal="false"
title="UnitSelection">
<label label="Select a unit of measure:"/>
<combobox value="grams" type="dropdown">
<listitem label="grams"/>
<listitem label="kilograms"/>
<listitem label="milligrams"/>
<listitem label="ounces (Troy)"/>
<listitem label="ounces (U.S.)"/>
<listitem label="pounds (Troy)"/>
<listitem label="pounds (U.S.)"/>
<script type="application/x-javascript" ev:event="domactivate">
var selection = Application.event.target.getAttribute("value");
var textnode = Application.activeDocument.createTextNode(selection);
Application.event.view.window.ownerNode.appendChild(textnode);
</script>
</combobox>
</window>

2. For purposes of this example, the action element is defined in the .dcf file
as the element to be replaced with the dialog box generated by units.xml:
<Specials>

148 Customizer's Guide

<XuiControl element="action" xuiFileName="units.xml"/>

3. Embed the combo box in the document by inserting the action element. For
example, the source XML:
<book>
<title>Units of Measure Example</title>
<chapter>
<title>Example:</title>
<para><action></action></para>
</chapter>
</book>

appears in Arbortext Editor as follows:

Selecting an item from the combo box will insert the contents of the
<combobox> value element at the current cursor location.

XUI Display Recommendations
When implementing XUI dialog boxes, you should add as many XUI controls to a
dialog box as possible in a single pass to improve the display refresh of XUI
dialog boxes.
For example, the following Java code adds ten controls to the dialog box one by
one:
Element box = _xui.getElementById("AddControlsBox");
for(int i = 0; i < 10; ++i) {
Element textbox = _xui.createElement("textbox");
box.appendChild(textbox);
}

The dialog box display refresh would be improved by adding all ten controls to
the dialog box at once as in the follow example:
DocumentFragment frag = _xui.createDocumentFragment();
for(int i = 0; i < 10; ++i) {
Element textbox = _xui.createElement("textbox");
frag.appendChild(textbox);

Working with XUI (XML-based User Interface) Dialog Boxes 149

}
Element box = _xui.getElementById("AddControlsBox");
box.appendChild(frag);

For optimum display speed when clearing all listitems from a combobox or
listbox, delete the items in order beginning with the firstChild.

XUI Element Reference
PTC Arbortext Editor supports the following XUI elements for creating dialog
box controls. The document type for XUI XML documents is Arbortext-
path\doctypes\xui\xui.dtd.

<activex> Element
The <activex> element is a container for an ActiveX control. Refer to the
Working with ActiveX controls chapter of the Programmer's Reference for details
on using ActiveX controls. The script for an ActiveX control must be either
Jscript or VBscript. It cannnot be JavaScript.
The element can have the following child elements:
<script>, <param>
The <activex> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

150 Customizer's Guide

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• progid = ID

Specifies the program ID of the ActiveX control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control resizes if necessary depending on size
changes in its children.

• statustext = CDATA

Specifies the text to display in status windows.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<box> Element
The <box> element creates a box container. The element can have the following
child elements:

Working with XUI (XML-based User Interface) Dialog Boxes 151

<activex>, <box>, <button>, <checkbox>, <colordropdown>,
<combobox>, <description>, <grid>, <groupbox>, <label>,
<listbox>, <morph>, <picturebox>, <radio>, <radiogroup>,
<script>, <separator>, <slider>, <spacer>, <spinner>,
<tabbox>, <tablecontrol>, <textbox>, <treecontrol>,
<unitdimensionbox>

The <box> element has the following attributes:

• align = start | center | end

Default is start. Specifies how space not used by the children is laid out.

If orient is horizontal, start aligns children at the top of the container.
places space below children. If orient is vertical, start aligns children at
the left of the container. center evenly distributes space above and below
children. end places space above children.

• childrensize = vary | equalwidth | equalheight | equal

Specifies whether the children of this control will have the same height and
width as each other. Default is vary. If vary, the height and width of the
children will not be restricted. If equalwidth, the width of the children will
be the same as that of the widest child. If equalheight, the height of the
children will be the same as that of the tallest child. If equal, the width of the
children will be the same as that of the widest child and the height of the
children will be the same as that of the tallest child..

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• orient = vertical | horizontal

Default is horizontal. Specifies the layout for the container children.
• pack = start | center | end | spread | stretch

Default is spread. Specifies how space not used by the children is laid out.
start places space after children. center evenly distributes space before
and after children. end places space before children. spread evenly

152 Customizer's Guide

distributes space before, between, and after children. stretch evenly
distributes space between children, with no space before or after children.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control resizes if necessary depending on size
changes in its children.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<button> Element
The <button> element creates a button control. The element can have the
following child element:
<script>

The <button> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• command = CDATA

Specifies the Arbortext ACL command to execute. (Toolbars only.)
• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• dropdown = CDATA

The id or name of a dropdown menu for this control that is displayed when the
button is activated. The value can be specified in an id attribute of a
<popupmenu> element, or it can be the name of a shortcut menu loaded
from a menu configuration file.

Working with XUI (XML-based User Interface) Dialog Boxes 153

Adding a drop down menu to a button visually changes the button. A down
arrow is displayed in the button to the right of the label.

If this attribute has no value, or if the value is not the id of a menu defined in
the XUI dialog box file or that of a name loaded from a menu configuration
file, no menu is displayed and the button performs its default activation
behavior.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

154 Customizer's Guide

• label = CDATA

Specifies the text to display within the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control is not resizeable.

• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• type = accept | cancel | help

Specifies a key event that activates the button when the event occurs within
the dialog box. accept is typically activated by the Enter key being pressed.
cancel is typically activated by the ESC key being pressed.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<cell> Element
The <cell> element creates a cell within a table. The element can have no child
elements.
The <cell> element has the following attributes:

• id = ID

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in the cell. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• selected = true | false

Default is false. If the parent tablecontrol element's type attribute is
set to cell, clicking in the table selects the cell and sets the selected attribute
to true.

Working with XUI (XML-based User Interface) Dialog Boxes 155

<checkbox> Element
The <checkbox> element creates a check box control. The element can have the
following child element:
<script>

The <checkbox> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• checked = true | false

Default is false. If true, the control has a checked state.
• checkstate = checked | unchecked | indeterminate

Default is unchecked. If checked, the item is selected. If unchecked,
the item is not selected. If indeterminate, the item displays no state. (It is
disabled.)

• command = CDATA

Specifies the Arbortext ACL command to execute. (Checkbox toolbar button
only.)

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

156 Customizer's Guide

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• label = CDATA

Specifies the text to display next to the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control is not resizeable.

• statustext = CDATA

Specifies the text to display in status controls.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• type = twostate | threestate

Default is twostate. If twostate, the control can be either checked or
unchecked (specified by checked). If threestate, the control can be
checked, unchecked, or indeterminate (specified by checkstate).

• width = CDATA

Working with XUI (XML-based User Interface) Dialog Boxes 157

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<colordropdown> Element
The <colordropdown> element displays a color selection control from which
the user picks a color. value is set to the value of the selected color.
The <colordropdown> element can have the following child element:
<script>

The <colordropdown> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• command = CDATA

Specifies the Arbortext ACL command to execute. (Colordropdown toolbar
buttons only.)

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

158 Customizer's Guide

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• palette = foreground | background

Default is foreground. If foreground, the foreground color palette is
displayed. If background, the background color palette is displayed.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control is not resizeable.

• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• value = CDATA

Specifies the selected color. Values are the standard HTML named colors plus
the Arbortext colors gray1, gray2, gray3, gray4, gray5. Colors can
also be a string of a # followed by three two-digit hexadecimal numbers
specifying the red, green, and blue (RGB) intensity values defining a color.

Working with XUI (XML-based User Interface) Dialog Boxes 159

• valuetype = name | spec

Default is name. If set to a value of name, when a color is selected in the
color dropdown control and a standard HTML color name exists for the color,
the value attribute of the <colordropdown> element is set to the name of
the color. When no HTML color name exists for the selected color, the value
attribute of the <colordropdown> element is set to the hexidecimal color
code specifying the red, green, and blue intensity values defining the color.

If valuetype is set to a value of spec, the value attribute of the
<colordropdown> element will is always set to the hexidecimal color code
defining the color selected in the color dropdown control.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<column> Element
The <column> element creates a column in a table. The element can have no
child elements.
The <column> element has the following attributes:

• align = start | center | end

Default is start. Specifies how space not used by the children is laid out.
start places space below children. center evenly distributes space above
and below children. end places space above children.

• columnresize = true | false

Default is true. If true, the column resizes to the maximum available width
in the table control. If false, the column size is static.

• columnwidth = CDATA

Number specifying the width in pixels to allocate for the column.
• id = ID

Identifies the control.
• label = CDATA

Specifies the text to display next to the control.

160 Customizer's Guide

<combobox> Element
The <combobox> element creates a simple, dropdown, or read-only dropdown
box control. The element can have the following child elements:
<listitem>, <script>
The <combobox> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.

Working with XUI (XML-based User Interface) Dialog Boxes 161

• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction.

If natural, the control allows horizontal resizing. The control also allows
vertical resizing only if type = simple.

• sorted = true | false

Default is false. Specifies whether list items should be alpha-numerically
sorted.

• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• type = dropdown | dropdownlist | simple

Default is simple. If simple, the combobox is a standard combobox. If
dropdown, it is a drop-down combobox. If dropdownlist, it is a read-
only drop-down combobox.

• value = CDATA

Specifies the current value for the list.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<contextmenu> Element
The <contextmenu> element creates a menu control containing context-
sensitive menu items. The element can have the following child elements:

162 Customizer's Guide

<menutitem>, <script>
The <contextmenu> element has the following attributes:

• id = ID

Identifies the control.
• name = CDATA

.

Can you give me a description of what name defines?
• showimages = true | false

Default is false. If true, images are displayed to the left of each
menuitem with an image defined.

• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<contextmenugroup> Element
The <contextmenugroup> element is the parent element for
<contextmenu> controls. The element can have the following child elements:
<contextmenu>

The <contextmenugroup> element has the following attributes:

• id = ID

Identifies the control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<datetime> Element
The <datetime> element used to select a date using the Windows month
calendar control. <datetime> displays the selected date and a down arrow.
Clicking on the down arrow displays the calender from which the user can select a
particular date.
The <datetime> element has the following attributes:

• disabled = true | false

Working with XUI (XML-based User Interface) Dialog Boxes 163

Default is false. If true, the control ignores all user interface events
directed toward the control.

• ev:defaultAction = cancel | perform

Specifies if, after processing of all listeners for the event at the current
element, the default action for the event (if any) should be performed or not. If
cancel, the default action is cancelled (if the event type can be cancelled). If
perform, the default action is performed.

• ev:event = CDATA

The event type for which the listener is being registered. The value must be an
XML Name. For information on working with events, refer to Specifying
Event Listeners on page 123.

• ev:handler = CDATA

Specifies the URI of an element that defines the action that should be
performed if the event reaches the observer. If ev:handler is not supplied, the
handler is the element that the event attribute is on.

• ev:observer = ID

Identifies the element with which the event listener is to be registered. If
ev:observer is not supplied, the observer is the element that the event attribute
is on.

• ev:phrase = capture | default

Specifies when the listener will be activated by the desired event. If
default, the listener is activated during bubbling or target phase. If
capture the listener is activated during the capturing phase.

• ev:propagate = stop | continue

Specifies whether after processing all listeners at the current node, the event is
allowed to continue on its path (either in the capture or the bubble phase). If
stop, event propogation stops. If continue, event propagation continues.

• ev:target = ID

Identifies the target element of the event (that is, the node that caused the
event). If ev:target is supplied, only events that match both the event and
target attributes will be processed by the associated event handler.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

164 Customizer's Guide

• id = ID

Identifies the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal resizing.

• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• value = CDATA

Specifies the default value of the control. This value is the number of seconds
since the epoch (00:00:00 UTC on January 1, 1970). When a user selects a
date from the calendar, the value is set to the first second of that day (for the
specific time zone and any daylight savings time in effect of the workstation
being used).

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<description> Element
The <description> element creates a description control containing text. The
element can take no child elements. The <description> element has the
following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.

Working with XUI (XML-based User Interface) Dialog Boxes 165

• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• multiline = true | false

Default is false. If true, the edit field may wrap.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal resizing, but not vertical
resizing.

• statustext = CDATA

Specifies the text to display in status windows.
• strikeout = true | false

166 Customizer's Guide

Default is false. If true, the text contains strike outs.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• underline = true | false

Default is false. If true, the text is underlined.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

• xml:space = FIXED

Default is preserve. When preserve is enabled, spaces and linebreak
characters in the element's content are preserved when the XUI file is
processed by methods such as
Application.createDialogFromFile() and
Application.createDialogFromDocument().

<grid> Element
The <grid> element creates a grid container. The element can have the
following child elements:
<box>, <button>, <checkbox>, <colordropdown<>, <combobox>,
<description>, <grid>, <groupbox>, <label>, <listbox>,
<morph>, <picturebox>, <radio>, <radiogroup>, <script>,
<separator>, <slider>, <spacer>, <spinner>, <tabbox>,
<tablecontrol>, <textbox>, <treecontrol>,
<unitdimensionbox>

The <grid> element has the following attributes:

• cellalign = bottomcenter | bottomleft | bottomright |
middlecenter | middleleft | middleright | topcenter |
topleft | topright

Default is middleleft. Specifies how the cell children are aligned.
• columns = CDATA

Specifies the number of columns.
• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

Working with XUI (XML-based User Interface) Dialog Boxes 167

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control resizes if necessary depending on size
changes in its children.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<groupbox> Element
The <groupbox> element creates a group box control. The element can have the
following child elements:
<box>, <button>, <checkbox>, <colordropdown>, <combobox>,
<description>, <grid>, <groupbox>, <label>, <listbox>,
<morph>, <picturebox>, <radio>, <radiogroup>, <script>,
<separator>, <slider>, <spacer>, <spinner>, <tabbox>,
<tablecontrol>, <textbox>, <treecontrol>,
<unitdimensionbox>

The <groupbox> element has the following attributes:

• align = start | center | end

Default is start. Specifies how space not used by the children is laid out.
start places space below children. center evenly distributes space above
and below children. end places space above children.

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,

168 Customizer's Guide

gray3, gray4, gray5. Colors can also be a string of # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• childrensize = vary | equalwidth | equalheight | equal

Specifies whether the children of this control will have the same height and
width as each other. Default is vary. If vary, the height and width of the
children will not be restricted. If equalwidth, the width of the children will
be the same as that of the widest child. If equalheight, the height of the
children will be the same as that of the tallest child. If equal, the width of the
children will be the same as that of the widest child and the height of the
children will be the same as that of the tallest child..

• clip = true | false

Default is false. If true, controls that do not fit within the groupbox
control are truncated. If false, the controls are not truncated.

The value of clip is ignored if scroll is set to none.
• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• label = CDATA

Specifies the text that appears in the border.
• orient = vertical | horizontal

Default is horizontal. Specifies the layout for the container children.
• pack = start | center | end | spread | stretch

Working with XUI (XML-based User Interface) Dialog Boxes 169

Default is spread. Specifies how space not used by the children is laid out.
start places space after children. center evenly distributes space before
and after children. end places space before children. spread evenly
distributes space before, between, and after children. stretch evenly
distributes space between children, with no space before or after children.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control resizes if necessary depending on size
changes in its children.

• scroll = none | both | vertical | horizontal

Default is none. Specifies which, if any, scroll bars are displayed in the
control. none specifies that no scroll bars are displayed. vertical specifies
that only a vertical scroll bar is displayed. horizontal specifies that only a
horizontal scroll bar is displayed. both specifies that vertical and horizontal
scroll bars are displayed.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<header> Element
The <header> element is the parent element for defining columns in a table.
The element can have the following child elements:
<column>

The <header> element has the following attribute:

• id = ID

Identifies the control.

<image> Element
The <image> element specifies an id for and location of a graphical image. The
element can have no child elements:
The <image> element has the following attributes:

• id = ID

170 Customizer's Guide

Specifies an id for the image.
• path = CDATA

Specifies the path and file name of the image. path can also be one of the
MFC predefined image names: #emergency, #information,
#question, and #warning.

If the path is not an absolute path (or a path relative to the current directory),
Arbortext Editor will first search the directories specified with set
dialogspath. If the file is not located in those directories, Arbortext Editor
will search the directories specified in the list of graphics paths.

• transparentcolor = CDATA

Specifies the color in the source image to treat as the transparent color. Values
can be the standard HTML named colors plus the Arbortext colors gray1,
gray2, gray3, gray4, gray5. Colors can also be a string of a # followed
by three two-digit hexadecimal numbers specifying the red, green, and blue
(RGB) intensity values defining a color.

<imagegroup> Element
The <imagegroup> element is the parent element for defining images. The
element can have the following child elements:
<image>, <imagelist>
The <imagegroup> element has the following attribute:

• id = ID

Specifies an id for the control.

<imagelist> Element
The <imagelist> element specifies a graphic file containing multiple images
of identical widths and heights. For example, if path specifies a graphic file with a
width of 288 and height of 16, and imagewidth is set to a value of 16,
imagelist will contain 18 <image> elements, each defining an image 16
pixels wide by 16 pixels high.
The element can have the following child element:
<image>

The <imagelist> element has the following attributes:

• id = ID

Specifies an id for the control.
• imagewidth = CDATA

Working with XUI (XML-based User Interface) Dialog Boxes 171

Specifies the width in pixels of the images in the graphic file defined by path.
• path = CDATA

Specifies the path and file name of the graphic file containing multiple images.
• transparentcolor = CDATA

Specifies the color in the source image to treat as the transparent color for each
image. Values can be the standard HTML named colors plus the Arbortext
colors gray1, gray2, gray3, gray4, gray5. Colors can also be a string
of a # followed by three two-digit hexadecimal numbers specifying the red,
green, and blue (RGB) intensity values defining a color.

<label> Element
The <label> element creates a label control. The element can have no child
elements. The <label> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of three two-digit
hexadecimal numbers specifying the red, green, and blue (RGB) intensity
values defining a color.

• control = IDREF

When this control receives focus, focus should transfer to the dialog box
control with this specified ID.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.

172 Customizer's Guide

• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• label = CDATA

Specifies the text to display within the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control is not resizeable.

• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

Working with XUI (XML-based User Interface) Dialog Boxes 173

<listbox> Element
The <listbox> element creates a list box control. The element can have the
following child elements:
<listitem>, <script>
The <listbox> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.

174 Customizer's Guide

• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows resizing in both directions.

• sorted = true | false

Default is false. Specifies whether list items should be sorted.
• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• type = single | multiple

Default is single. If single, only one item can be selected in the list at
one time. If multiple, more than one item can be selected in the list.

• value = CDATA

Specifies the current value for the list.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<listdropdown> Element
The <listdropdown> element creates a toolbar dropdown list control. The
element can have the following child elements:
<listitem>, <script>
The <listdropdown> element has the following attributes:

• backgroundcolor = CDATA

Working with XUI (XML-based User Interface) Dialog Boxes 175

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• command = CDATA

Specifies the Arbortext ACL command to execute.
• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

176 Customizer's Guide

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows resizing in both directions.

• sorted = true | false

Default is false. Specifies whether list contents should be sorted.
• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• title = CDATA

The text displayed in the frame title bar.
• value = CDATA

Specifies the current value for the list.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<listitem> Element
The <listitem> element is a child of the <combobox> and <listbox>
controls. The <listitem> element has the following attributes:

• appdata = CDATA

Specifies a value for later reference.
• id = ID

Identifies the control.
• image = IDREF

Working with XUI (XML-based User Interface) Dialog Boxes 177

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• label = CDATA

Specifies the text to display for the list item.
• selected = true | false

Default is false. If true, the item is selected. If false, the item is not
selected.

<menubar> Element
The <menubar> element is the parent element for creating a collection of menu
selections. The element can have the following child elements:
<menuitem>, <script>
The <menubar> element has the following attributes:

• id = ID

Identifies the control.
• showimages = true | false

Default is false. If true, images are displayed to the left of each
menuitem with an image defined.

• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<menugroup> Element
The <menugroup> element is a container for specifying the shortcut and
dropdown menus available to the current dialog box. The element can have the
following child elements:
<popupmenu>

The <menugroup> element has the following attributes:

• id = ID

178 Customizer's Guide

Identifies the control.

<menuitem> Element
The <menuitem> element creates a list of menu selections (including
submenus). The element can have the following child elements:
<menuitem>, <script>
The <menuitem> element has the following attributes:

• checked = true | false

Default is false. If true, the control has a checked state.
• command = CDATA

Specifies the Arbortext ACL command to execute.
• id = ID

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• label = CDATA

Specifies the text to display for the list item.
• shortcut = CDATA

Specifies the keyboard shortcut for selecting this control.
• type = button | radio | separator | toggle

Specifies the type of menu item.

○ button— The menu item is displayed as a button. When selected, the
button will execute the actions defined by a script child element.

○ radio— The menu item is displayed as a radio button. When selected,
the button will execute the actions defined by a script child element.

○ separator— The menu item appears as a separation line between
adjacent items.

○ toggle—When activated, the item will execute the actions defined by a
<script> child element and display showing it has been activated.
When deactivated, the item is displayed showing it is not activated.

• withdraw = true | false

Working with XUI (XML-based User Interface) Dialog Boxes 179

Default is false. If true, the control (and any children) is ignored and not
displayed.

<morph> Element
The <morph> element creates a control with a layout that dynamically rearranges
its contents as the dialog box is resized. The element can have the following child
elements:
<box>, <button>, <checkbox>, <colordropdown>, <combobox>,
<description>, <grid>, <groupbox>, <label>, <listbox>,
<morph>, <picturebox>, <radio>, <radiogroup>, <script>,
<separator>, <slider>, <spacer>, <spinner>, <tabbox>,
<tablecontrol>, <textbox>, <treecontrol>,
<unitdimensionbox>

The <morph> element has the following attributes:

• columns = CDATA

Specifies the number of columns.
• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• gridfitheight = CDATA

If the control height in pixels is less than or equal to gridfitheight, then the
control has a grid layout. If the control height in pixels is greater than
gridfitheight, then the control has a tabbox layout.

• gridfitwidth = CDATA

If the control width in pixels is less than or equal to gridfitwidth, then the
control has a grid layout. If the control width in pixels is greater than
gridfitwidth, then the control has a tabbox layout.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• resize = none | both | height | width | natural

180 Customizer's Guide

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control resizes if necessary depending on size
changes in its children.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<param> Element
The <param> element provides parameters for the ActiveX control defined with
the parent <activex> element. This element can have no child elements.
The <param> element has the following attributes:

• name = CDATA

The name of one of the ActiveX control’s properties.
• value = CDATA

Sets the value of the property specified by name.

<picturebox> Element
The <picturebox> element displays an image in a dialog box.
The <picturebox> element can have the following child element:
<script>

The <picturebox> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Working with XUI (XML-based User Interface) Dialog Boxes 181

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control is not resizeable.

• statustext = CDATA

182 Customizer's Guide

Specifies the text to display in status controls.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<popupmenu> Element
The <popupmenu> element is a container for container for items specified
within a shortcut or dropdown shortcut menu. The element can have the following
child elements:
<menuitem>

The <popupmenu> element has the following attributes:

• id = ID

Identifies the control.

<radio> Element
The <radio> element creates a radio button in a <radiogroup> control. The
element can have the following child element:
<script>

The <radio> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• checked = true | false

Default is false. If true, the control has a checked state.
• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

Working with XUI (XML-based User Interface) Dialog Boxes 183

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• label = CDATA

Specifies the text to display next to the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows

184 Customizer's Guide

resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control resizes if necessary depending on size
changes in its children.

• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<radiogroup> Element
The <radiogroup> element creates a radio group control. The element can
have the following child elements:
<grid>, <radio>, <script>
The <radiogroup> element has the following attributes:

• align = start | center | end

Default is start. Specifies how space not used by the children is laid out.
start places space below children. center evenly distributes space above
and below children. end places space above children.

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• childrensize = vary | equalwidth | equalheight | equal

Specifies whether the children of this control will have the same height and
width as each other. Default is vary. If vary, the height and width of the
children will not be restricted. If equalwidth, the width of the children will
be the same as that of the widest child. If equalheight, the height of the
children will be the same as that of the tallest child. If equal, the width of the
children will be the same as that of the widest child and the height of the
children will be the same as that of the tallest child..

Working with XUI (XML-based User Interface) Dialog Boxes 185

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• label = CDATA

Specifies the text to display next to the control.
• orient = vertical | horizontal

Default is horizontal. Specifies the layout for the container children.
• pack = start | center | end | spread | stretch

Default is spread. Specifies how space not used by the children is laid out.
start places space after children. center evenly distributes space before
and after children. end places space before children. spread evenly
distributes space before, between, and after children. stretch evenly
distributes space between children, with no space before or after children.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control resizes if necessary depending on size
changes in its children.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

186 Customizer's Guide

Default is false. If true, the control (and any children) is ignored and not
displayed.

<row> Element
The <row> element creates a row within a table. The element can have the
following child elements:
<cell>

The <row> element has the following attributes:

• id = ID

Identifies the control.
• image = IDREF

Specifies by reference the graphical image to be displayed in this control. The
value of image matches the value of the image element id attribute specifying
the desired graphic file.

• selected = true | false

Default is false. If true, the item is selected. If false, the item is not
selected.

<script> Element
The <script> element specifies which script interpreter to use. The content of
the element specifies the statements to be executed. The element can have no child
elements.
The <script> element has the following attributes:

• ev:defaultAction = cancel | perform

Specifies if, after processing of all listeners for the event at the current
element, the default action for the event (if any) should be performed or not. If
cancel, the default action is cancelled (if the event type can be cancelled). If
perform, the default action is performed.

• ev:event = CDATA

The event type for which the listener is being registered. The value must be an
XML Name. For information on working with events, refer to Specifying
Event Listeners on page 123.

• ev:handler = CDATA

Specifies the URI of an element that defines the action that should be
performed if the event reaches the observer. If ev:handler is not supplied, the
handler is the element that the event attribute is on.

Working with XUI (XML-based User Interface) Dialog Boxes 187

• ev:observer = ID

Identifies the element with which the event listener is to be registered. If
ev:observer is not supplied, the observer is the element that the event attribute
is on.

• ev:phrase = capture | default

Specifies when the listener will be activated by the desired event. If
default, the listener is activated during bubbling or target phase. If
capture the listener is activated during the capturing phase.

• ev:propagate = stop | continue

Specifies whether after processing all listeners at the current node, the event is
allowed to continue on its path (either in the capture or the bubble phase). If
stop, event propogation stops. If continue, event propagation continues.

• ev:target = ID

Identifies the target element of the event (that is, the node that caused the
event). If ev:target is supplied, only events that match both the event and
target attributes will be processed by the associated event handler.

• id = ID

Identifies the control.
• type = CDATA

Specifies the script interpreter to use when executing the statements. Use the
following strings for specifying interpreters:

○ Rhino JavaScript — application/x-javascript

○ Microsoft JScript — application/x-jscript

○ Microsoft VBScript — application/x-vbscript

• usage = direct | indirect

Default is direct. If direct, the observer of the event is the parent
element of the script element. If indirect, the handler of the event is
another element. That other element is identified by the ev:handler attribute.
Its value is the ID of the element that should handle the event.

Default is direct. If direct, the observer of the event is the parent
element of the script element. If indirect, the observer of the event is
another element. That other event has an ev:handler attribute which points to
this script element.

• xml:space = FIXED

Default is preserve. When preserve is enabled, spaces and linebreak
characters in the element's content are preserved when the XUI file is

188 Customizer's Guide

processed by methods such as
Application.createDialogFromFile() and
Application.createDialogFromDocument().

<separator> Element
The <separator> element creates a line separating a dialog box into parts. The
element creates a horizontal line when it is in a vertical box. The element creates a
vertical line when it is in a horizontal box. The element can have no child
elements.
The <separator> element has the following attributes:

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• id = ID

Identifies the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If the parent box is oriented vertically, natural, resizes
horizontally. If the parent box is oriented horizontally, natural, resizes
vertically.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<slider> Element
The <slider> element creates a control used for selecting a value in a range by
moving an indicator along a horizontal bar. The element can have the following
child element:
<script>

The <slider> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,

Working with XUI (XML-based User Interface) Dialog Boxes 189

gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• increment = CDATA

Specifies the value by which the control can be increased and decreased.
• maximum = CDATA

190 Customizer's Guide

Specifies the lowest number in the control's range.
• minimum = CDATA

Specifies the highest number in the control's range.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal resizing.

• statustext = CDATA

Specifies the text to display in status windows.
• ticfrequency = CDATA

Specifies the distance between tic marks on the control's horizontal scale. For
example, if increment is set to 3 and ticfrequency is set to 5, the scale will
have a tic mark every 15 units. If ticfrequency is set to 0, no tic marks are
displayed.

• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• value = CDATA

Specifies the default value of the control.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<spacer> Element
The <spacer> element is a hidden box (container) used for placing flexible
space between controls. The element can have no child elements.
The <spacer> element has the following attributes:

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• id = ID

Identifies the control.
• resize = none | both | height | width | natural

Working with XUI (XML-based User Interface) Dialog Boxes 191

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows resizing in both directions.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<spinner> Element
The <spinner> element creates a control used for specifying a value by
entering the value in an edit field or by changing the current value using up and
down arrows. The element can have the following child element:
<script>

The <spinner> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• decimalplaces = CDATA

Specifies the level of precision of value. For example, setting decimalplaces to
2 allows value to be specified with 2 digits to the left of the decimal point.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• editable = true | false

Default is false. If true, the number displayed in the control can be typed
in directly. If false, the number can only be changed using the up and down
arrows.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

192 Customizer's Guide

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• increment = CDATA

Specifies the value by which the control can be increased and decreased.
• maximum = CDATA

Specifies the lowest number in the control's range.
• minimum = CDATA

Specifies the highest number in the control's range.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal resizing.

• statustext = CDATA

Working with XUI (XML-based User Interface) Dialog Boxes 193

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• value = CDATA

Specifies the default value of the control.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<tabbox> Element
The <tabbox> element creates a tabbed box control that has multiple boxes
(container) or pages. The element can have the following child elements:
<script>, <tabpanel>
The <tabbox> element has the following attributes:

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal and vertical resizing.

• selection = CDATA

Specifies the currently displayed page by ID.
• width = CDATA

194 Customizer's Guide

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<tablecontrol> Element
The tablecontrol element creates a multi-column list with column headers.
The element can have the following child elements:
<header>, <row>, <script>
The tablecontrol element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• columns = CDATA

Specifies the number of columns.
• contextmenu = CDATA

The id or name of a shortcut (context) menu for this control. The value can be
specified in an id attribute of a <popupmenu> element, or it can be the name
of a shortcut menu loaded from a menu configuration file.

If this attribute has no value, or if the value is not the id of a menu defined in
the XUI dialog box file or that of a name loaded from a menu configuration
file, no menu is displayed.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Working with XUI (XML-based User Interface) Dialog Boxes 195

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• gridlines = true | false

Default is false. If true, the table will have visible grid lines. If false,
no gird lines will be displayed.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• nosortheader = true | false

Default is false. If true, clicking on the column heading will not resort the
column contents.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal and vertical resizing.

• showimages = true | false

Default is false. If true, images are displayed to the left of each row with
an image defined.

• sortedcolumn = CDATA

Number specifying the column to use when sorting rows. Setting
sortedcolumn to 0 sorts on the first column. Setting sortedcolumn to 1 sorts on

196 Customizer's Guide

the second column, and so on. Setting sortedcolumn to -1 disables column
sorting.

• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• type = single | multiple | cell

Default is single. If single, only one row can be selected in the table at
one time. If multiple, more than one row can be selected in the table. If
cell, clicking in the table selects a single cell and sets the cell element's
selected attribute to true.

• value = CDATA

Specifies the text in the first column of the selected row.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<tabpanel> Element
The <tabpanel> element creates a tabbed panel control that is a box (or page)
within a tabbed box. The element can have the following child elements:
<box>, <button>, <checkbox>, <colordropdown>, <combobox>,
<description>, <grid>, <groupbox>, <label>, <listbox>,
<morph>, <picturebox>, <radio>, <radiogroup>, <script>,
<separator>, <slider>, <spacer>, <spinner>, <tabbox>,
<tablecontrol>, <textbox>, <treecontrol>,
<unitdimensionbox>

The <tabpanel> element has the following attributes:

• align = start | center | end

Default is start. Specifies how space not used by the children is laid out.
start places space below children. center evenly distributes space above
and below children. end places space above children.

• childrensize = vary | equalwidth | equalheight | equal

Specifies whether the children of this control will have the same height and
width as each other. Default is vary. If vary, the height and width of the

Working with XUI (XML-based User Interface) Dialog Boxes 197

children will not be restricted. If equalwidth, the width of the children will
be the same as that of the widest child. If equalheight, the height of the
children will be the same as that of the tallest child. If equal, the width of the
children will be the same as that of the widest child and the height of the
children will be the same as that of the tallest child..

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• id = ID

Identifies the control.
• label = CDATA

Specifies the text to display next to the control.
• orient = vertical | horizontal

Default is horizontal. Specifies the layout for the container children.
• pack = start | center | end | spread | stretch

Default is spread. Specifies how space not used by the children is laid out.
start places space after children. center evenly distributes space before
and after children. end places space before children. spread evenly
distributes space before, between, and after children. stretch evenly
distributes space between children, with no space before or after children.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal and vertical resizing.

• width = CDATA

Number specifying the width in pixels to allocate for this control.

<textbox> Element
The <textbox> element creates text box and multi-line text box controls. The
element can have the following child elements:
<script>, <value>
The <textbox> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,

198 Customizer's Guide

gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• maxlength = CDATA

Specifies the maximum amount of characters within the edit field.
• multiline = true | false

Working with XUI (XML-based User Interface) Dialog Boxes 199

Default is false. If true, the edit field may wrap.
• readonly = true | false

Default is false. If true, the current value of the item cannot be modified.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction.

If natural, the control is horizontally resizeable. If multiline = true, the
control is also vertically resizeable.

• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.
• type = normal | password

Default is normal. If normal, the content of the value child element is
displayed as entered. If password, the content of the value child element
is displayed as asterisks.

• wantreturn = true | false

(Multi-line text boxes only.) Default is true. If true, a carriage return is
inserted when the user presses the Enter key while entering text. If false,
pressing the Enter key has the same effect as clicking on the dialog box's
default control. This value is ignored when set for single-line text boxes.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<toolbar> Element
The <toolbar> element is the parent element for creating a collection of tool
bar buttons. The element can have the following child elements:
<button>, <checkbox>, <colordropdown>, <combobox>,
<listdropdown>, <script>, <separator>, <textbox>
The <toolbar> element has the following attributes:

200 Customizer's Guide

• dock = bottom | left | none | right | top

Default is top. Specifies the edge used to dock the tool bar.
• enabledocking = any | bottom | bottomleft | bottomleftright |

bottomright | left | leftright | right | top | topbottom |
topbottomleft | topbottomright | topleft | topleftright |
topright

Default is any. Specifies which edges allow docking.
• id = ID

Identifies the control.
• name = CDATA

Text used to display in the View ▶▶ Toolbars menu list. For example, Edit or
Table. name can also be referenced by scripts to access the toolbar object.

• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

• x = CDATA

A number specifying the horizontal screen coordinate to position the upper left
corner of the dialog box.

• y = CDATA

A number specifying the vertical screen coordinate to position the upper left
corner of the dialog box.

<toolbargroup> Element
The <toolbargroup> element creates a container for multiple tool bars. The
element can have the following child element:
<toolbar>

The <toolbargroup> element has the following attribute:

• id = ID

Identifies the control.

<treecontrol> Element
The <treecontrol> element creates an outline list of items (defined by
<treenode> elements). The element can have the following child elements:
<script>, <treenode>

Working with XUI (XML-based User Interface) Dialog Boxes 201

The <treecontrol> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• branchimage = IDREF

Specifies by reference a graphical image to be displayed for a branch in the
tree. The value of branchimage matches the value of the image element id
attribute specifying the desired graphic file.

• contextmenu = CDATA

The id or name of a shortcut (context) menu for this control. The value can be
specified in an id attribute of a <popupmenu> element, or it can be the name
of a shortcut menu loaded from a menu configuration file.

If this attribute has no value, or if the value is not the id of a menu defined in
the XUI dialog box file or that of a name loaded from a menu configuration
file, no menu is displayed.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• extraimage = IDREF

Specifies by reference a second graphical image to be displayed for a branch
or leaf in the tree. The value of extraimage matches the value of the image
element id attribute specifying the desired graphic file.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.
• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.

202 Customizer's Guide

• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• haslines = true | false

Default is true. If true, dotted lines will be displayed among tree nodes to
indicate the hierarchy of tree nodes.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• leafimage = IDREF

Specifies by reference the graphical image to be displayed for a leaf in the
tree. The value of leafimage matches the value of the image element id
attribute specifying the desired graphic file. If not specified, the default MFC
image is displayed.

• openbranchimage = IDREF

Specifies by reference the graphical image to be displayed for an open branch
in the tree. The value of openbranchimage matches the value of the image
element id attribute specifying the desired graphic file. If not specified, the
default MFC image is displayed.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal and vertical resizing.

• selectedimage = IDREF

Specifies by reference the graphical image to be displayed for a selected item
in the tree. The value of selectedimage matches the value of the image

Working with XUI (XML-based User Interface) Dialog Boxes 203

element id attribute specifying the desired graphic file. If not specified, the
default MFC image is displayed.

• seltype = single | multiple

Default is single. If single, only one only one tree node can be selected
at a time. If multiple, more than one tree node can be selected at one time.

• statustext = CDATA

Specifies the text to display in status windows.
• type = normal | checkboxes | radiobuttons

Default is normal. If checkboxes, a check box will be displayed with
each node. If radiobuttons, a radio button control will be displayed with
each node. If normal, only the node will be displayed.

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<treenode> Element
The <treecontrol> element creates a node (branch) in a <treecontrol>
list. The element can have the following child elements:
<script>, <treenode>
The <treecontrol> element has the following attributes:

• appdata = CDATA

Specifies a value for later reference.
• branchimage = IDREF

Specifies by reference the graphical image to be displayed for a branch in the
tree. The value of branchimage matches the value of the image element id
attribute specifying the desired graphic file. If not specified, the image
specified by treecontrol is displayed.

• checkstate = checked | unchecked | indeterminate

Default is unchecked. If checked, the item is selected. If unchecked,
the item is not selected. If indeterminate, the item displays no state.

• checkstyle = none | checkbox | radiobutton

204 Customizer's Guide

Default is none. If checkbox, the tree node has a check box. If
radiobutton, the tree node has a radio button. If none, the tree node has
no check box or radio button.

• expanded = true | false

Default is false. If true, the node is expanded to display the node's
children.

• extraimage = IDREF

Specifies by reference a second graphical image to be displayed for a branch
or leaf in the tree. The value of extraimage matches the value of the image
element id attribute specifying the desired graphic file. If not specified, the
image specified by treecontrol is displayed.

• id = ID

Identifies the control.
• label = CDATA

Specifies the text to display within the control.
• leafimage = IDREF

Specifies by reference the graphical image to be displayed for a leaf in the
tree. The value of leafimage matches the value of the image element id
attribute specifying the desired graphic file. If not specified, the image
specified by treecontrol is displayed.

• openbranchimage = IDREF

Specifies by reference the graphical image to be displayed for an open branch
in the tree. The value of openbranchimage matches the value of the image
element id attribute specifying the desired graphic file.

• selected = true | false

Default is false. If true, selected is the currently selected node. Only one
node can be selected at any time.

• selectedimage = IDREF

Specifies by reference the graphical image to be displayed for a selected item
in the tree. The value of selectedimage matches the value of the image
element id attribute specifying the desired graphic file. If not specified, the
image specified by treecontrol is displayed.

• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.

Working with XUI (XML-based User Interface) Dialog Boxes 205

<unit> Element
The <unit> element specifies a valid unit of measure for the parent
<unitdimensionbox>. The element can have no child elements.
The <unit> element has the following attributes:

• id = ID

Identifies the control.
• label = CDATA

String specifying the unit of measure. For example, pt, in, cm, lb, kg, and
so on.

<unitdimensionbox> Element
The <unitdimensionbox> element creates a control used for specifying a
value by entering the value in an edit field or by changing the current value using
up and down arrows. The units of measure are displayed in the edit field with the
value. The element can have the following child elements:
<script>, <unit>
The <unitdimensionbox> element has the following attributes:

• backgroundcolor = CDATA

Specifies the color to use in drawing the control's background. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• decimalplaces = CDATA

Specifies the level of precision of value. For example, setting decimalplaces to
2 allows value to be specified with 2 digits to the left of the decimal point.

• disabled = true | false

Default is false. If true, the control ignores all user interface events
directed toward the control.

• family = CDATA

Specifies the font family.
• fontposture = italic | upright

Default is upright. Specifies the control's font posture.
• fontsize = CDATA

Specifies the control's font size in points.

206 Customizer's Guide

• fontstyle = monsanserif | monoserif | sanserif | serif

Default is sanserif. Specifies the control's font style.
• fontweight = bold | medium

Default is medium. Specifies the control's font weight.
• foregroundcolor = CDATA

Specifies the color to use in drawing the control's foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpid = CDATA

Number specifying the help topic to display for this control.
• hidden = true | false

Default is false. If true, the space for the control is allocated, but the
control itself is not displayed.

• id = ID

Identifies the control.
• increment = CDATA

Specifies the value by which the control can be increased and decreased.
• maximum = CDATA

Specifies the lowest number in the control's range.
• minimum = CDATA

Specifies the highest number in the control's range.
• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control allows horizontal resizing.

• statustext = CDATA

Specifies the text to display in status windows.
• tiptext = CDATA

Specifies the text to display as context-sensitive help for this control.

Working with XUI (XML-based User Interface) Dialog Boxes 207

• unit = CDATA

Specifies the default unit of measure of the control. If not provided, pt is
used.

• value = CDATA

Specifies the current value of the control.
• width = CDATA

Number specifying the width in pixels to allocate for this control.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

<value> Element
The <value> element is a child element containing a value. The element can
have no child elements.
The <value> element has the following attribute:

• id = ID

Identifies the control.

<window> Element
The <window> element is the top level element of a XUI dynamic dialog box. It
represents the window frame.
The element can have the following child elements:
<activex>, <box>, <button>, <checkbox>, <colordropdown>,
<combobox>, <description>, <grid>, <groupbox>, <imagegroup>,
<label>, <listbox>, <menubar>, <morph>, <picturebox>,
<radio>, <radiogroup>, <script>, <separator>, <slider>,
<spacer>, <spinner>, <tabbox>, <tablecontrol>, <textbox>,
<toolbargroup>, <treecontrol>, <unitdimensionbox>
The <window> element has the following attributes:

• align = start | center | end

Default is start. Specifies how space not used by the children is laid out.
start places space below children. center evenly distributes space above
and below children. end places space above children.

• backgroundcolor = CDATA

208 Customizer's Guide

Specifies the color to use in drawing the window background. Values can be
the standard HTML named colors, the Arbortext colors gray1, gray2,
gray3, gray4, gray5, or transparent. Colors can also be a string of a
followed by three two-digit hexadecimal numbers specifying the red, green,
and blue (RGB) intensity values defining a color.

A value of transparent specifies that embedded dialog boxes are to have
no background color.

• childrensize = vary | equalwidth | equalheight | equal

Specifies whether the children of this control will have the same height and
width as each other. Default is vary. If vary, the height and width of the
children will not be restricted. If equalwidth, the width of the children will
be the same as that of the widest child. If equalheight, the height of the
children will be the same as that of the tallest child. If equal, the width of the
children will be the same as that of the widest child and the height of the
children will be the same as that of the tallest child..

• dock = none | bottom | left | right | top

Specifies the docking state of the dockable dialog box. The default value of
dock is none. The value of dock must be one of the locations specified by
enabledocking. Otherwise, dock will be ignored.

The modal attribute in the <window> element takes precedence over the
enabledocking attribute. If modal has a value of true, the XUI file will be
displayed as a standard modal dialog box regardless of the value of
enabledocking.

• enabledocking = none | any | bottom | left | right | top | topbottom
| topleft | topright | bottomleft | bottomright | leftright |
topbottomleft | topbottomright | topleftright |
bottomleftright

Specifies the edges of the edit window the dialog box can dock to. The default
value of enabledocking is none. If enabledocking is none, the XUI file will
be displayed as a non-dockable (standard) dialog box.

• focus = IDREF

Specifies by ID the element currently with focus.
• foregroundcolor = CDATA

Specifies the color to use in drawing the window foreground. Values can be
the standard HTML named colors plus the Arbortext colors gray1, gray2,
gray3, gray4, gray5. Colors can also be a string of a # followed by three
two-digit hexadecimal numbers specifying the red, green, and blue (RGB)
intensity values defining a color.

Working with XUI (XML-based User Interface) Dialog Boxes 209

• height = CDATA

Number specifying the height in pixels to allocate for this control.
• helpfile = CDATA

Specifies the path and file name of the Microsoft WinHelp or Microsoft
HTML Help file containing help for this dialog box.

• id = ID

Identifies the control.
• margin = CDATA

Default is 12. Specifies the margin around the content of the dialog box in
pixels.

For example, if the value of margin is 6, each of the left, right, top, and
bottom margins of the dialog box will be 6 pixels. If the value is 0, the dialog
box will have no margins. If margin is not specified each margin will be 12
pixels.

• modal = true | false

Default is false. If true, the dialog box must be acknowledged before
other windows can be accessed.

• orient = vertical | horizontal

Default is horizontal. Specifies the layout for the container children.
• pack = start | center | end | spread | stretch

Default is spread. Specifies how space not used by the children is laid out.
start places space after children. center evenly distributes space before
and after children. end places space before children. spread evenly
distributes space before, between, and after children. stretch evenly
distributes space between children, with no space before or after children.

• resize = none | both | height | width | natural

Default is natural. If width, the control allows horizontal resizing only. If
height, the control allows vertical resizing only. If both, the control allows
resizing in both directions. If none, the control doesn't resize in either
direction. If natural, the control resizes if necessary depending on size
changes in its children.

• status = IDREF

Specifies the id of the control displaying the statustext value of the control
with focus.

• title = CDATA

The text displayed in the frame title bar.

210 Customizer's Guide

• width = CDATA

Number specifying the width in pixels to allocate for this control.
• windowname = NMTOKEN

Text to identify the window.
• withdraw = true | false

Default is false. If true, the control (and any children) is ignored and not
displayed.

• xmlns:ev = CDATA

Specifies the XML events namespace URL.

Working with XUI (XML-based User Interface) Dialog Boxes 211

7
Working with ActiveX Controls

Overview .. 214
Executing ActiveX Controls Using XUI .. 216
Executing ActiveX Controls Using the .dcf File to Bind to an Element dDrectly 220
Running Arbortext Editor in an ActiveX Control .. 230
Integrating Arbortext Editor with Web Pages.. 243

213

Overview
Microsoft ActiveX controls are Windows-only objects that combine features of
COM servers, COM Automation, COM Event interfaces, and ActiveScript
hosting. ActiveX controls are self-contained applets or controls which expose
their functionality to third-party programmers through COM. Arbortext Editor lets
you configure, launch, and use these COM controls to extend Arbortext Editor
with tools from a variety of software vendors or through using those controls you
create yourself. You can also run Arbortext Editor itself in an ActiveX control.
Using ActiveX controls provide the following benefits:

• Less programming —When using existing controls, developers need only be
concerned with writing scripts that handle the communication of data between
their XML and the controls. They do not need to design the user interface,
develop the user interface, or design the API or properties that hold the data
entered by the user.

• Enhanced end-user productivity — Create specialized user interfaces for
particular types of documents.

• Simplified complex tagging operations — Create boilerplate sections of
documents, set sections to be read-only, create tagging with desired attributes
or elements completed, or otherwise control the end-users' interaction with
documents.

For details on creating and using ActiveX controls in general, refer to the ActiveX
Controls section of Microsoft's MSDN Library. (http://msdn.microsoft.com/
library/) and numerous other locations on the World Wide Web. The remainder of
this chapter covers configuring and launching ActiveX controls with Arbortext
Editor and running Arbortext Editor in an ActiveX control.

Arbortext Editor and ActiveX Controls
ActiveX controls can be implemented with Arbortext Editor in two ways:

• In a separate XUI file specifying the operation of the control. Refer to the
description of the activex element in theWorking with XUI (XML-based User
Interface) dialog boxes chapter of the Customizer's Guide.

• Defined and called directly from the .dcf file. The control is still launched in
a generated XUI dialog box. Refer to Executing ActiveX Controls Using the .
dcf File to Bind to an Element dDrectly on page 220.

Keep the following items in mind when working with ActiveX controls and
Arbortext Editor.

• Using ActiveX controls with Arbortext Editor is supported on Windows XP
and Vista platforms. Refer to the Installation Guide for Arbortext Editor,

214 Customizer's Guide

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/

Arbortext Styler, and Arbortext Architect for a detailed list of requirements for
working with ActiveX controls.

• Rhino JavaScript does not support ActiveX controls in Arbortext Editor.
• ActiveX controls are third-party tools. Many free controls are available to

Windows users, as are many commercially licensed controls. Licensing and
obtaining proper documentation for these third-party products is your
responsibility. No claims are made as to the reliability or fitness of a third-
party control or its compatibility with Arbortext Editor.

Running Scripts
When working with ActiveX controls, keep the following items in mind:

• To call an ActiveScript from another ActiveScript, use the
Application.createScriptContext and
ScriptContext.loadScriptFile methods. Do not use the ACL
source command from within a JScript or VBScript file as in:
Acl.execute("source test.js");

Calling the source command from an ActiveScript will report an error
message in the parent script if the child script contains errors. If both scripts
are error free, the nesting will silently fail.

• Any session-level scripts placed in Arbortext-path\custom\init or
any directory defined by the APTCUSTOM environment variable will be
executed automatically when Arbortext Editor starts.

• Any document type level scripts (such as Arbortext-path\custom\
doctypes\axdocbook\axdocbook.js) will be run automatically the
first time a document of the named document type is opened or created. The
doctype.* file is not run on subsequent openings of files of the same
document type.

• Any document-level scripts (such as Arbortext-path\custom\
doctypes\axdocbook\instance.js) will be run automatically each
time a document of the named document type is opened or created.

• Any instance-specific scripts (such as filename.vbs where filename is the
same root name as that of the document) will be run each time a specific
document of that name is opened or created.

Related AOM Interfaces
Working with ActiveX controls makes use of the following AOM interfaces.
(Refer to the Programmer's Reference for details on all AOM interfaces.)

Working with ActiveX Controls 215

Interface Description
Application The createScriptContext

method creates an object that can be
used to load, compile, and execute
scripts using the Microsoft Windows
Script engine.
The getScriptContext method
returns a pointer to a ScriptContext
object for a running script.

ScriptContext Provides the methods necessary to load
and run scripts using the Microsoft
Windows Scripting engine.

Executing ActiveX Controls Using XUI
You can implement ActiveX controls using the XUI <activex> control. (You
can also implement ActiveX controls directly from the .dcf file. That
implementation is detailed in Executing ActiveX Controls Using the .dcf File to
Bind to an Element dDrectly on page 220.) The <activex> element is fully
defined in the Working with XUI (XML-based User Interface) dialog boxes
chapter of the Customizer's Guide, and can be described using XUI as in the
following example:
<activex progid = "MSCAL.Calendar" id = "date">
</activex>

The progid attribute specifies which ActiveX control is to be added to the dialog
box. It can either be a Program ID for the control, as shown in the previous
example, or the value of the control's CLSID property as a string surrounded by
curly brackets as in the following example:
<activex progid="{2398E32F-5C6E-11D1-8C65-0060081841DE}" id="TextToSpeach">
</activex>

The id parameter identifies the control.
Using the <param> child tag of the <activex> element allows you to provide
parameters name-value pairs for the ActiveX control. For example:
<activex progid="MSCAL.Calendar" id="date">
<param name="ShowDateSelectors" value="false"/>
</activex>

By setting the parameter ShowDateSelectors to false, the date selector
dropdowns (one for the month and another for the year) are removed from the
Calendar ActiveX control.

216 Customizer's Guide

An ActiveX control can be launched embedded in the document displayed in
Arbortext Editor, as a standalone control, or as a control within a XUI dialog box.
When launched as a standalone control, a XUI dialog box is automatically
generated to contain the control.

Example: Embedded Calendar Control
This example uses XUI technology to embed the Microsoft Calendar control in a
document based on the Arbortext XML DocBook (axdocbook) DTD and
displayed in Arbortext Editor. When the user selects a date, the date is added as
the content of the document's <date> element. Using the Calendar control for
entering the date eliminates the possibility of the user mis-typing the date. The
Calendar control also provides a well-known user interface for working with
dates.

Implementation
Use the following steps to implement this example:

1. Specify the control to call and its layout with the following markup saved as
date.xml:
<?xml version="1.0" encoding="utf-8"?>
<!--ArborText, Inc., 1988-2003, v.4002-->
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.0//EN"
"xui.dtd">
<window width="400" height="300" orient="horizontal"
focus="todayButton" modal="false" title="Test ActiveX"
xmlns:ev="http://www.w3c.org/2001/xml-events">
<activex id="date" progid="MSCAL.Calendar">
<script type="application/x-jscript" ev:event="Value_OnChange"
ev:target="date">
var node = Application.activeDocument.getElementById("date");
if (node.hasChildNodes()) {
node.firstChild.data = date.Value;
}
else {
var text = node.ownerDocument.createTextNode(date.Value);
node.appendChild(text);
}
</script>
</activex>
<spacer resize="none" width="4"/>
<box resize="none" orient="vertical" pack="end">
<button id="todayButton" label="Today">
<script type="application/x-jscript" ev:event="domactivate">
date.Today();
</script>
</button>
<button label="Close" type="cancel">

Working with ActiveX Controls 217

<script type="application/x-jscript" ev:event="domactivate">
var dialog = Application.event.view.window;
dialog.close();
</script>
</button>
</box>
<script type="application/x-jscript" ev:event="windowload">
date.Today();
</script>
</window>

2. Configure the .dcf file to assign the file date.xml to the <date>
element:
<Specials>
<XuiControl element="date" xuiFileName="date.xml"/>

3. Open a document that uses the DTD for which you've configured the .dcf
file and insert a <date> element. For example, using the default axdocbook
stylesheet, the following markup renders in Arbortext Editor as.

Calendar control embedded in a document
<?xml version="1.0" encoding="utf-8"?>
<!--ArborText, Inc., 1988-2003, v.4002-->
<!DOCTYPE book PUBLIC "-//Arbortext//DTD DocBook XML V4.0//EN"
"axdocbook.dtd">
<?Pub Inc?>
<book>

218 Customizer's Guide

<title>ActiveX Examples</title>
<bookinfo>
<revhistory>
<revision>
<revnumber>1</revnumber>
<date id="date"></date>
</revision>
</revhistory>
</bookinfo>
...
</book>

Example: Previewing Word and Excel Documents
This example demonstrates how ActiveX dialog boxes can be implemented at a
script level. In this scenario, users need to be able to preview Word and Excel
documents from within Arbortext Editor. Because this type of functionality is not
document type specific, the file could be activated from a custom Arbortext Editor
menu item.
The following file supports this example and is available at the following location:
Arbortext-path\samples\activex\commdlg.xml

This example launches the Microsoft Common Dialog control, an ActiveX
version of the standard File Open dialog box. The script launches Microsoft Excel
or Word depending on the user's selection on the File Open dialog box. The only
ActiveX piece of the implementation is the File Open dialog box. Launching of
Word and Excel uses standard ACL COM functions.
<!--ArborText, Inc., 1988-2003, v.4002-->
<!DOCTYPE window PUBLIC "-//Arbortext//DTD XUI XML 1.0//EN"
"xui.dtd">
<window orient="horizontal" focus="opendlg" modal="false"
xmlns:ev="http://www.w3c.org/2001/xml-events">
<activex id="opendlg" progid="MSComDlg.CommonDialog"></activex>
<script type="application/x-vbscript"
ev:event="windowload"
ev:propagate="continue">
' Set flags
OpenDlg.Flags = cdlOFNHideReadOnly
' Set filters
OpenDlg.Filter = "Excel Files(*.xls)|*.xls|" & _
"Word Documents (*.doc)|*.doc|CSV Files(*.csv)|*.csv|Text Files" & _
"(*.txt)|*.txt|All Files (*.*)|*.*|"
' Specify default filter
OpenDlg.FilterIndex = 1
' Display the Open dialog box
opendlg.ShowOpen
index = OpenDlg.FilterIndex
filename = OpenDlg.filename
Application.ActiveWindow.Close()

Working with ActiveX Controls 219

if(filename <> "") then
' Let's launch Excel or Word as COM servers
' (Not to be confused with the ActiveX control from which
' we selected a file name.)
if(index = 1 or index = 3) then ' if .xls or .csv
' Open file in Excel
Dim hExcel 'handle to the Excel app
Dim hWorkbooks 'handle to Excel Workbooks object
set hExcel = CreateObject("Excel.Application")
hExcel.Visible = -1
set hWorkbooks = hExcel.Workbooks
hWorkbooks.Open(filename)
else ' for all other file types....
'Open file in MS Word
Dim hWord 'handle to the Word app
Dim hWordDocs
set hWord = CreateObject("Word.Application")
hWord.Visible = -1
set hWordDocs = hWord.Documents
hWordDocs.Open(filename)
end if
end if
</script>
</window>

Executing ActiveX Controls Using the .dcf
File to Bind to an Element dDrectly
As an alternative to using an external XUI file to define the display of an ActiveX
control, you can associate ActiveX controls with elements directly in the .dcf
file, causing the controls to execute when triggered by specific DOM events. To
use this alternate method to execute ActiveX controls from elements, you need to
update your .dcf file to associate the element with the ActiveX control and
related script. You also need to establish the proper element-to-control binding in
the script.
Keep the following items in mind when using this method to associate ActiveX
controls with elements:

• Arbortext Editor tracks the element-control relationships by element name.
Therefore, a document can contain only one instance of a given element and
its associated ActiveX control. For example, a document may contain
numerous instances of an element that is associated with an ActiveX control,
but only one ActiveX control can be displayed at any given moment.

• Each element must be associated with one script, creating a configuration trio
of one element name to one script name to one control. A given control may
be used multiple times, as long as each instance resides in its own

220 Customizer's Guide

configuration trio. A given script file can be used multiple times, as long as the
script name (as specified in the ActiveXControl element), is unique in
each trio.

Configuring the .dcf File
To associate an element with an ActiveX control, edit the attributes of the
ActiveXControl element in your custom .dcf file for the document type
containing the element.
The ActiveXControl element has the following attributes:

Attribute Description
element (Required) Name of the XML or

SGML element to be associated with
the ActiveX control.

controlName (Required) User-defined name for the
control. Provides the link to event
binding and script associations

scriptFileName (Required) The system file name for the
script file containing the required
functions for handling the control.
The current directory will be searched
first for the script. The load path,
containing the Arbortext-path\
custom\scripts directory, will
then be searched.

scriptName (Optional) User-defined name for the
script context. If not specified, a unique
name for the script context is generated.
By default, no two ActiveX controls
created using the .dcf file will use the
same script context.

programId (Required) The name for the ActiveX
control as registered in the Windows
registry. It is the user-friendly form of
the COM 128–bit Class ID (or GUID).

scriptLanguage (Optional) Name by which users
specify a scripting language which is
not automatically recognized by file
extension. VBScript and JScript are the
only supported script languages.

Working with ActiveX Controls 221

Attribute Description
condition (Optional) An XPath expression. This

attribute value allows the user to define
more specific conditions for when an
ActiveX control should be initiated for
the given element.
For example, to launch a particular
ActiveX control based on a particular
attribute value on a graphic element,
that condition can be defined as an
XPath expression. If the expression, in
the context specified by the element
instance, is TRUE, ActiveX processing
will continue. If the expression is
FALSE, the element will not cause any
ActiveX behavior.

inPlaceActivate (Optional) If yes, embeds the XUI
dialog box containing the control in the
document displayed in Arbortext
Editor. If no (the default), displays the
control in a standalone dialog box.

eventName (Optional) The DOM event name that
runs the ActiveX control. If
unspecified, the default is
DOMActivate.

As an example, a .dcf file's ActiveXControl element could have the
following attributes:
<ActiveXControl
element="date"
controlName="cal"
scriptFileName="date.js"
scriptName="date"
programId="MSCAL.Calendar"
eventName="DOMActivate"
inPlaceActivate="no">
</ActiveXControl>

This example specifies the following association:

• Run the control when a DOMActivate event happens on a date element.
• Create a new Microsoft ActiveX Calendar control with a Program ID of

MSCAL.Calendar.

222 Customizer's Guide

• Name the control “cal” in the script engines list of named variables. (This
provides the name used for script event binding and the methods which write
to and from the XML data, described below.)

• If the control attached to this DOM element is running, bring it to the desktop
foreground. If the control attached to this DOM element has not been
launched, then create and display it.

• Run the Cal_OnInitialize(activenode) function. This function
name is a combination of the control name “Cal”, an underscore character,
and “OnInitialize”. activenode is the element causing the ActiveX
control to be loaded.

• Once the user selects a date and closes the control, the function Cal_
OnClose(activenode) captures the current date from the Calendar and
inserts the <date> element's PCDATA.

If the window is closed because the element is deleted, the control window is
closed and the Cal_OnCancel(activenode) function (if one exists)
runs.

Refer to the examples at the end of this section for other sample
ActiveXControl attribute settings.

Establishing Element-to-Control Binding
Elements and ActiveX scripts are linked and bound to one another in the scripting
environment with a naming convention that uses the control name specified in the
ActiveXControl tag. Using the convention controlname_function, three script
functions use this binding:
controlname_OnInitialize(activenode)
Performs all required control initialization, beyond that which might have been
provided by any initialization file streams.
For example, the Cal_OnInitialize(activenode) function for a
Calendar control might set the current date in the Calendar control according to
any value in the current <date> element. Cal_
OnInitialize(activenode) would retrieve the PCDATA:

The current date
and pass it to the Calendar.Value property to display as follows:

Working with ActiveX Controls 223

controlname_OnClose(activenode)
Modifies the XML data to reflect the final state of the ActiveX control. The
function is not required, but is a logical way to synchronize the control data with
the XML data. It is also a logical way to update the XML data in scripts that do
not employ control event handlers.
When the user closes or cancels the dialog box, controlname_
OnClose(activenode) is called if it exists in the active script.
controlname_OnClose(activenode) is not called if the control is
embedded in the document using inPlaceActivate.
controlname_OnCancel(activenode)
Performs any actions needed when Arbortext Editor closes a dialog box because
its owner element was deleted. This function is optional, but can be useful to undo
previous script actions in cases where XML data may have changed with control
events. controlname_OnCancel(activenode) is not called if the control
is embedded in the document using inPlaceActivate.

Example: Calendar Control
This example illustrates how to associate an ActiveX control with an element.
Specifically, this example gives a means of entering dates into a document using
the Microsoft Calendar Control.
The following files support this example and are available at the following
locations:

• Arbortext-path\samples\activex\date.js

A JScript sample file that associates the Microsoft Calendar Control with the
<date> element for the Arbortext XML DocBook (axdocbook) DTD. The
script handles all communication between the XML element and the control.

• Arbortext-path\samples\activex\date.vbs

AVBScript version of date.js

224 Customizer's Guide

Operation Overview
In this scenario, assume your users want to choose dates from the Calendar control
interface instead of having to type the PCDATA into a date element.
The users interact with the Calendar control in the following manner:

First, the user inserts or double-clicks a date element. Second, Arbortext Editor
displays the ActiveX control. Third, the user uses the calendar interface to visually
select a date and close the control. Fourth, the script retrieves the data from the
calendar and inserts it into the DOM Text Node.

Scripting Overview
From an implementation perspective, the following actions occur.

• When the user double-clicks the mouse or presses shift-Enter on a <date>
element, a DOMActivate event is triggered.

• The script file date.js (which we named date) is executed.
• The Calendar control is displayed.
• The Calendar control is assigned the variable name cal. This lets the script

have access to the control's methods and properties.
• The script method cal_OnInitialize(ActiveNode) is called.
• When the user closes the dialog box, the script method cal_

OnClose(ActiveNode) is called.

Implementation
Use the following steps to implement this example:

Working with ActiveX Controls 225

1. Configure the .dcf file by adding the following element:
<ActiveXControl element="date"
controlName="date"
scriptFileName="date.js"
scriptName="date"
programId="MSCAL.Calendar"
eventName="DOMActivate">

2. Create a control initialization function in your script. Match the function name
prefix with the control name specified in the ActiveXControl element in
the .dcf file as follows:

ActiveXControl element where the first part of the control name “date_
OnInitialize()” parallels the ActiveXControl controlName
attribute value of “date”.

3. Populate the script initialization function as detailed in date.js:
function date_OnInitialize(ActiveNode)
{
// Remember our active node for the embedded case
anode = ActiveNode;
// does this date element already have a child node?
if(ActiveNode.HasChildNodes())
{
// yes, get the first child to see if it's our PCDATA
var childNode = ActiveNode.FirstChild
if(childNode.NodeType == NODE_TEXT)
{
// set the Calendar control to the value of the XML data
date.Value = childNode.NodeValue
date.Refresh()
}
}

226 Customizer's Guide

}

4. Create and populate the script close function as detailed in date.js.
function date_OnClose(ActiveNode)
{
// the active node should be an element,
// but let's make sure...
if(ActiveNode.NodeType == NODE_TEXT)
{
ActiveNode.replaceData(0, ActiveNode.length, date.Value);
}
else if(ActiveNode.HasChildNodes())
{
// does this date element already have a child node?
// and is it a text node?
var childNode = ActiveNode.FirstChild
if(childNode.NodeType == NODE_TEXT)
{
// yes, replace the text data with the control's data
childNode.replaceData(0, childNode.length, date.Value);
}
}
else
{
// no existing date PCDATA, create it
insertDate(ActiveNode);
}
}

The close function calls the following insertDate function to insert the
date selected in the control:
function insertDate(thisNode)
{
// create a Range object
var domRange = Application.ActiveDocument.createRange();
// set that Range to the beginning of our <date> element
domRange.setStart(thisNode,0);
// select the entire <date> element
domRange.selectNodeContents(thisNode);
// collapse node to the end of the contents
// i.e. the insertion point is just before the end tag </date>
domRange.collapse(true);
// create a new text node, and populate with the control data
var textNode = Application.ActiveDocument.createTextNode(date.Value)
// inserts the text.... <date>here</date>
domRange.insertNode(textNode)

}

Working with ActiveX Controls 227

Example: Entering Address Information with an
HTML Form
This example illustrates how to display an HTML form for entering address data
using the Microsoft WebBrowser control.
The following files support this example and are available at the following
locations:

• Arbortext-path\samples\activex\address.js

A JScript sample file that associates the Microsoft WebBrowser Control with
the <address> element and its child elements <honorific>,
<firstname>, <surname>, <street>, <city>, <state>, and so on
for the Arbortext XML DocBook (axdocbook) DTD. The script handles all
communication and data transfer between the XML data and the HTML form.

• Arbortext-path\samples\activex\address.vbs

AVBScript version of address.js.
• Arbortext-path\samples\activex\address.htm

The accompanying HTML form for <address> information to be displayed
by the WebBrowser.

Use the following steps to implement this example:

1. Configure the .dcf file by adding the following element.
<ActiveXControl element="address"
controlName="addrform"
scriptFileName="address.js"
scriptName="address"
programId="Shell.Explorer"
eventName="DOMActivate"></ActiveXControl>

2. When the user inserts an <address> element, the Microsoft WebBrowser is
launched in a Container window. The WebBrowser renders the HTML in
address.htm and appears as follows:

228 Customizer's Guide

This picture shows how the WebBrowser displays address information in a
dialog box.

3. The form is scripted to produce the following XML data:
<address>
<firstname>John</firstname>
<surname>Doe</surname>
<street>My Street</street>
<city>My City</city>
<state>MYSTATE</state>
<postcode>55555</postcode>
<country>USA</country>
<phone>800-555-1212</phone>
<phone>888-555-1212</phone>
<fax>877-555-1212</fax>
<email>mywork@soandso.com</email>
<email>myhome@soandso.net</email>
</address>

Working with ActiveX Controls 229

Running Arbortext Editor in an ActiveX
Control
Besides running other ActiveX controls inside of Arbortext Editor, you can run
Arbortext Editor itself in an ActiveX control. The Arbortext Editor ActiveX
control is located at Arbortext-path\bin\EditorControl.dll. This
control is registered as a COM server whenever the associated version of
Arbortext Editor is registered.
Arbortext Editor can run as an embedded ActiveX control inside of another
window or dialog box, including a web browser. In this case, the Arbortext Editor
menus are made available through a new Menu toolbar button. Also, some menu
choices and toolbar buttons are not available in an embedded frame.
Sample Arbortext Editor ActiveX implementations are in the Arbortext-
path\samples\activex_editor directory. The XUI directory has a
sample XUI dialog box containing an embedded Arbortext Editor ActiveX
control. The CSharp directory contains a sample C# implementation. These
examples demonstrate how to use the return value of the open method (which is
an ACL window id) with the Acl.getWindow AOM method to obtain a
Window AOM object. This technique provides the caller with great control over
the window and the document living in it.

Characteristics of the ActiveX Arbortext Editor
Since the ActiveX version of Arbortext Editor is contained inside of some other
window, it has somewhat different functionality than the regular Arbortext Editor
window. The ActiveX Arbortext Editor has the following differences from the
regular Arbortext Editor:

• No title bar — Only the window hosting the Arbortext Editor ActiveX control
can have a title bar.

• Does not appear in the Microsoft Windows taskbar — Only the window
hosting the Arbortext Editor ActiveX control can appear on the taskbar.

• Does not appear in the Microsoft Windows ALT+TAB window sequence —
Only the window hosting the Arbortext Editor ActiveX control can appear in
this sequence.

• Might not be resizable — The window hosting the Arbortext Editor ActiveX
control determines whether the control can be resized.

For example, if you embed the ActiveX control inside of a XUI dialog box,
you can control whether the control is resized when the dialog box is resized.

The ActiveX Arbortext Editor has the following user interface differences from
the regular window:

• The Arbortext Editor menus are available from a toolbar button.

230 Customizer's Guide

The ActiveX Arbortext Editor provides the menus through a Menu toolbar
button:

Menu toolbar button

In the ActiveX Arbortext Editor, the F10 key activates the Menu toolbar button
and opens the menus.

• The following menu choices (and associated keyboard shortcuts) are not
available:

○ File ▶▶ New

○ File ▶▶ Open

○ File ▶▶ Close

○ File ▶▶ Save All

○ File ▶▶ Exit

○ File menu list of recently opened documents
○ Window ▶▶ New Window

○ Window ▶▶ Cascade

○ Window ▶▶ Default Window Configuration

○ Window menu list of open Arbortext Editor windows

Working with ActiveX Controls 231

○ All menu choices for editing FOSIs
• The following toolbar buttons are not available:

○ New

○ Open

The EditorControl.dll Control
The Arbortext Editor ActiveX control is contained in the
EditorControl.dll file. The control has the following names when viewed
with the Microsoft OLE/COM Object Viewer (Oleview.exe) application:

• Arbortext.EditorControl— The ProgID for the control
• Arbortext Editor Control— The name in the Object Classes/All

Objects group
• Arbortext Editor Control Type Library— The name in the Type

Libraries group
• IArbortextEditorControl— The name in the Interfaces group
Following is the Interface Definition Language (IDL) definition for the control’s
COM interface:
interface IArbortextEditorControl : IDispatch{
[id(1), helpstring("Opens a new document after first closing the currently-displayed
document (if any).")]
HRESULT open(
[in] BSTR documentPath,
[in,defaultvalue(0)] LONG documentFlags,
[in,defaultvalue(0)] LONG windowFlags,
[in,defaultvalue("")] BSTR xuiPath,
[out, retval] LONG* pWindowId
);
[id(2), helpstring("Displays an already-open document after first closing the
currently-displayed document (if any).")]
HRESULT show(
[in] LONG documentId,
[in,defaultvalue(0)] LONG windowFlags,
[in,defaultvalue("")] BSTR xuiPath,
[out, retval] LONG* pWindowId
);
[id(3), helpstring("Closes the currently-displayed document and, by default, prompts
to save changes.")]
HRESULT close([in,defaultvalue(0)] LONG flags);
};

232 Customizer's Guide

HRESULT Return Values
Each method in the control’s COM interface returns one of the following
HRESULT values:

• S_OK—Operation successful
• 0x800704C7—Operation canceled by user

Some operations can display prompts that enable the user to cancel the
operation. In this case, the control returns an HRESULT of 0x800704C7.
Encoded in this result is a FACILITY code of FACILITY_WIN32 and a
WIN32 error code ERROR_CANCELLED. This enables the calling code to
determine the operation was canceled by the user. The associated message will
be The operation was canceled.

• E_FAIL—Unexpected failure

In this case, there will be an associated error message for the type of failure.

open Method
Opens a resource as a Arbortext Editor document and displays it in the ActiveX
embedded Arbortext Editor window. This method first closes the current
document (if any) and prompts the user to save it (if modified). Note that at the
Save prompt, the user might Cancel the operation. In this case, the current
document is left intact and this method returns an error.
If you do not want the user to see a Save prompt, then you can call the close
method to close the current document explicitly before calling the open method.
Note that you can suppress all informational windows during an open operation
by specifying the 0x0020 value for the documentFlags parameter.

open(documentPath [, documentFlags [, windowFlags [, xuiPath]]])
Parameters String documentPath

Represents the path to a document. This can be in any form
that Arbortext Editor recognizes, such as with the edit
ACL command or the Application.openDocument
AOM method. For example:
• c:\documents\guide.xml

• http://server/documents/guide.xml

• x-wc://file=84756484.xml

int documentFlags
[optional] Defaults to 0. A bitmask that specifies open
options. Constructed by ORing the bits from the following
enumeration:

Working with ActiveX Controls 233

OPEN_RDONLY = 0x0001
Open for read only and do not lock the underlying file.
If this is not set, the underlying file will be locked if
possible and the document will be read-only if no lock
was acquired.
The “checked out” status of CMS Objects will not be
affected.

OPEN_DOCRDWR = 0x0002
Open for writing and do not lock the underlying file.
The document will be modifiable even though the
underlying file is not locked.
If the document was already open in memory, this will
additionally attempt to lock the underlying file.
The “checked out” status of CMS Objects will not be
affected.

OPEN_NLOCK = 0x0004
Do not lock the underlying file. Overrides all other
flags which might acquire a file lock. The resulting
document will not be modifiable unless OPEN_
DOCRDWR is also given.
The “checked out” status of CMS Objects will not be
affected.

OPEN_CC = 0x0008
Perform a completeness check when reading the
SGML file. This option is ignored for XML
documents.

OPEN_NOCC = 0x0010
Suppress the completeness check when reading the
SGML file. This option is ignored for XML
documents. OPEN_NOCC is the default option for
SGML documents saved by Arbortext Editor.

OPEN_NOMSGS = 0x0020
Do not display any parser error messages in a message
window. Instead, suppress all warnings and errors.

OPEN_XML = 0x0100
Open the document as an XML document even if it
does not start with the XML version processing
instruction. If not specified, the document is loaded as

234 Customizer's Guide

an SGML document unless the document starts with
the XML version header.

OPEN_NOSTYLE = 0x0200
Open the document without loading a style sheet.

OPEN_NODTPROMPT = 0x0400
Do not prompt the user if the document type associated
with the document instance does not exist or is not
compiled. Instead, fail the operation.

OPEN_RECTABLES = 0x4000
Cause the table editor to recognize tables immediately
after opening the document. By default, table objects
are not created until the document is displayed in a
window.

OPEN_EDITINIT = 0x8000
Process initialization files immediately after opening
the document. This includes sourcing the associated
document type instance files (instance.acl,
instance.js, and instance.vbs) and the
document command files (docname .acl,
docname.js, and docname .vbs). By default, these
files are not processed until the document is displayed
in a window.

OPEN_NEW_DOC = 0x10000
Treat the document as if it were created using the New
dialog box. In this case, the path name is set to null and
the document name is of the form DocumentN.

OPEN_FREEFORM = 0x80000
Open the document in free form mode, ignoring the
document type specified in the file.

int windowFlags
[optional] Defaults to 0. A bitmask that specifies window
options.
Constructed by ORing the bits from the following
enumeration:
• 0x00001 - Supply vertical scrollbar (pane).
• 0x00002 - Supply menu bar. If this is set then the

Menu toolbar button will be shown. If this is not set, the
Menu toolbar button is not shown and there will be no
way to bring up menus.

Working with ActiveX Controls 235

The menu bar is part of the Edit toolbar (Toolbar 1) —
0x00020. Toolbar 1 must be supplied to enable the
display of the menu bar.

• 0x00004 - Supply command subwindow.
• 0x00008 -Supply message footer subwindow.
• 0x00020 -Supply the Edit toolbar (that is, Toolbar 1)

(pane).
• 0x00080 - Supply horizontal scrollbar (pane).
• 0x00100 - Do edit command intializations, include

reading the document type instance command files (
instance.acl and instance.js) and document
command files (docname.acl and docname .js) if
they exist, and calling the ACL editfilehook
when a document is attached to the window. This bit
applies only to edit class windows (pane).

• 0x01000 - Supply a table column width ruler (pane).
• 0x02000 - Supply a table row height ruler (pane).
• 0x04000 - Supply the Markup toolbar (that is,

Toolbar 2).
• 0x08000 - Supply the Table toolbar (that is, Toolbar

3).

236 Customizer's Guide

• 0x10000 - Supply the Application toolbar (that is,
Toolbar 4).

If a menu bar is requested, it must be initialized using the
menu_load ormenu_add ACL commands before the
window is first displayed.
If a message footer is created, error messages and output
from themessage ACL command are displayed in the left
part of the footer if the message is short enough (otherwise
a popup dialog box is used). Any messages directed to the
message footer are considered transient and are erased on
the next key or button event received in the window.
If this parameter is omitted or zero, it behaves as if the
following value were given: 0x9F9FF. This corresponds
to the internal ACL constants (h::winMaskMain |
h::winMaskEditStyle) which are used to create default
“edit” windows. Over time, these constant might change,
so this ensures the latest defaults are used.
Regardless of the value given, the following bits will be
forcibly set:0x80850. This ensures that some window
properties are set that are absolutely required for the
control to work properly.
To cause the document to be shown with an absolute
minimum of window artifacts (toolbars, scroll bars, status
bar, etc..), any non-empty subset of 0x80850 can be used.
For example: 0x00040.
String xuiPath
[optional] Defaults to an empty string. An optional
parameter used to supply an alternative XUI file to define
the toolbars used by the edit window. If xuiPath is not
supplied (or empty), then Arbortext-path\lib\
dialogs\editwindow.xml is used.

Returns The ACL ID of the possibly new window that was loaded
as a result of this call.
A value of –1 can be returned if no documentPath
parameter was given.

Working with ActiveX Controls 237

Throws A COM error will be returned to the caller for the
following cases:
• User canceled at the save prompt or at some prompt

while opening the requested document. In this case,
returns an HRESULT value of 0x800704C7 which
enables the caller to distinguish this case from other
types of failures.

This represents a FACILITYof FACILITY_WIN32
and a WIN32 error code of ERROR_CANCELLED.

• Failed to open the requested resource. In this case. the
HRESULT will be E_FAIL

The associated COM error message is dependent upon
the actual failure opening the requested resource.

show Method
Opens an existing resource based on its ACL document ID as a Arbortext Editor
document and displays it in the ActiveX embedded Arbortext Editor window. In
contrast to the open method, the show method enables you to dynamically create
an in-memory document that might not have been saved at all and display it in the
ActiveX embedded window.
This method first closes the current document (if any) and prompts the user to
save it (if modified). Note that at the Save prompt, the user might Cancel the
operation. In this case, the current document is left intact and this method returns
an error.
If you do not want the user to see a Save prompt, then you can call the close
method to close the current document explicitly before calling the show method.

show(documentId [, windowFlags [, xuiPath]])
Parameters String documentId

Represents the ACL document identifier for an already
document.
int windowFlags
[optional] Defaults to 0. A bitmask that specifies window
options.
Constructed by ORing the bits from the following
enumeration:
• 0x00001 - Supply vertical scrollbar (pane).
• 0x00002 - Supply menu bar. If this is set then the

Menu toolbar button will be shown. If this is not set, the

238 Customizer's Guide

Menu toolbar button is not shown and there will be no

Working with ActiveX Controls 239

way to bring up menus.

The menu bar is part of the Edit toolbar (Toolbar 1) —
0x00020. Toolbar 1 must be supplied to enable the
display of the menu bar.

• 0x00004 - Supply command subwindow.
• 0x00008 -Supply message footer subwindow.
• 0x00010 - Automatically call

ADocument.close() on the attached document
when the window is destroyed. (pane).

• 0x00020 -Supply the Edit toolbar (that is, Toolbar 1)
(pane).

• 0x00080 - Supply horizontal scrollbar (pane).
• 0x00100 - Do edit command intializations, include

reading the document type instance command files (
instance.acl and instance.js) and document
command files (docname.acl and docname .js) if
they exist, and calling the ACL editfilehook
when a document is attached to the window. This bit
applies only to edit class windows (pane).

• 0x01000 - Supply a table column width ruler (pane).
• 0x02000 - Supply a table row height ruler (pane).
• 0x04000 - Supply the Markup toolbar (that is,

Toolbar 2).
• 0x08000 - Supply the Table toolbar (that is, Toolbar

3).

240 Customizer's Guide

• 0x10000 - Supply the Application toolbar (that is,
Toolbar 4).

If a menu bar is requested, it must be initialized using the
menu_load ormenu_add ACL commands before the
window is first displayed.
If a message footer is created, error messages and output
from themessage ACL command are displayed in the left
part of the footer if the message is short enough (otherwise
a popup dialog box is used). Any messages directed to the
message footer are considered transient and are erased on
the next key or button event received in the window.
If this parameter is omitted or zero, it behaves as if the
following value were given: 0x9F9FF. This corresponds
to the internal ACL constants (h::winMaskMain |
h::winMaskEditStyle) which are used to create default
“edit” windows. Over time, these constant might change,
so this ensures the latest defaults are used.
Regardless of the value given, the following bits will be
forcibly set:0x80850. This ensures that some window
properties are set that are absolutely required for the
control to work properly.
To cause the document to be shown with an absolute
minimum of window artifacts (toolbars, scroll bars, status
bar, etc..), any non-empty subset of 0x80850 can be used.
For example: 0x00040.

Note
If a 0 value is given, the 0x9F9FF value is used. this
value includes the 0x00010 bit, which causes the
document to be closed when the user closes the
Embedded Frame window.

If you want the given document to remain open after
the Embedded Frame window is closed, then don't use
a 0 value for the windowFlags. Instead, use a non-zero
bitmask that does not have the 0x00010 bit set.

String xuiPath
[optional] Defaults to an empty string. An optional
parameter used to supply an alternative XUI file to define
the toolbars used by the edit window. If xuiPath is not
supplied (or empty), then Arbortext-path\lib\
dialogs\editwindow.xml is used.

Returns The ACL ID of the possibly new window that was loaded

Working with ActiveX Controls 241

as a result of this call.
A value of –1 can be returned if a documentId parameter
value of -1 was given.

Throws A COM error will be returned to the caller for the
following cases:
• User canceled at the save prompt or at some prompt

while opening the requested document. In this case,
returns an HRESULT value of 0x800704C7 which
enables the caller to distinguish this case from other
types of failures.

This represents a FACILITYof FACILITY_WIN32
and a WIN32 error code of ERROR_CANCELLED.

• An invalid documentId was provided. In this case. the
HRESULTwill be E_FAIL

close Method
Closes any open document after first prompting to save any changes (if it was
modified).

close([, closeFlags])
Parameters int closeFlags

[optional] Defaults to 0. A bitmask that specifies close
options.
Constructed by ORing the bits from the following
enumeration:
• 0x0001 - When closing the current document,

suppress the prompt to save the current document.
• 0x0002 - After closing the current document, do not

display even the façade document. Note that in this
case the host window will show through the ActiveX
control area, which might result in unexpected display
results.

• 0x0004 - When closing the current document and a
prompt is put up to save, suppress the option to Cancel.

This option is useful if the containing host window is
closing in such a way that cannot be aborted or
canceled. It enables users to save a document without
giving them the impression that they can cancel the
operation that is closing down their document.

242 Customizer's Guide

Returns None.
Throws A COM error will be returned to the caller for the

following case:
• User canceled at the save prompt. In this case, returns

an HRESULT value of 0x800704C7 which enables
the caller to distinguish this case from other types of
failures.

This represents a FACILITYof FACILITY_WIN32
and a WIN32 error code of ERROR_CANCELLED.

In general, it is very unlikely that this method will fail
other than the Cancel case.

Integrating Arbortext Editor with Web
Pages
On the Microsoft Windows platform, you can set up links in web pages that will
open an Arbortext Editor session.
You can use the arbortext-editor protocol (or scheme) in a URI (Uniform
Resource Identifier) to invoke Arbortext Editor from a link. Sample web
integration implementations are available in the Arbortext-path\
samples\web-integration directory. Refer to the readme.txt file in
that directory for a description of the samples.

The Protocol Syntax
Following is the syntax for the arbortext-editor protocol presented in the
RFC format defined in RFC 4395 by the Internet Assigned Numbers Authority
(IANA):
arbortexturi = scheme ":" resource ["?" query] ["#" anchor]
scheme = "arbortext-editor" |
query = query-pair *["&" query-pair]
query-pair = key "=" value
resource = utf8 url encoded resource
key = utf8 url encoded query component
value = utf8 url encoded query component
anchor = utf8 url encoded resource

In the syntax, resource must be the encoded full path to a document that can be
opened with Arbortext Editor.
utf8 url encoded resource refers to the standard rules for encoding a
resource referenced from a URI. The following rules apply in this case:

Working with ActiveX Controls 243

http://www.rfc-editor.org/rfc/rfc4395.txt
http://www.iana.org/
http://www.iana.org/

• The alphanumeric characters "a" through "z", "A" through "Z" and "0"
through "9" remain the same.

• The special characters " . ", " - ", " * " and " _ " remain the same.
• The space character is converted into "%20".
• All other characters are first converted into one or more bytes using UTF-8,

and then each byte is represented by the character string "%xy", where xy is
the two-digit hexadecimal representation of the byte.

For example, the string would get converted to , because in UTF-8 the character ü
is encoded as two bytes C3 (hex) and BC (hex), and the character @ is encoded as
%40 and spaces are encoded as %20.
utf8 url encoded query component refers to the optional query string,
which must be encoded according to the application/x-www-form-
urlencoded mime type (defined in the W3C HTML 4.01 Specification). The
basic encoding rules are the same in this case, but space characters are represented
by a plus sign (+).
Following are some examples of legal uses of the protocol:
arbortext-editor:http%3A%2F%2Fserver%2Fpath%2Ffile.xml
Protocol arbortext-editor
Unencoded
Resource

http://server/path/file.xml

arbortext-
editor:c%3A%5Ctemp%20dir%5Cfile%CE%A8.xml?name=
Robert+Smith#Terrier
Protocol arbortext-editor
Unencoded
Resource

c:\temp dir\fileΨ.xml

Unencoded
Query Name

name

Unencoded
Query Value

Robert Smith

Anchor Terrier

The arbortext-editor Protocol
You use the arbortext-editor protocol to launch a Arbortext Editor session
for a document from a link on a web page. In this case, the usual Arbortext Editor
window is used to open the document, so Arbortext Editor must be installed or
otherwise available on the local system. In general, when a web browser processes
a link with an unknown protocol the browser checks the local system to see

244 Customizer's Guide

http://www.w3.org/TR/html401/interact/forms.html

whether there is an application registered to handle the protocol. When Arbortext
Editor is registered as a COM server on a Microsoft Windows system, part of that
process associates Arbortext Editor with the arbortext-editor protocol.
For security reasons, most web browsers usually prompt the user before initially
launching the associated program for a given protocol URI. Since Arbortext
Editor is registered as the associated program for the arbortext-editor
protocol, a browser generally displays a dialog box warning the user that this link
will launch an application on their system and asking for confirmation before
proceeding. Such dialog boxes generally have an option to not show the warning
again for this protocol. If Arbortext Editor is not installed on the system, or is not
registered for some reason, most browsers will display an error message saying
that the protocol is not associated with an installed program.
Following is an example of an HTML link that would open Arbortext Editor for a
document named sample.xml:

Sample document

Note that if the link appears as an attribute value in HTML markup, then it is
subject to the normal encoding rules of those attribute values. In particular, if the
link contains the & character (such as if there is a query string with more than one
parameter), then this must be encoded as &. For example, the following link:
arbortext-editor:http%3A%2F%2Fdocserver%2Fwebdav%2Fsample.xml?color
=blue&priority=high

should appear inside of an HTML link as follows:
<a href="arbortext-editor:http%3A%2F%2Fdocserver%2Fwebdav%2Fsample.xml?color
=blue&priority=high">
Sample document

The Security Zone Policy
By default, whether a document is opened by an arbortext-editor protocol
link is determined by the Microsoft URL security zone policy. When a link using
the protocol is invoked from a web browser, Arbortext Editor first determines the
zone of the encoded resource path. The link is then allowed or denied according to
this policy:

• Local Machine zone — allow
• Local Intranet zone — allow
• CMS zone — allow

This a new zone not in the default Microsoft URL security zones. If Arbortext
Editor determines that the encoded path is the Logical ID for an object stored
in a content management system, then it is considered to be in the CMS zone.

Working with ActiveX Controls 245

http://msdn.microsoft.com/en-us/library/ms537183(VS.85).aspx

Refer to the Content Management Guide for more information about Logical
IDs.

• Trusted Sites zone — allow
• Internet zone — deny
• Restricted Sites zone — deny
If the link is denied, then a message is displayed saying that the request has been
denied for security purposes. The use of URL security zones is controlled by the
webzonepolicy preference.

Processing Query Strings
The arbortext-editor protocol enable you to add an optional query string to
the URI. Following is an example of a URI with the query string:
arbortext-editor:x-wc%3A%2F%2Ffile%3D1234.xml?workspace=ws1&hosturl=
http%3A%2F%2Fpjl%2FWindchill

In this example, there are two query parameters: workspace and hosturl.
Their decoded values are ws1 and http://pjl/Windchill.
These query string parameters enable the link to specify potentially useful
metadata about the link. This metadata can be accessed inside of an ACL
editbeforehook hook function. When one of these links are selected in a web
browser, all of the functions in the editbeforehook are called before the
document is actually opened. This gives the hook function a chance to do any
special processing before the document opens.
For example, following is an HTML link containing some query strings that opens
an Arbortext Editor session:
<a href="arbortext-editor:http%3A%2F%2Fserver%2Fpath%2Ffile.xml?
hint1=food&hint2=M%26Ms">
click here

This links opens the http://server/path/file.xml document and
includes the hints food and M&Ms as query strings. Assume the following hook
code is sourced:
package metadata;

function my_edit_before_hook(path)
{
local hint1 = get_custom_property('com.ptc.arbortext.launcher.temp.hint1');
local hint2 = get_custom_property('com.ptc.arbortext.launcher.temp.hint2');

response("Path=$path\n\nhint1=$hint1\n\nhint2=$hint2");

returning -1 will cancel the edit
}

246 Customizer's Guide

add_hook('editbeforehook', package_name().'::my_edit_before_hook');

In this case, when the link is selected in the web browser, the response dialog box
displays both the decoded http path to the file and the hint1 and hint2
metadata that was in the original HTML link.

Accessing Query String Parameters
While the editbeforehook functions are being called, the query strings are
available through the following function and methods:
• ACL: get_custom_property()
• AOM: Application.getCustomProperties().getString()
After the hook functions have all been called, the query string values are no longer
available. To access a query string parameter, you prefix the parameter name with
the following value before calling get_custom_property() or
Application.getCustomProperties().getString():
com.ptc.arbortext.launcher.temp.

For example, to access the workspace parameter in the following example link:
arbortext-editor:x-wc%3A%2F%2Ffile%3D1234.xml?workspace=ws1&hosturl=
http%3A%2F%2Fpjl%2FWindchill

You could use the following ACL code:
local value = get_custom_property('com.ptc.arbortext.launcher.temp.
workspace');

You could also use the following AOM code:
String value = Application.getCustomProperties().getString
("com.ptc.arbortext.launcher.temp.workspace");

If there is no such query parameter, then an empty string is returned for ACL and
a null is returned for AOM.

Note
The values returned are the fully decoded string values. If a link contained the
following query string parameter:
hosturl=http%3A%2F%2Fpjl%2FWindchill

The following value would be returned:
http://pjl/Windchill

Working with ActiveX Controls 247

8
Merging Data from Other Sources

Data Merging Overview ... 250
Merging Data with Arbortext Editor ... 250
Query Definitions... 250
Configuring for Data Merge .. 251
Notes and Limitations .. 254

Note
The capability to merge data is deprecated and not an encouraged best practice
supported by PTC.

249

Data Merging Overview
Arbortext Editor lets you incorporate references to external data sources in a
document, and to then periodically resolve those references. A reference to
external data is called a query and the result is calledmerged data.
The information in this chapter is an abbreviated overview of configuring
Arbortext Editor's data merging capabilities. Customizing data merging
capabilities at your site may require that you contact Arbortext Consulting
Services.

Merging Data with Arbortext Editor
Authors of document with merged data can perform the following actions:

1. Insert a predefined data field or query from the Insert Markup dialog box.
2. Update of one or more query results. (Queries can be specified to be locked

from updating.)
3. Modify query parameters and update queries.
A query result contains the data retrieved and a namespaced element surrounding
the data, preserving the query information for later identification and update.
Queries are of two types:

• Fielded queries — The query result contains one or more name and value
pairs. Each pair can be inserted independently into various locations in a
document.

• Content queries — The query result is a data chunk which can be as simple as
a string or as complex as an entire document. Often, as when a result is
derived from executing a query against a database, the result will be in tabular
form. The data merging framework enforces no limitations on the format of a
query result.

Query Definitions
A query refers to a query definition. The query definition is one of many
definitions stored in a data merge (xml) configuration file. A query definition
consists of a UI component and a formal definition.
The query definition UI component includes:

• The name of the query definition. This name links a document's query to a
query definition.

• The parameters that must be passed to the query. The parameters must be
given values at the time of inserting a query.

250 Customizer's Guide

• The query result type: document content, or name-value pairs.
• A representative top level tag for quick context verification if document

content is returned.
The query definition formal definition includes:

• A source stage. This may be any program that generates a DOM node. The
actual source may be a database, a file, a URL, or some external process. The
program is responsible for presenting the result as a node, perhaps using some
simple markup to represent name value pairs.

• One or more transformation stages. These stages take a DOM node as input
and generates a new DOM node as output.

• A description of the order in which the stages are to be applied, starting with
the source.

• For each stage, a mapping of UI parameters to actual parameters for the stage.

Configuring for Data Merge
To merge data, one or more data merge configuration (.dmf) files must be
created defining the queries, and one or more document type .dcf files must be
modified to specify the appropriate .dmf file(s) and available queries.

The .dcf File
To merge data, the document type's .dcf file must contain a <DataMerge>
element specifying the base name of the file containing the query definitions and
whether they are enabled. In the following example, the query definitions are
stored in the file example1.dmf and are made available to authors:
<DataMerge>
<DataSource enabled="yes" name="example1"/>
</DataMerge>

The Data Merge Configuration File (The .dmf File)
The .dmf file defines queries and their components. The file is an XML file
based on the supplied datamerge.dtd document type. Queries must be defined
in the .dmf file before authors can add merged data to their documents. Arbortext
Editor first searches the current document type directory for a .dmf file, then
searches Arbortext-path\custom\datamerge.
The following sample example1.dmf file provides a sample content query that
retrieves employee information from a database and returns the result as a table.
The query takes three parameters: username and password for connecting to the

Merging Data from Other Sources 251

database, and department for the specific department employee information. In the
example code, the referenced resources in the <Resource> element are
provided as part of Arbortext Editor.
<DataMerge>
<Resource>
&msAccessSource;
&tableModelTransformer;
</Resource>
<!-- **** QUERY: "Select Employees" **** -->
<Query name = "Employee_Query" queryType="table">
<Label>Select Employees</Label>
<Interface>
<Documentation>
Interface section contains query parameters to be shown in
the insert query dialog box. This query defines one parameter
which is shown as a combo box in the query dialog box.
</Documentation>
<QueryField name="p01" displayType="combo">
<Label>department</Label>
<ListItem>Engineering</ListItem>
<ListItem>Sales and Marketing</ListItem>
<ListItem>Services</ListItem>
</QueryField>
</Interface>
<SourceRef name="QuerySource" nameref="MS_Access_Source">
<Documentation>
This is a source filter that retrieve data from an MS Access
database using jdbc-odbc bridge. The SQL statement contains a
parameter "department".
</Documentation>
<ParameterRef name = "p_statement" nameref="sqlStatement" >
<Value>select name, phone, email from employees where department = ?</Value>
</ParameterRef>
<!-- SQL Parameters -->
<ParameterGroupRef name = "queryParameters" nameref="sqlParameters" >
<Documentation>
This parameter defines the values to be passed into SQL statement.
</Documentation>
<ParameterRef name = "department" datatype="string" >
<Documentation>
The value of this parameter refers to the value specified in insert
query dialog box
(department).
</Documentation>
<QueryFieldRef nameref="p01"/>
</ParameterRef>
</ParameterGroupRef>
<!-- SQL Parameters -->
<ParameterGroupRef name = "p_connect" nameref="connectionProperties" >
<Documentation>
Connection string for connecting to an Access database file. An DSN need

252 Customizer's Guide

to be setup in Windows Control Panel ODBC Administration. In this example,
the name for the DSN is "employees".
</Documentation>
<ParameterRef name = "p_url" nameref = "url">
<Value>jdbc:odbc:employees</Value>
</ParameterRef>
</ParameterGroupRef>
</SourceRef>
<TransformerRef name="QueryTransformer" nameref="TableModelTransformer">
<Documentation>
Table model transformer transforms the query result into an Arbortext
table model.
</Documentation>
<ParameterRef nameref="tableModel">
<Documentation>
The table model to use.
</Documentation>
<Value>OASIS Exchange</Value>
</ParameterRef>
<ParameterRef nameref="wrapperTag">
<Documentation>
The wrapper tag for the table model.
</Documentation>
<Value>table</Value>
</ParameterRef>
</TransformerRef>
</Query>
</DataMerge>

After inserting the query, the following markup is added to the document at the
insertion point:
<atidm:query xmlns:atidm="http://www.arbortext.com/namespace/DataMerge"
queryKey="example1:Employee_Query"
queryName="Select Employees(department)"
queryType="table"
timestamp="1079992813593"
updateOnOpen="yes"
updateOnCompose="yes"
updateManually="yes"
p01="Engineering">
<table> </table>

Hiding Parameter Values
When inserting a query, query parameters and their values are embedded in the
document as part of query result. These parameters are not visible when viewing
the document in Arbortext Editor, but they can be viewed when directly viewing
the document’s XML source. You may wish to hide these parameter values when
they represent sensitive information such as a user name or password.

Merging Data from Other Sources 253

To hide parameter values when queries are inserted in documents, set the
parameter’s <QueryField> hidden attribute value to yes. Doing so will cause
the value of the parameter to be replaced by asterisks when inserted in the
document in the query result. For example:
<QueryField name="p01" hidden="yes" displayType="combo">
<Label>department</Label>
<ListItem>Engineering</ListItem>
<ListItem>Sales and Marketing</ListItem>
<ListItem>Services</ListItem>
</QueryField>

Notes and Limitations
Be aware of the following issues when using merged data with Arbortext Editor:

• The capability to merge data is deprecated and not an encouraged best practice
supported by PTC.

• Since there is no namespace support in SGML, all namespaced elements for
datamerge markups are converted to PIs in SGML documents.

254 Customizer's Guide

9
Working with Arbortext Import/

Export
Configuring for Exporting ... 256
Configuring for Importing.. 260
Arbortext Import/Export-Related ACL Functions... 260
Using Arbortext Import/Export in Batch Mode .. 260
Troubleshooting .. 262

Note
Although still a part of the PTC Arbortext technology stack, this feature has
been deprecated and is no longer supported by PTC.

255

Configuring for Exporting

Export Process Overview
Arbortext Import/Export uses Arbortext Styler to export XML documents to RTF.
To install and configure Arbortext Import/Export for Export stylesheet
development and deployment, perform the following steps:

1. Ensure that Arbortext Import/Export has been activated on client workstations
and the Arbortext Publishing Engine server following the instructions in the
Installation Guide for Arbortext Editor, Arbortext Styler, and Arbortext
Architect and Installation Guide for Arbortext Publishing Engine.

2. Configure your workstation for creating Export Stylesheets. Refer to Creating
Export Stylesheets on page 256

3. Create Export stylesheets using Arbortext Styler. Detailed instructions on
creating Export stylesheets are available in the Exporting XML Documents to
RTF section of the Arbortext Styler online help available from the Arbortext
Styler Help menu.

4. To deploy completed Export stylesheets for use from client workstations, copy
the stylesheets to the Arbortext Publishing Engine server. Refer to Deploying
Export Stylesheets on page 257.

5. Optionally, configure RTF export settings for the users at your site using the
Export stylesheets to export documents to RTF. Refer to Configuring Client
Workstations on page 257.

Arbortext Import/Export exports documents as RTF version 1.7 documents. Visit
www.microsoft.com for a copy of the Rich Text Format (RTF) Specification
Version 1.7.

Creating Export Stylesheets
Export stylesheets are created using Arbortext Styler. Use the RTF property
category in Arbortext Styler to specify the style characteristics for each XML
structure in the document. Refer to Publishing XML Documents as RTF Files in
the Arbortext Styler online help for detailed information on creating Export
stylesheets.

256 Customizer's Guide

http://www.microsoft.com

Deploying Export Stylesheets
As with all stylesheets, Export stylesheets are made available to client
workstations from the Arbortext Publishing Engine server. Once your Export
stylesheet(s) have been created and tested, copy them to your Arbortext
Publishing Engine server's \custom\importexport directory and restart
your Arbortext Publishing Engine server.
Refer to Overview of Custom Programs and Scripts on page 12 for details on
working with the \custom directory.

Configuring Client Workstations
Configure client workstations in the following manners as appropriate.

Customize RTF Style and Field Names
The paragraph styles, character styles, list paragraph styles, and field names
available in Arbortext Styler's RTF property category are defined in two
configuration files in the following directory:
Arbortext-path\lib\importexport\lib

These files are well-formed, free-form XML files that can used as the basis for
custom lists of names. The files are:

• word-builtin-styles.xml— Specifies the available paragraph, list
paragraph, and character style names in the RTF style name and RTF list name
lists in the RTF property category and the Paragraph Style for Lists dialog box.
By default, the names in the list are the default style names in Word's
normal.dot template file.

• word-fields.xml—Defines the structure of all supported Word fields,
along with their instructions, switches, and short descriptions of each field.
The specified information is displayed on the Field dialog box available from
the RTF property category.

If you wish to customize the list of names available at your site, PTC recommends
that you copy these files to the \importexport subdirectory of a custom
directory, edit the copies, and set each client workstation to use that custom
directory. Arbortext Import/Export will search \importexport (and all paths
defined by the importexportpath Advanced Preference) for the first-found
instance of word-builtin-styles.xml and word-fields.xml.

Working with Arbortext Import/Export 257

Associate a Program for Previewing RTF Documents
To preview exported RTF documents from Arbortext Styler, a Windows
application must be associated with the .rtf file extension. PTC recommends
you associate Microsoft Word 97 (or higher) to the .rtf file extension. Wordpad
is delivered with Windows, and will also open RTF files. However, Wordpad may
not support all of the features in the RTF file.
Refer to the Microsoft Windows online help for information on associating a file
with a program.

Specifying a Custom Template File
If you want users to use a Word template file other than that shipped with
Arbortext Import/Export, create the template file, save the template file from
Word in RTF format, and copy the RTF template to the Arbortext Publishing
Engine server. From each client workstation, run Arbortext Styler, choose File ▶▶
Stylesheet Properties, and navigate to the RTF tab. Browse to or enter the path and
file name of the RTF template in the Template File field. Users may override this
setting by changing or deleting the value in this field.
If no template file is specified, only the Word styles defined in Arbortext-
path\lib\importexport\lib\word-builtin-styles.rtf will be
used for RTF formatting.

Note
Be aware of the following items:

• During stylesheet development using Arbortext Styler, this file name is a
fully-qualified path name, which may not be valid on the Arbortext Publishing
Engine server when the stylesheet is deployed. In this case, the Arbortext
Publishing Engine will search the value of the importexportpath
Advanced Preference for the first-found instance of the user-defined RTF
template file, using the base name of the file.

• Arbortext Import uses an RTF version of the Word template file . If a .dot
template file is updated, the .dot file must be re-saved as a .rtf file.

If you wish to include the user-defined style names in the style name lists of the
RTF property category, you can create a custom version of word-builtin-
styles.xml. To create the desired XML markup for word-builtin-
styles.xml, consider using the following VBA macro to extract style names
from any Word document or template and create the desired markup for paragraph
and character styles. You will then need to extract the list paragraph styles from
the <ParagraphStyles> list and add level attribute to indicate nesting
level.

258 Customizer's Guide

Sub PrintAllBuiltinStyles()
'
' Loop through the builtin styles
' and print the rtf-fields.xml markup
' to the "Immediate Window"
'
'
Dim aStyle As Style
Dim aStyles As Styles

Set aStyles = ActiveDocument.Styles
Debug.Print "<ParagraphStyles>"
For Each aStyle In aStyles
If aStyle.BuiltIn = True Then
If aStyle.Type = wdStyleTypeParagraph Then
Debug.Print "<StyleName>" + aStyle.NameLocal + "</StyleName>"
End If
End If

Next
Debug.Print "</ParagraphStyles>"
Debug.Print "<CharacterStyles>"
For Each aStyle In aStyles
If aStyle.BuiltIn = True Then
If aStyle.Type = wdStyleTypeCharacter Then
Debug.Print "<StyleName>" + aStyle.NameLocal + "</StyleName>"
End If
End If

Next
Debug.Print "</CharacterStyles>"

End Sub
Sub PrintAllUserDefinedStyles()
'
' Loop through the builtin styles
' and print the rtf-fields.xml markup
' to the "Immediate Window"
'
'
Dim aStyle As Style
Dim aStyles As Styles

Set aStyles = ActiveDocument.Styles
Debug.Print "<ParagraphStyles>"
For Each aStyle In aStyles
If aStyle.BuiltIn = False Then
If aStyle.Type = wdStyleTypeParagraph Then
Debug.Print "<StyleName>" + aStyle.NameLocal + "</StyleName>"
End If
End If

Working with Arbortext Import/Export 259

Next
Debug.Print "</ParagraphStyles>"
Debug.Print "<CharacterStyles>"
For Each aStyle In aStyles
If aStyle.BuiltIn = False Then
If aStyle.Type = wdStyleTypeCharacter Then
Debug.Print "<StyleName>" + aStyle.NameLocal + "</StyleName>"
End If
End If

Next
Debug.Print "</CharacterStyles>"

End Sub

Configuring for Importing

Configuring Client Workstations
Configure client workstations for importing files in the following manners as
appropriate.

Arbortext Import/Export-Related ACL
Functions

Using Arbortext Import/Export in Batch
Mode
You can use Arbortext Import/Export to import and export documents in an
unattended, or batch, fashion. From the Arbortext Editor command line or an ACL
script, use the following ACL functions when importing and exporting documents
in batch mode.
document_export ([inFile[, outFile[, styleSheet[,
logFile[, nFlags]]]]])

Log Files, Error Return Codes, and Event Log Errors
The Arbortext Import/Export ACL functions and general import, export, and
mapping functionality use the event log mechanism. Error return codes for these
operations are defined in the following table.

260 Customizer's Guide

Import and Export Return Codes

Return
code Description
-1 Platform is not MS Windows.
0 No error.
1 No HOME directory defined.
2 No file selected.
3 Arbortext Import/Export feature not installed.
4 Specified Repository directory is in the install tree.
5 Specified Repository directory not found.

6
Specified Repository directory is missing required
subdirectories.

7
Cannot open \importexport\config\XYZ_
SysPrefs.xml.

8 Cannot create specified Arbortext Import Workbench path.
9 Cannot create specified Arbortext Import configuration path.
10 Cannot copy default configuration from install tree.
11 Cannot create Repository directory.
12 Attempt to create project in the install tree.
13 Arbortext Import project fatal exception.
14 Invalid Import options.
15 File copy operation failed.
16 Directory copy operation failed.
17 Repository copy operation failed.
18 Project copy operation failed.
19 Operation cancelled by user.
20 Project .exlst not found.
21 Project .exlst is invalid.
22 No Arbortext Import Workbench license found.
23 No Arbortext Import/Export license found.
24 Cannot create backup copy.
25 Undefined error.
26 Path too long.
27 Cannot open driver factory.
28 Configuration directory does not exist.
29 sysprefs path not found.
30 Configuration directory is network path.

Working with Arbortext Import/Export 261

Import and Export Return Codes (continued)

Return
code Description
31 Configuration directory copied.
32 Cannot load conversion bridge DLL.
33 Migration no longer supported.

Troubleshooting

Platform Issues
If you receive the following error message:
Failed to load conversion bridge DLL

.NET Framework v2.0.50727 or v3.0 may not be installed. Download an updated .
NET Framework from www.microsoft.com.
If you receive the same error message with return code 30 and a path starting with
\\, this indicates that the executable is on a network drive. This configuration is
not supported due to .Net library restrictions.

Improving Import Performance and Freeing Disk
Space
During each import, temporary directories and files are created and stored in the
following directory in the Project Directory:
\Sample\ExecutionResults

Manually delete the contents of this directory over time to increase performance
and free disk space. Do not delete the directory if it's still used with an active
project.

Adjusting Java Memory Availability
You may be able to improve the performance of Arbortext Import/Export by
adjusting the amount of memory that is allocated to Java (which underlies much
of Arbortext Import/Export).
The amount of memory allocated to Java when using Arbortext Import/Export is
specified in the file stdexecutorconfig.xml. This file is typically stored in
the Arbortext-path\lib\cpix\bin\platform directory. (You can
specify an alternate directory for this file using the value of the APTIMPORTCPIX
environment variable.)

262 Customizer's Guide

http://www.microsoft.com

Use the following steps to adjust the amount of memory allocated to Java.

1. Open stdexecutorconfig.xml in Arbortext Editor or an ASCII editor.
2. In the file, locate the following section.

<mainclass>com.xyz.platform.transformer.STDExecutor</mainclass>
<heapsizemin>72m</heapsizemin>
<heapsizemax>512m</heapsizemax>

These default values set the minimum Java heap size to 72mb and the
maximum Java heap size to 512mb.

3. Change the heapsizemin and heapsizemax values as desired, using the
character m to specify the value in megabytes.

Importing Very Large Documents
When attempting to import very large documents (such as 50MB+ MIF files that
publish as several-hundred-page documents), Arbortext Publishing Engine may
report exception errors and fail to import the documents. In these situations,
consider trying the following workarounds to successfully import the documents.

• Break the large document into several smaller documents and import the
smaller documents.

• Raise the maximum size of the Java Virtual Machine (JVM) memory
allocation pool by giving a higher value to one of these settings:

○ APTJAVAVMMEMORYenvironment variable — sets the size of the pool
at startup of Arbortext Editor, when the default JVM is loaded

○ javavmmemory set option and Advanced Preference — sets the size of
the pool at any point before the JVM starts

Note
If APTJAVAVMMEMORY has a value, any set javavmemory
commands are ignored.

Be aware that setting this value to too high of a value will result in a failure to
start the Java Virtual Machine. If changing this value results in the document
being successfully imported, be sure to reset the javavmmemory value. Having
this value unnecessarily high may result in other publishing and importing issues.

Known Import Limitations
Be aware of the following limitations when using Arbortext Import/Export to
import documents:

Working with Arbortext Import/Export 263

help793.html

• Import to SGML is not directly supported by Arbortext Import/Export. To
import SGML files, create an XML version of the target document type and
use an ACL postimport hook to save as SGML

• Arbortext Import/Export cannot import graphics as entity references.
• Processing instructions cannot be directly imported.
• MIF embedded graphics created using the FrameMaker drawing tools are not

imported.
• In rare circumstances, certain embedded images in MIF files cannot be

converted from their original format, instead appearing in the imported file as
embedded Microsoft Word documents. The embedded images are identified in
the FrameMaker MIF files as "OLE2" images, which is the same OLE
compound document format as Microsoft Word files. A possible source for
this scenario may occur when the images were originally created in Microsoft
Word and then pasted into the FrameMaker document. These embedded
images must be recreated in a different format before conversion or be
manually recreated after the conversion.

• Imported documents are not guaranteed to be contextually valid documents.
• Arbortext Import has no concept of an XML template, which uses Arbortext

Editor's caret location as the starting point. This means any boilerplate data
must be encapsulated in one or more MapObjects.

• Viewing the HTML versions of the source document (.doc, .rtf, and
.mif) requires Internet Explorer 6.0. Without Internet Explorer 6.0, Arbortext
Import and the Arbortext Import Workbench will still operate properly, but the
HTML rendering of the source document will not function.

• Arbortext Import imports RTF versions 1.7 and 1.8 (although specific features
of any version may not be mappable or importable). The hundreds of third-
party applications that produce RTF may create RTF files with unexpected
content. Arbortext Import may not be able to import all of these variations of
RTF.

• Microsoft Word text boxes are not fully supported and may import in
unexpected manners due to the nature of their anchor point/XY location
relations.

○ Top-down order may vary from the apparent document order as anchor
points are often hidden and unknown.

○ Layers of text boxes can obscure each other and can produce unexpected
results.

○ Certain fonts may be processed incorrectly.
○ Freeform mixtures of text and images within text boxes, shapes, and

groups may result in lost data or out-of-order data.

264 Customizer's Guide

• Arbortext Import can only process system files. Ensure that permissions are
set properly if a database repository is involved in your import process.

• Arbortext Import does not support importing Hebrew, Arabic, and Thai
content.

Known Export Limitations
Refer to the Export section of the Arbortext Styler documentation for a listing of
Export limitations.

Working with Arbortext Import/Export 265

10
Customizing Copying and Pasting

from Other Applications
Customizing Copying and Pasting from Other Applications... 268
Copy and Paste Overview.. 268
Disabling Copy and Paste .. 270
Modifying the Source Types Used for Copy and Paste ... 271
Using Arbortext Import to Customize the MapTemplate Files....................................... 272
Implementing Copy and Paste for a Custom Document Type...................................... 289
Customizing the Paste Special Dialog Box .. 294
Limitations .. 296

267

Customizing Copying and Pasting from
Other Applications
On the Windows platform, Arbortext Editor enables you to copy content from
other applications and paste the content into your document using matching
markup from your document type. You can copy content from Microsoft Word,
Adobe FrameMaker, web browsers, text editors, and other applications and paste
that content into your document. Arbortext Editor uses technology to map the
content from the other application to the markup appropriate for your document.
For example, assume you are authoring a DITA document and copy a bullet list in
a Microsoft Word document. When you paste that list into your DITA document,
it will be pasted with the appropriate ul and li tags.
This chapter provides an overview of this feature and its limitations. It tells you
how to disable the feature and how to modify the supported clipboard source
types. It also tells you how to implement the feature for custom document types,
and how to customize the Paste Special dialog box.

Copy and Paste Overview
When you copy text to the Microsoft Windows clipboard, certain applications
copy more than just text to the system clipboard. For example, most Microsoft
applications put the following formats on the clipboard for a copy operation:

• RTF markup (Rich Text Format)
• HTML markup
• Unicode text
• ANSI text
Adobe FrameMaker puts FrameMaker Interchange Format (MIF) on the clipboard
during a copy operation, as well as RTF markup and Unicode and ANSI text.
Using Arbortext Import/Export technology, Arbortext Editor can automatically
map content on the clipboard to tagging appropriate for the document type of the
document where the content is being pasted. Arbortext Editor generates a basic
map template based on the following information:

• The source type of the copied text on the clipboard

The more formatting information that is provided in the source text, the better
the paste operation can map to the document type elements. For example, if
just ANSI text is available on the clipboard then all that could be determined is
paragraph boundaries. However, if RTF is available on the clipboard then
much more information is available to the paste operation. In this case, the
paste operation can determine not only paragraphs, but also titles, images,
links, tables, and so forth.

268 Customizer's Guide

Note that some source types explicitly define document elements that can be
mapped to markup without much ambiguity. In other cases, the source type
implies parts of the document structure that might not reflect the desired result
in the converted markup.

The type of document elements that are explicitly defined in a source type
vary based on the type. The following table summarizes the document
elements defined in the various source types.

Document
Element

RTF MIF HTML Text

Paragraphs X X X X
Titles X
Divisions X
Tables X X
Images X X
Links and
cross
references

X X X

Footnotes X X
Index terms X X
Inline
emphasis
(bold, italic,
or underline)

X X X

Link targets
(IDs or
bookmarks)

X X X

Division titles
(H1, H2, and
so forth)

X

Divisions and
Titles

X X

Divisions and division titles must be inferred in most source types by the use
of explicit style names. HTML markup, in contrast to word processor
documents, contains actual hierarchical elements that can explicitly define
divisions and their titles.

• The document type of the document currently being edited in Arbortext Editor
where the text is being pasted

• The document type configuration file (.dcf) associated with the document
type

Customizing Copying and Pasting from Other Applications 269

For the best results for a paste operation, details about the roles of various tags
in the document type must be well defined in the associated .dcf file.

• The Arbortext Styler stylesheet (.style) associated with the document type
Support for copying and pasting from other applications has been added to the
.dcf files for the following document types distributed with Arbortext Editor:

• ATI XML DocBook V4.0 (axdocbook)
• Arbortext Article (asdocbook)
• The DITATopic and Concept document types
• The Technical Information Application topic document types
• HTML
In most cases, copying and pasting works for both XML and SGML document
types because Arbortext Editor has automatic features to handle XML-specific
markup in a manner compatible with SGML markup.
While Arbortext Editor automatically creates Import MapTemplate files for these
document types, you can use Arbortext Import to create custom maps for your
site. For example, your site might use custom Microsoft Word style names site
that need to be defined in the MapTemplate, or you might want to define
additional inline elements for a paste operation besides the emphasis elements.
If you have an custom document type, you can also configure your document type
to intelligently paste content from other applications into Arbortext Editor.

Disabling Copy and Paste
If you do not want Arbortext Editor to convert content from other applications
into markup, then you can disable this feature. In this case, copy and paste from
other applications will function as that operation did before Arbortext Editor
release 5.4. That is, pasted content will be a stream of text without any tagging.
Following are some reasons you might want to revert to the earlier way Arbortext
Editor did copy and paste operations from other applications:

• Many applications that want to preserve text formatting in clipboard content
use RTF to store that content. This might cause unexpected results in the
converted markup.

• This feature is dependent on a certain release of the Java Virtual Machine
(JVM) and third-party Java classes. Changes in the .jar files in your install
tree or in a custom\classes directory might adversely affect the copy and
paste feature requiring you to disable it.

• If you have existing customizations that process HTML or RTF clipboard
content or if you have a customization using the buffer_clipboard_

270 Customizer's Guide

contents function, then you might want to retain that customization instead
of using the new copy and paste feature.

• If you use a right-to-left language then you might want disable this feature, as
Arbortext Import/Export does not reliably support language directionality.

Follow these steps to disable copy and paste:

1. In Arbortext Editor. select Tools ▶▶ Preferences.

The Preferences dialog box opens.
2. Click the Advanced button.

The Advanced Preferences dialog box opens.
3. Select the pastesource preference and click the Edit button.
4. Delete all of the content in the Value field and click OK.
5. Click Close to close the Advanced Preferences dialog box and OK to close the

Preferences dialog box.

Copy and paste is now disabled.
Note that you can also use the set pastesource command to disable copy and
paste by setting the value of the command to an empty or null string, for example:
set pastesource="".

Modifying the Source Types Used for
Copy and Paste
In addition to disabling copy and paste, you can also control the clipboard formats
Arbortext Editor uses to convert the copied content to markup. Following are
some reasons you might want to control the clipboard formats:

• Adobe FrameMaker puts both MIF and RTF content on the clipboard during a
copy operation. You might want to remove the MIF format so that RTF is used
for converted markup.

• Many applications put both HTML and RTF content on the clipboard during a
copy operation. You might want to disable one or the other of these formats
for a particular application because you get better results from a specific
format.

• You might want to disable all of the formats except for text, but still enable
users to use Edit ▶▶ Paste Special and the Paste Special dialog box to provide
some control over the results of a paste operation.

Follow these steps to control the source types used for copy and paste:

1. In Arbortext Editor. select Tools ▶▶ Preferences.

Customizing Copying and Pasting from Other Applications 271

The Preferences dialog box opens.
2. Click the Advanced button.

The Advanced Preferences dialog box opens.
3. Select the pastesource preference and click the Edit button.
4. Set the content in the Value field to the clipboard format(s) you want to use

and click OK.

The following values are supported:

• htm—HTML markup
• mif—Maker Interchange Format (MIF), the document format supported

by Adobe FrameMaker
• rtf— Rich Text Format (RTF), the document format used by several

Microsoft applications including Microsoft Word
• txt—Unicode and 8-bit ANSI text

Multiple values must be separated by semnicolons (;).
5. Click Close to close the Advanced Preferences dialog box and OK to close the

Preferences dialog box.
Note that you can also use the set pastesource command to set the clipboard
formats supported for copy and paste.

Using Arbortext Import to Customize the
MapTemplate Files
You can use the Arbortext Import MapTemplate Editor included in Arbortext
Architect to modify the automatically generated MapTemplate files that Arbortext
Editor produces for a copy and paste operation. Following are some reasons you
might want to modify the default templates:

• Modify the division title MapObjects to match custom heading style names
instead of Microsoft Words default “Heading n” style names.

• Modify the behavior of the default ID/IDREF handling from Microsoft Word
bookmarks or Adobe FrameMaker cross-reference markers.

• Add new MapObjects to convert inline character styles to elements
• Add new MapObjects to convert formatted text to both elements and attributes
• Modify the default MapObjects to handle user-defined list paragraph styles,

list styles, or tables styles
• Add map debug comments to troubleshoot copy and paste conversion issues
• Add new MapObjects to work with custom Paste Special operations

272 Customizer's Guide

The automatically generated MapTemplate files
The first time that you copy and paste content from another application into
Arbortext Editor, a MapTemplate file for the pasted clipboard content and the
document type into which the content is pasted is automatically created. These
files are stored in the Arbortext Editor cache directory (.aptcache). The cache
directory is typically located at C:\Documents and Settings\username\
Application Data\PTC\Arbortext\Editor\.aptcache. The
MapTemplate files are stored in a subdirectory of .aptcache named
maptemplates.
The MapTemplate files are named source_type-doctype_name.std. For
example, a MapTemplate file for the RTF source type and the axdocbook
document type would be named rtf-axdocbook.std. A file for the HTML
source type and the DITA topic document type would be named html-
topic.std.
You can modify these automatically generated files in the MapTemplate Editor as
required for your site. Put the modified files in either the Arbortext-path\
custom\lib directory or in a custom\lib directory referenced through the
APTCUSTOM environment variable. Your customized MapTemplate file will
override the automatically generated file for the source type and document type
combination implied by its file name.
The automatically generated MapTemplate files are regenerated every time you
start a new Arbortext Editor session and paste for the first time with a given
source type and document type combination. If you modify a document type’s
.dcf file or perform a Arbortext Editor preview operation in Arbortext Styler,
the MapTemplate files in .aptcache\maptemplates are marked as outdated
and are regenerated as if you have started a new Arbortext Editor session.
MapTemplate files in a custom\lib directory are not affected by Arbortext
Editor operations and can only be disabled by renaming the file or deleting the
MapTemplate from the file system.

The base MapTemplate files
The automatically generated MapTemplate files are created from a set of base
MapTemplate files. These files are stored in the Arbortext-path\lib\
cpix\lib directory. The following base MapTemplate files are in this directory:

Customizing Copying and Pasting from Other Applications 273

Base MapTemplate files

• common-base.std— The common file used for all automatically
generated maps.

• htm—base.std— The file used for HTML content.

This file is concatenated with the common file to generate an HTML
MapTemplate file. Similarly, one of the following three base files is
concatenated with the common file to create MapTemplate files for the
associated type of content. Only one of these four files is used for an
automatically generated MapTemplate file.

• mif—base.std— The file used for MIF content.
• rtf—base.std— The file used for RTF content.
• txt—base.std— The file used for text content.
• html-table.std— The file used for HTML tables.

This file is concatenated with the common file and the source type file to
create the final MapTemplate file. The type of table file used is based on the
primary table model supported by the document type. Only one of the table
files is included in an automatically generated MapTemplate file.

• oasis-table.std— The file used for OASIS Exchange tables.
The base MapTemplate files contain placeholder values for the document type
element names. For example, the element used for paragraphs in a document type
has the placeholder aticp:primary_paragraph in the Output Rules defined
in the base MapTemplate file. This placeholder is replaced in the automatically
generated MapTemplate file by the paragraph element defined in the .dcf file for
the document type used for the generated file. Other elements are similarly added
to the file based on information in the document type’s .dcf and .style files.
Following are the placeholder values for different document elements in the base
MapTemplate files, including example markup from the axdocbook.dcf file
that matches the placeholders for that document type.

274 Customizer's Guide

aticp:primary_paragraph

Description Primary paragraph element
Sample
Markup

<Specials>
<Paragraph
element="para"/>
</Specials>

Notes You can identify the element with this ACL function:
paragraph_tag_name(doc)

aticp:division1
Description Primary division element
Sample
Markup

<ElementOptions>
<ElementOption
category="division"
element="sect1"
primary="yes"/>
</ElementOptions>

Notes You can identify division elements with this ACL function:
division_tag(tagname[, doc[, primary]]))

aticp:division2
Description Nested division element
Sample
Markup

<ElementOptions>
<ElementOption
category="division"
element="sect2"
primary="yes"/>
</ElementOptions>

Notes

aticp:division3
Description Nested division element
Sample
Markup

<ElementOptions>
<ElementOption
category="division"
element="sect3"
primary="yes"/>
</ElementOptions>

Notes

Customizing Copying and Pasting from Other Applications 275

aticp:division4
Description Nested division element
Sample
Markup

<ElementOptions>
<ElementOption
category="division"
element="sect4"
primary="yes"/>
</ElementOptions>

Notes

aticp:division5
Description Nested division element
Sample
Markup

<ElementOptions>
<ElementOption
category="division"
element="sect5"
primary="yes"/>
</ElementOptions>

Notes

aticp:divisiontitle
Description Primary division title element
Sample
Markup

<PasteOptions>
<PasteElement
category="primary_division_title"
element="title"/>
</PasteOptions>

Notes You can identify the element with this ACL function:
dcfmodel_element_list(arr, primary_division_
title[, doc[, 1]])

aticp:bold
Description Markup for bold text
Sample
Markup

<TextStyles> <Bold attribute="role" attributeValue=
"bold" element="emphasis"/> </TextStyles>

Notes You can identify the element with this ACL function: text_
style_tag_name(bold, arr[, doc])

276 Customizer's Guide

aticp:italic
Description Markup for italic text
Sample
Markup

<TextStyles>
<Italic
attribute="role"
attributeValue="italic"
element="emphasis"/>
</TextStyles>

Notes You can identify the element with this ACL function: text_
style_tag_name(italic, arr[, doc])

aticp:underline
Description Markup for underline text
Sample
Markup

<TextStyles>
<Underline
attribute="role"
attributeValue="underline"
element="emphasis"/>
</TextStyles>

Notes You can identify the element with this ACL function: text_
style_tag_name(underline, arr[, doc])

aticp:smallcaps
Description Markup for smallcaps text
Sample
Markup

<TextStyles>
<SmallCaps
attribute="role"
attributeValue="smallcaps"
element="emphasis"/>
</TextStyles>

Notes You can identify the element with this ACL function: text_
style_tag_name(smallcaps, arr[, doc])

aticp:subscript
Description Markup for subscript text
Sample
Markup

<TextStyles>
<Subscript
element="subscript"/>
</TextStyles>

Notes You can identify the element with this ACL function: text_
style_tag_name(subscript, arr[, doc])

Customizing Copying and Pasting from Other Applications 277

aticp:superscript
Description Markup for superscript text
Sample
Markup

<TextStyles>
<Superscript
element="superscript"/>
</TextStyles>

Notes You can identify the element with this ACL function: text_
style_tag_name(superscript, arr[, doc])

aticp:bulleted_list

Description Markup for bulleted list
Sample
Markup

<Lists>
<Bulleted>
<Block element="itemizedlist"/>
<Item element="listitem"/>
</Bulleted>
</Lists>

Notes This placeholder triggers the main element name and all other list
block tags in which this list might be nested.

aticp:bulleted_list_item

Description Markup for bulleted list item
Sample
Markup

<Lists>
<Bulleted>
...
<Item element="listitem"/>
</Bulleted>
</Lists>

Notes

aticp:numbered_list

Description Markup for numbered list
Sample
Markup

<Lists>
<Numbered>
<Block element="orderedlist"/>
<Item element="listitem"/>
</Numbered>
</Lists>

Notes This placeholder triggers the main element name and all other list
block tags in which this list might be nested.

278 Customizer's Guide

aticp:numbered_list_item

Description Markup for numbered list item
Sample
Markup

<Lists>
<Numbered>
...
<Item element="listitem"/>
</Numbered>
</Lists>

Notes

aticp:simple_bulleted_list

Description Simplified markup for a bulleted list
Sample
Markup

<Lists>
<Bulleted>
<Block element="itemizedlist"/>
<Item element="listitem"/>
</Bulleted>
</Lists>

Notes This placeholder makes no provision for nested lists. It is only
used for the bullet list selection in the Paste Special dialog box.

aticp:simple_numbered_list

Description Simplified markup for a numbered list
Sample
Markup

<Lists>
<Numbered>
<Block element="orderedlist"/>
<Item element="listitem"/>
</Numbered>
</Lists>

Notes This placeholder makes no provision for nested lists. It is only
used for the numbered list selection in the Paste Special dialog
box.

aticp:internal_link

Description Markup for internal document links
Sample
Markup

<Specials>
<Link
element="link"
idref="linkend"/>
</Specials>

Notes For non-DITA document types, you can identify the element with
this ACL function: link_tag_name([doc]). For DITA
document types, use the _cpix::make_internal_
link(doc) and _cpix::get_link_element() functions.
These functions can be customized and do not use the .dcf file.

Customizing Copying and Pasting from Other Applications 279

aticp:internal_link_attribute

Description The reference attribute for internal document links
Sample
Markup

<Specials>
<Link
element="link"
idref="linkend"/>
</Specials>

Notes For non-DITA document types, you can identify the element with
this ACL function: link_idref_attr_name(tagname[,
doc]). For DITA document types, use the _cpix::make_
internal_link(doc) and _cpix::get_link_
attribute() functions. These functions can be customized
and do not use the .dcf file.

aticp:external_link

Description Markup for external links
Sample
Markup

<Specials> <Link element="ulink" uri="url"/>
</Specials>

Notes For non-DITA document types, you can identify the element with
this ACL function: link_tag_name([doc]). For DITA
document types, use the _cpix::make_external_
link(doc) and _cpix::get_link_element() functions.
These functions can be customized and do not use the .dcf file.

aticp:external_link_attribute

Description The reference attribute for external links
Sample
Markup

<Specials>
<Link
element="ulink"
uri="url"/>
</Specials>

Notes For non-DITA document types, you can identify the element with
this ACL function: link_idref_attr_name(tagname[,
doc]). For DITA document types, use the _cpix::make_
external_link(doc) and _cpix::get_link_
attribute() functions. These functions can be customized
and do not use the .dcf file.

280 Customizer's Guide

aticp:graphic
Description Markup for block graphics
Sample
Markup

<Specials>
<Graphic
element="graphic"
... />
</Specials>

Notes You can identify the element with this ACL function: graphic_
tag_name([doc[, prompt]])

aticp:graphic_height_attribute

Description The height attribute for block graphics
Sample
Markup

<Specials>
<Graphic
...
reproDepth="depth"
... />
</Specials>

Notes You can identify the element with this ACL function: graphic_
attr_name(tagname, repodep[, doc])

aticp:graphic_width_attribute

Description The width attribute for block graphics
Sample
Markup

<Specials>
<Graphic
...
reproWidth="width"
... />
</Specials>

Notes You can identify the element with this ACL function: graphic_
attr_name(tagname, repowid[, doc])

aticp:graphic_scalefit_attribute_value

Description The scalefit attribute for block graphics
Sample
Markup

<Specials>
<Graphic
...
scaleToFit="scalefit"
... />
</Specials>

Notes You can identify the element with this ACL function: graphic_
attr_name(tagname, scalefit[, doc])

Customizing Copying and Pasting from Other Applications 281

aticp:inline_graphic

Description Markup for inline graphics
Sample
Markup

<Specials>
<Graphic
element="inlinegraphic"
... />
</Specials>

Notes You can identify the element through the first inline graphic
element returned with this ACL function: dcfmodel_
element_list(arr, 'graphic', [doc], 0).

aticp:inline_graphic_height_attribute

Description The height attribute for inline graphics
Sample
Markup

Same attribute as block graphics

Notes Same ACL function as block graphics

aticp:inline_graphic_width_attribute

Description The width attribute for inline graphics
Sample
Markup

Same attribute as block graphics

Notes Same ACL function as block graphics

aticp:inline_graphic_scalefit_attribute_value

Description The scalefit attribute for inline graphics
Sample
Markup

Same attribute as block graphics

Notes Same ACL function as block graphics

aticp:default_table_with_title

Description Markup for the document type’s default table model when a title
element is required

Sample
Markup

<PasteOptions>
<PasteElement
category="primary_table_wrapper"
element="informaltable"/>
</PasteOptions>

Notes If the document type contains only one supported table model,
then that is the default model. Otherwise, you can define the
default table model in the .dcf file.

282 Customizer's Guide

aticp:default_table_without_title

Description Markup for the document type’s default table model when there is
no title element

Sample
Markup

Same as above

Notes Same as above

aticp:table_title

Description Markup for the table title
Sample
Markup

None

Notes This element is defined by the document type and the content
model of the table markup. You can identify the element with this
ACL function: tbl_model_table_title(tmid)

aticp:table_with_title

Description Markup for the table wrapper element when a title element is
required

Sample
Markup

None required

Notes This is the element defined by the primary_table_wrapper
category in the .dcf file’s PasteElement element paste
option. If this is not defined in the .dcf file and there is no
default table model, then this is the first table in the document
type’s table model list that has a required title element.

aticp:table_without_title

Description Markup for the table wrapper element when a title element is not
required

Sample
Markup

None required

Notes This is the element defined by the primary_table_wrapper
category in the .dcf file’s PasteElement element paste
option. If this is not defined in the .dcf file and there is no
default table model, then this is the first table in the document
type’s table model list that has a optional or no title element.

Customizing Copying and Pasting from Other Applications 283

aticp:source_type

Description Source type for the clipboard data
Sample
Markup

None

Notes This placeholder is defined by the type of copy operation taking
place based on the defined precedence of the clipboard data. This
is used to support the Paste Special feature by helping define the
correct source type for that operation.

aticp_graphic_attr_name

Description The reference attribute for graphics
Sample
Markup

Possibly set through:
<Specials>
<Graphic
...
entity="entityref"
filename="fileref"
... />
</Specials>

Notes If this is not in the .dcf file, it is determined from the document
type. This is set through the ACL function oid_set_
graphic_pathname(). This placeholder is used internally
and dynamically in place of hard coded attribute names. This
makes the MapObject more generic.
This operation is performed in an ACL paste callback named
checksmartcopypaste which is located in Arbortext-
path\packages\main_cpix.acl.

aticp_id_attr_name

Description The ID attribute
Sample
Markup

Possibly set through:
<Options
...
idAttribute="id"
... >
</Options>

Notes You can identify the element with this ACL function: target_
id_attr_name(tagname[, doc]). For DITA document
types, this is defined in the .dcf file. For other document types,
it is defined in the document type. This placeholder is used
internally and dynamically in place of hard coded attribute names.
This makes the MapObject more generic.

284 Customizer's Guide

aticp_internal_link_attr_name

Description The internal link reference attribute
Sample
Markup

Possibly set through:
<Specials>
<Link
element="link"
idref="linkend"/>
</Specials>

Notes For non-DITA document types, you can identify the attribute with
this ACL function: link_idref_attr_name(tagname[,
doc]). This attribute is defined either in the .dcf file or in the
document type. Special processing occurs for DITA documents to
specify required attributes. This placeholder is used internally and
dynamically in place of hard coded attribute names. This makes
the MapObject more generic.

aticp_external_link_attr_name

Description The external link reference attribute
Sample
Markup

Possibly set through:
<Specials>
<Link
element="ulink"
uri="url"/>
</Specials>

Notes For non-DITA document types, you can identify the element with
this ACL function: link_idref_attr_name(tagname[,
doc]). This attribute is defined either in the .dcf file or in the
document type. Special processing occurs for DITA documents to
specify required attributes. This placeholder is used internally and
dynamically in place of hard coded attribute names. This makes
the MapObject more generic.

As with the automatically generated MapTemplate files, you can modify a copy of
the base files in the MapTemplate Editor as required for your site. Put the
modified files in either the Arbortext-path\custom\lib directory or in a
custom\lib directory referenced through the APTCUSTOM environment
variable. Your customized MapTemplate file will override the base file.

Customizing Copying and Pasting from Other Applications 285

Note
If you put a customized, automatically generated MapTemplate file (such as
rtf-topic.std) into a custom\lib directory, then any changes you
make to the base MapTemplate files that affect the RTF source type will not
apply for that document type.

Following are some examples of how you might modify the base MapTemplate
files:

• To expand the functionality of one of the base MapTemplate files, insert the
appropriate placeholder name in place of actual document type dependent
element names. Your base MapTemplate file will affect all document types.
For example, if your Microsoft Word documents use special style names for
division titles, you might add new MapObjects or modify the Input Rules of
existing MapObjects. These MapObjects in a base MapTemplate file can
include placeholder names for division elements and their title in the Output
Steps of the MapObject’s Output Rules.

• The base table MapTemplate files produce hard-coded element names rather
than placeholder names, because these names are typical of the table models
supported by Arbortext Editor. If your document type uses namespaced
elements for one or more of the supported table models, you can modify the
Output Rules of the base table MapTemplate and the change will affect all
source types and document types at your site.

• Because default styles are less common in Adobe FrameMaker, custom
MapTemplate files can provide better support for both divisions and their titles
and numbered and bulleted lists.

Customizing the MapTemplate files
You can customize the MapTemplate files in the following ways:

• The base MapTemplate files themselves

Changes you make here will affect all of the automatically generated files.
Also, if Arbortext changes the base files in a future release those changes will
not be reflected in your customized file.

• Custom overrides to the base files

If there are just certain areas of the base map files that you want to customize,
you can create a custom override file to the base files that just affects certain
parts of the base file. Custom override files are named the same as the base file
with -custom appended to the name of the file. For example, the override
file for the common-base.std file would be named common-base-

286 Customizer's Guide

custom.std. The changes you make in the custom override file are
prepended to the base file and override the base file content. As with other
customized files, you put the modified files in either the Arbortext-
path\custom\lib directory or in a custom\lib directory referenced
through the APTCUSTOM environment variable.

• The automatically generated MapTemplate files

Changes you make here will override any customizations you make to the base
files or a custom override file for the base files. In fact, if you have a
customized file in place at this level, no automatic file generation takes place
for that type of file.

Again, if Arbortext changes the base files in a future release those changes
will not be reflected in your customized file.

• Custom overrides to the automatically generated files

As with the base files, you can create a custom override file for the
automatically generated files that just affects parts of those files. This override
file uses the same naming convention as the overrides to the base files. For
example, the override file for rtf-topic.std would be named rtf-
topic-custom.std. This override file would also need to be in a custom
directory.

Note that any changes you make in this override file would take precedence
over changes you have made to the base files or a custom override file for the
base files.

The best practice for customizing the MapTemplate files is to use the custom
override files. This enables you to just change the specific parts of the base and
automatically generated files that you need to modify. Note that this feature only
recognizes the map objects found in a custom map template. It ignores the
metadata in a map template, such as the drivers, driver options, and pre- and post-
processing options. Those settings are defined in the rtf-base.std, mif-
base.std, htm-base.std, and txt-base.std files.
The following sample files are available in the Arbortext-path\samples\
copypaste directory:

• common-base-custom.std— Shows how to customize the default
pasting behavior by having bold text in other applications converted to a
processing instruction.

• rtf-task-custom.std— Shows how to use the Paste Special dialog
box to paste numbered lists as steps and substeps in a DITA task.

• pasteAsList.xlf—Used with the rtf-task-custom.std sample
file to show the changes to the Paste Special dialog box.

Customizing Copying and Pasting from Other Applications 287

• rtf-topic-custom.std— Shows how to paste footnotes and index
terms from Microsoft Word to a DITA topic.

• rtf-axdocbook.std and pasteaslist.xlf— Shows how to paste
footnotes and index terms from Microsoft Word to an XML DocBook
document.

A readme.txt file in the directory describes how to implement the sample
files.

Manually generating the MapTemplate files
You can use the create_copypaste_map function to manually generate a
MapTemplate file for a given source type and document type. The function returns
the same MapTemplate file as the one automatically created by Arbortext Editor.
This function has the following syntax:
create_copypaste_map (source_type, path[, doc])

This function generates a basic MapTemplate file for the given clipboard source
type and document type. It has the following parameters:

• source_type— Specifies the type of clipboard data. The following values are
supported:

○ htm—HTML markup
○ mif—Maker Interchange Format (MIF)
○ rtf— Rich Text Format (RTF)
○ txt—Unicode and 8-bit ANSI text

• path— The full path to the generated MapTemplate file.

The manually generated MapTemplate file must follow the same naming
convention as the automatically generated files: source_type-doctype_
name.std. For example, a MapTemplate file for the RTF source type and
the axdocbook document type must be named rtf-axdocbook.std.

• doc—Optional. The identifier of the document for which the associated
document type should be used for the MapTemplate file.

If doc is omitted or is 0, the current document is used.
The function returns 0 on success or one of the following error codes on failure:

Code Values
1 Base MapTemplate file not found
2 Cannot open destination MapTemplate

file
3 Invalid document type (such as ASCII)
4 Base table MapTemplate file not found

288 Customizer's Guide

Code Values
5 No DITA DOCTYPE element found
6 Unknown error creating MapTemplate

file

Implementing Copy and Paste for a
Custom Document Type
You can implement the copying and pasting from other applications feature for
custom document types. However, to get the best results you must be sure to
provide the configuration information in your document type that Arbortext Editor
requires to be able to correctly convert the source clipboard data into your
document type’s markup.
Some of this information is in the document type itself, such as the supported
table models. Also, some information is in the associated Arbortext Styler
.style file. However, most of the required information is in the associated
document type configuration (.dcf) file. You will get the best results from this
feature by ensuring that this information is configured in your .dcf file. The
following table summarizes the required .dcf file settings and provides example
markup from the axdocbook.dcf file.

Description Sample axdocbook .dcf File Markup

Primary paragraph element <Specials>

<Paragraph

element="para"/>

</Specials>

Highest division element <PasteOptions>

<PasteElement

category="primary_division"

element="chapter"/>

</PasteOptions>

Primary division element <ElementOptions>

<ElementOption

category="division"

element="sect1"

primary="yes"/>

</ElementOptions>

Nested primary division element(s) <ElementOptions>

<ElementOption

category="division"

element="sect2"

primary="yes"/>

Customizing Copying and Pasting from Other Applications 289

Description Sample axdocbook .dcf File Markup
</ElementOptions>

Primary division title element <PasteOptions>

<PasteElement

category="primary_division_title"

element="title"/>

</PasteOptions>

Markup for bold text
<TextStyles>
<Bold
attribute="role"
attributeValue="bold"
element="emphasis"/>
</TextStyles>

Markup for italic text <TextStyles>

<Italic

attribute="role"

attributeValue="italic"

element="emphasis"/>

</TextStyles>

Markup for underline text <TextStyles>

<Underline

attribute="role"

attributeValue="underline"

element="emphasis"/>

</TextStyles>

Markup for smallcaps text <TextStyles>

<SmallCaps

attribute="role"

attributeValue="smallcaps"

element="emphasis"/>

</TextStyles>

Markup for subscript text <TextStyles>

<Subscript

element="subscript"/>

</TextStyles>

Markup for superscript text <TextStyles>

<Superscript

element="superscript"/>

</TextStyles>

Markup for bulleted list <Lists>

<Bulleted>

<Block element="itemizedlist"/>

<Item element="listitem"/>

290 Customizer's Guide

Description Sample axdocbook .dcf File Markup
</Bulleted>

</Lists>

Markup for bulleted list item <Lists>

<Bulleted>

...

<Item element="listitem"/>

</Bulleted>

</Lists>

Markup for numbered list <Lists>

<Numbered>

<Block element="orderedlist"/>

<Item element="listitem"/>

</Numbered>

</Lists>

Markup for numbered list item <Lists>

<Numbered>

...

<Item element="listitem"/>

</Numbered>

</Lists>

Markup for internal document links <Specials>

<Link

element="link"

idref="linkend"/>

</Specials>

The reference attribute for internal
document links

<Specials>

<Link

element="link"

idref="linkend"/>

</Specials>

Markup for external links
<Specials>
<Link
element="ulink"
uri="url"/>
</Specials>

The reference attribute for external
links

<Specials>

<Link

element="ulink"

uri="url"/>

</Specials>

Markup for block graphics <Specials>

<Graphic

Customizing Copying and Pasting from Other Applications 291

Description Sample axdocbook .dcf File Markup
element="graphic"

... />

</Specials>

The height attribute for block graphics <Specials>

<Graphic

...

reproDepth="depth"

... />

</Specials>

The width attribute for block graphics <Specials>

<Graphic

...

reproWidth="width"

... />

</Specials>

The scalefit attribute for block graphics <Specials>

<Graphic

...

scaleToFit="scalefit"

... />

</Specials>

Markup for inline graphics <Specials>

<Graphic

element="inlinegraphic"

... />

</Specials>

The height attribute for inline graphics Same attribute as block graphics

The width attribute for inline graphics Same attribute as block graphics

The scalefit attribute for inline graphics Same attribute as block graphics

Markup for the document type’s default
table model

<PasteOptions>

<PasteElement

category="primary_table_wrapper"

element="informaltable"/>

</PasteOptions>

292 Customizer's Guide

Description Sample axdocbook .dcf File Markup

The reference attribute for graphics <Specials>

<Graphic

...

entity="entityref"

filename="fileref"

... />

</Specials>

The determination of whether this is a
file reference or entity reference
depends on either the .style file or
the .dcf file settings for graphic
details. If the document type has a
.style file, those settings take
precedence and any .dcf file settings
are ignored.

The ID attribute <Options

...

idAttribute="id"

... >

</Options>

Arbortext Editor will use the information in your document type and the
associated .dcf and .style files to build the automatically generated
MapTemplate files for your document type and the relevant clipboard source
formats. If you make a change to the .dcf file, then the automatically generated
files are regenerated in the next copy and paste operation using the document type.
If a .style file is associated with the document type, the information in the
.style file for graphics, links, and link targets takes precedence over related
.dcf information. All other information that controls copy and paste is collected
from the .dcf file.
You might also want to customize the base MapTemplate files or the Paste Special
dialog box for your custom document type. However, note that a MapTemplate
file specific to a source type and document type (such as rtf-task.std for a
DITATask document) can be modified in the MapTemplate Editor without regard
to the .dcf file information. Remember that the automatically generated
MapTemplate files will be populated by placeholder element names rather than
actual element names. You can modify the default MapTemplate files as desired
using Arbortext Import, or even create custom MapTemplate files for copy and
paste from scratch using the MapTemplate Editor. As long as you follow the file
naming convention and put the customized MapTemplate file in a custom\lib
folder, that file will control the conversion process.

Customizing Copying and Pasting from Other Applications 293

Customizing the Paste Special Dialog Box
Besides the automatic copy and paste support, you can control how content from
other applications is pasted into a document through the Paste Special dialog box.
After you have copied content from another application, you can select Edit ▶▶
Paste Special to open the dialog box and select how you want the content to be
pasted into your document.
By default, the Paste Special dialog box enables you to paste clipboard content in
the following formats:

• bullet list

• numbered list

• paragraphs

• table (from tabular text)

• table with no title

• table with title

• text

• title

• web link

You can customize this dialog box to change the supported document formats,
change the format to a different MapObject, or add support for elements in your
custom document type. The supported document formats are configured in the
following file: Arbortext-path\lib\locale\en\pasteAsList.xlf.
Put your customized pasteAsList.xlf file in custom\lib\locale\en
(or in your locale specific subdirectory).
The pasteAsList.xlf file uses the XML Localization Interchange File
Format (XLIFF) document type. See www.oasis-open.org/committees/xliff/
documents/xliff-specification.htm for more information about XLIFF. The XLIFF
document type specifies sets of source and target tags, where the source
tag contains the string to be translated and the target tag contains the string to
be displayed in the dialog box.
Following is the markup from pasteAsList.xlf for the bullet list document
format type:
<trans-unit id="1" resname="bullet_list">
<source>bullet list</source>
<target>bullet list</target>
</trans-unit>

Note the resname="bullet_list" part of this markup. That is a reference to
one or more MapObjects in the common-base.std base MapTemplate file.
These MapObjects are used to convert the content on the clipboard into the

294 Customizer's Guide

http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm

document format specified by the selection in the Paste Special dialog box and
take precedence over the ones used for the regular copying and pasting operations
in that case.
The MapObject in common-base.std that uses the bullet_list reference
must use an EVAL_XPATH Input Rule which is triggered by the following XPath
expression:
//TEXTXMLSTREAM/HEAD/XYZDOCUMENTMETATAGS/XYZMETA[@name="STDSourceFileName"]
[@value="bullet_list.aticp:source_type"]

This Input Rule can be expressed as “Match this MapObject if the source file
name (an abstract name created from the resname attribute value) is equal to
bullet_list.rtf or bullet_list.mif or bullet_list.htm” and so
forth. Any MapObjects with Input Rules that match if the user has chosen the
bullet list item in the Paste Special dialog box will perform the special conversions
defined by those rules.
You can use Arbortext Editor to edit the pasteAsList.xlf file to add or
remove document formats and to change the strings displayed in the Paste Special
dialog box. You can use Arbortext Import to modify the MapObjects referenced in
common-base.std (or any other MapTemplate) from pasteAsList.xlf or
to add new MapObjects for new document formats.
Note that the MapObject priority as described in Arbortext Import online help is
important to Paste Special customization. MapObjects in common-base.std
have higher priority values, which means they have lower priority in the top-down
MapObject selection process in the final generated map. A very specific
MapObject such as those used for Paste Special might never be selected if that
MapObject is located below more generic MapObjects that could match the
selection first. Be sure to place Paste SpecialMapObjects near the top of your
custom MapTemplate file.
Following are some examples of Paste Special customizations:

• Develop a Paste SpecialMapObject for a paragraph to convert a simple
paragraph to a document type specific footnote element.

To do this, follow these steps:

1. Create a new trans-unit element in pasteAsList.xlf:
<trans-unit id="n" resname="footnote">
<source>Footnote</source>
<target>Footnote</target>
</trans-unit>

Replace n with an appropriate integer number for the file.
2. Create a new MapObject in common-base.std (or any customized

MapTemplate file) with Input Rules that match the following XPath
expression for a general purpose rule:
//TEXTXMLSTREAM/HEAD/XYZDOCUMENTMETATAGS/XYZMETA[@name="STDSourceFileName"]
[@value="footnote.aticp:source_type]"

Customizing Copying and Pasting from Other Applications 295

Or that match the following expression for a rule specific to the RTF
source type:
//TEXTXMLSTREAM/HEAD/XYZDOCUMENTMETATAGS/XYZMETA[@name="STDSourceFileName"]
[@value="footnote.rtf]"

3. Add footnote-specific output steps to the newly-created MapObject to
produce the footnote markup for your document type.

• Develop a new Paste SpecialMapObject to convert numbered lists into
steps and substeps elements in the DITATask document type, instead of
the default behavior of converting numbered lists in the clipboard source into
numbered lists in the document type markup.

• Develop a new Paste SpecialMapObject to convert Microsoft Word or Adobe
FrameMaker index terms into document type specific index term markup.

Limitations
The copying and pasting from other applications feature has the following
limitations:

• This feature only supports pasting into the Arbortext Editor Edit pane or
Arbortext Styler Generated Text Editor.

• This feature does not affect copying and pasting markup between two
Arbortext Editor windows.

• Because Arbortext Import/Export does not currently support text
directionality, this feature does not support directionality.

• The quality of the pasted markup depends primarily on the structure and
clarity of the source documents. In the case of Microsoft Word and Adobe
Framemaker documents, using paragraph styles is important to successful and
efficient conversion. If all paragraphs in the source document use the same
style name, even though the formatting may create the illusion of division
titles, it is not possible to automatically determine the desired markup. If the
source document uses unique style names to represent division titles at various
nested levels, then the paste results will be more automatic. Well-styled source
documents can significantly reduce the time spent for manual cleanup.

• The quality of the pasted markup also depends on how well the document type
elements have been defined in the document type configuration (.dcf) file,
and to some extent the .style file.

• Support for inline styles (bold, italic, and so forth) requires an element that is
unique to that purpose, such as emphasis with attributes, or b (for bold).
Multiple, simultaneous inline styles, such as bold-italic, assumes the nested
element model like axdocbook. By default, the feature can handle all

296 Customizer's Guide

combinations of bold, italic, and underline. More sophisticated conversion
requires a custom MapTemplate.

• While images can be copied and pasted from Microsoft Word, those images
that have been constructed from a loose collection of drawing objects cannot
be pasted directly as an image because it is not a single image.

• Adobe FrameMaker does not include image information in the clipboard data,
so images cannot be copied and pasted from FrameMaker.

• If you select and copy a table from Adobe FrameMaker 7.2 or earlier, the table
structure is not copied to the clipboard. However if you copy a sibling
paragraph with the table (the paragraph before or the paragraph after), the
table structure is converted correctly. This is a limitation of FrameMaker
versions prior to 8.0.

• If you select and copy a table that contains another nested table and attempt to
paste that table into a Arbortext XML DocBook document, a DITA document,
or a document of another document type that requires that a table be enclosed
in paragraph tags, the Invalid Paste Structure dialog box opens. Arbortext
Editor does not enclose a nested table in paragraph tags in this case.

Customizing Copying and Pasting from Other Applications 297

11
Customizing DITA Support

Customizing DITA support.. 300
Customizing the DITA Resource Manager ... 300

299

Customizing DITA support
Arbortext Editor provides a specialized user interface for editing DITA (Darwin
Information Typing Architecture) maps and topics. You can customize parts of
that interface to meet the needs of your site.

Customizing the DITA Resource Manager
The Resource Manager dialog box enables you to manage the references inserted
into DITA documents. The Resource Manager stores information about its current
state in the arbortext.wcf preferences file, so that state can be restored in
future sessions. This information is stored in persistent user settings that can be
customized to set a desired state at start up using an Arbortext Command
Language (ACL) script or Arbortext Object Model (AOM) program. For ACL
scripts, you set the preferences with the set_user_property function. For
AOM programs, you use the Application.getUserProperties method.
Note that modifying a persistent user property has no effect on currently open
Resource Manager dialog boxes. If a preference is modified while the Resource
Manager is open, that preference might be overwritten by the dialog box when it
closes. It is recommended that you set these preferences in a script or program
located in the custom\init directory. That ensures the dialog box is not open
at the time the preferences are set. You can also use the dita_reset_rm_
state function before specifying your own settings to reset the Resource
Manager state and ensure your settings are used. However, this function does
remove all of the Resource Manager’s current state.

Customizing the displayed Resource Manager tabs
You can customize the tabs that appear in the docked version of the Resource
Manager using the following persistent user preference:
com.arbortext.dita.rm.(doctype).tabs=
(tab1),(tab2),(tab3),...

For the doctype token, you can specify either a specific document type base name
(for example, ditabase or bookmap), or you can use map to specify all DITA
map specializations and topic to specify all topic specializations.
For the tab token, you can specify one of the following values:

tab Value Tab Name Valid Document
Types

link_xref_tab Link/Xref DITA topics
image_tab Image DITA topics and maps
conref_tab Content Reference DITA topics and maps
topic_tab Topic DITA maps

300 Customizer's Guide

tab Value Tab Name Valid Document
Types

new_topic_tab New Topic DITA maps
keydef_tab Key Definition DITA maps
xinclude_tab Inclusion DITA topics and maps

If no preferences are specified, the following default values are used:

com.arbortext.dita.rm.to
pic.tabs

link_xref_tab,image_
tab,conref_tab

com.arbortext.dita.rm.map.
tabs

topic_tab,new_topic_
tab,keydef_tab

For example, you could use the following ACL code to remove the Content
Reference tab from the docked Resource Manager dialog box for DITA topics and
replace it with the Inclusion tab:
set_user_property(\
'com.arbortext.dita.rm.topic.tabs', \
'link_xref_tab,image_tab,xinclude_tab');

You could use the following ACL code to remove the Key Definition tab and add
the Image tab for DITA BookMaps:
set_user_property(\
'com.arbortext.dita.rm.bookmap.tabs', \
'topic_tab,new_topic_tab,keydef_tab,image_tab');

Customing the Default Look in Location
You can customize the default location for the Resource Manager Look in option
using preferences. Note that the setting of the Synchronize Location Across Tabs
menu choice and associated set ditasynctab command also affects the Look
in location. If tab synchronization is turned on, then any location you set at start
up only applies until the user navigates to a different location in the Resource
Manager browser.
You can use the following preferences to set the Look in location for specific tabs:

• com.arbortext.dita.lastAccessDirForLinkXrefPane—
Link/Xref tab

• com.arbortext.dita.lastAccessDirForImagePane— Image
tab

• com.arbortext.dita.lastAccessDirForTopicContentRe-
ferencePane— Conref tab on the Resource Manager for DITA topics

Customizing DITA Support 301

• com.arbortext.dita.lastAccessDirForMapContentRefer-
encePane— Insert Conref dialog box for DITA maps.

• com.arbortext.dita.lastAccessDirForKeyDefPane— Key
Definition tab

• com.arbortext.dita.lastAccessDirForTopicsPane— Topic
tab

• com.arbortext.dita.lastAccessDirForXincludePane—
Inclusion dialog box

For example, you could use the following ACL code to set the default Look in
location for the Link/Xref tab to C:\demo:
set_user_property(\
"com.arbortext.dita.lastAccessDirForLinkXrefPane", \
"C:\\demo");

Customizing the Type of Files to Display in the Show
and Type Options
You can customize the type of files displayed in the Resource Manager Show and
Type options using the following persistent user preference:
com.arbortext.dita.rm.[(doctype).](tab).(filter)

For the optional doctype token, you can specify a specific document type base
name (for example, ditabase or bookmap). If omitted, the preference applies
for all document types that do not have an explicit preference value set.
For the tab token, you can specify the same values as those used to set the default
tabs.
For the filter token, you specify the option you want to customize. You can use
either showFilter or typeFilter.
The value of the preference is a string identifying the file filter. In general, the
following naming rules are used for filters:

• When the filter is for elements based on a class, the value is that base class —
for example, topic/topic for All Topics.

• When the filter is the same as a file extension or tag name, the name is the
named thing in lower case — for example, pdf, html, fig, or section.

• Otherwise, the name is the same as the English label for the filter in lower case
with spaces replaced by underscore (_) characters.

You can use the following values for Show option filters:

English Label Value
All elements all
All elements with IDs all_elements_with_ids

302 Customizer's Guide

English Label Value
All topics topic/topic
Key definitions key_definitions
Key references key_references
fig fig
table table
li li
fn fn
section section
Valid Elements valid_elements
Valid elements with IDs valid_elements_with_ids

You can use the following values for Type option filters:

English Label Value
Topic topic
Topic or Map topic_or_map
Map map
Image image
PDF pdf
HTML html
Any any

All Graphics all_graphics
Bitmap Graphics (*.bmp) bmp
Graphics Interchange Format (*.gif) gif
IsoDraw Graphics (*.iso, *.isoz) iso
JPEG File Interchange Format (*.jpg) jpg
Portable Network Graphics (*.png) png

ProductView Graphics (*.edz, *.pvz) edz
Scalable Vector Graphics (*.svg) svg

Tag Image File Format (*.tif) tiff
Vector Graphics (*.cgm, *.eps) cgm

For example, you could use the following ACL code to set the default Type option
value to PDF for all tabs and document types:
set_user_property(\
"com.arbortext.dita.rm.typeFilter", \
"pdf");

You could use the following ACL code to set the default Type option value to
Topic or Map on the Topic tab for DITA BookMaps:
set_user_property(\
"com.arbortext.dita.rm.bookmap.topic_tab.typeFilter", \

Customizing DITA Support 303

"topic_or_map")

You could use the following ACL code to set the default Show option value to All
topics on the Link/Xref tab for all Learning and Training topics:
set_user_property(\
"com.arbortext.dita.rm.learningDitabase.link_xref_tab.showFilter", \
"topic/topic")

Customizing the Tags Selected in the Insert Option
You can customize the tags selected in the Resource Manager Insert option using
the following persistent user preference:
com.arbortext.dita.rm.(doctype).[(tab).]preferredTags

For the optional doctype token, you can specify a specific document type base
name (for example, ditabase or bookmap). If omitted, the preference applies
for all document types that do not have an explicit preference value set.
For the optional tab token, you can specify the same values as those used to set
the default tabs. If omitted, the preference applies for all tabs.
The value of the preference is a list of tag names, separated by commas. As the
cursor moves around the document, the Resource Manager scans this list until it
finds a tag that is legal at the current location and make that the default selection
in the Insert option.
For example, you could use the following ACL code to automatically select the
chapter or topicref tags in the Topic tab Insert option for DITA BookMaps:
set_user_property(\
"com.arbortext.dita.rm.bookmap.topic_tab.preferredTags", \
"chapter,topicref")

The part tag still appears in the option, but is never selected automatically.

Customizing the Tags Displayed in the Insert Option
You can customize the tags displayed in the Resource Manager Insert option using
the following persistent user preference:
com.arbortext.dita.rm.(doctype).[(tab).]hiddenTags

For the optional doctype token, you can specify a specific document type base
name (for example, ditabase or bookmap). If omitted, the preference applies
for all document types that do not have an explicit preference value set.
For the optional tab token, you can specify the same values as those used to set
the default tabs. If omitted, the preference applies for all tabs.

304 Customizer's Guide

The value of the preference is a list of tag names, separated by commas. As the
cursor moves around the document, the Resource Manager scans this list until it
finds the tags that are legal at the current location and displays only those tags in
the Insert option.
For example, you could use the following ACL code to just display topicset or
topicsetref tags in Insert option for DITA BookMaps:
set_user_property(\
"com.arbortext.dita.rm.bookmap.hiddenTags", \
"topicset,topicsetref")

Customizing DITA Support 305

Index

A
ACL scripts
loading automatically, 20

application directory
structure, 25

application files
implementing custom, 24
overview of application directory,
25
overview of custom directory, 13

APTWATERMARKTEXT
environment variable, 61
Arbortext Import/Export
custom directory, 17

Arbortext Styler
modules, 20

B
bookmarks in PDF
Arbortext Publishing Engine, 61
FOSI, 61

C
configuration
application.xml, 26

create_copypaste_map function, 272
custom applications
application directory, 25
application.xml startup file, 26
approach, 28
custom directory, 13
deploying as zip file, 29
Enterprise Publishing Packs, 25

custom directory

deploying as zip file, 29
structure, 13

customizations
deploying as zip file, 29

D
Dialog boxes
creating custom, 14
where to place files, 14

Dictionaries
custom, 15

directories
application, 25
custom, 13

DITA support
custom DITA reference path, 15

Document types
custom, 15

E
Enterprise Publishing Packs
implementing, 25

Entities
loading automatically, 16
setting paths, 16

environment variables
APTWATERMARKTEXT, 61

F
Fonts
custom, 17

Framesets
loading automatically, 17
setting paths, 17

307

G
Graphics
loading automatically, 17
setting paths, 17

H
Hyphenation
loading custom files automatically,
17

I
Index
customized, 19
loading custom files automatically,
19

initialization
custom files, 20
editing, 21

J
Java classes
loading automatically, 14

L
loading custom applications
using application directory, 25
using custom directory, 13

Locales
custom font and formatting files, 19

M
Macro files
loading automatically, 17

Merging data
where to place files, 14

P
Paths
custom font and formatting files, 18
custom library files, 19
custom pdfcf files, 18

PDF
custom pdfcf files, 18
FOSI, 61
PTC Arbortext Layout Developer,
61
specifying a watermark, 61

PDF bookmarks
Arbortext Publishing Engine, 61
FOSI, 61

PDF files
Arbortext Publishing Engine, 61
bookmarks in, 61
FOSI, 61

publishing configuration file
custom, 14

publishing rules files
loading automatically, 19

PubTex
automatically loading formatter
files, 17

pubview files
loading automatically, 19

S
Scripts
loading automatically, 20

startup files
customizing, 20
editing, 21

T
Tag templates
loading automatically, 20
setting paths, 20

.tmx files

308 Customizer's Guide

loading automatically, 17, 19

W
Watermarks in print and PDF
FOSI, 61
PTC Arbortext Layout Developer,
61

Index 309

	About This Guide
	Custom Applications
	Overview of Custom Programs and Scripts
	The Custom Directory Structure
	The Application Directory Structure

	Description of the Custom Directory Structure
	custom.xml File
	Subdirectory Structure
	Error Reporting for the custom\init Directory
	Additional Information
	Related Topics

	Using the Custom Directory for Custom Applications
	Description of the Application Directory Structure
	Subdirectory Structure
	Application Startup File
	Related Topics

	Using the Application Directory for Custom Applications
	Deploying Zipped Customizations
	Specifying the JavaScript Interpreter Engine

	Customizing Your Site's Profiling Configuration
	Customizing Your Site's Profiling Configuration
	Profiling Overview
	.pcf (Profile Configuration File)
	Configuring Profiles
	Configuration Process
	Profiling Configuration Examples
	Nesting Profiles
	Restricting Profiles to or from Specific Elements
	Using Logical Expressions when Configuring Profiles

	Profiling API
	Profilenode Functions
	Profile Functions
	Profile Group Functions

	Profiling DTD Element Reference
	Allowed Element
	ApplyProfileGroup Element
	AttributeTest Element
	LogicalExpression Element
	LogicalGroup Element
	LogicalNOT Element
	NotProfileElement Element
	Profile Element
	ProfileClasses Element
	ProfileElement Element
	ProfileFolder Element
	ProfileRef Element
	Profiles Element
	RadioChoice Element
	SetProfileGroup Element

	Customizing Help
	Customizing Tag Help
	Location of Tag Help Files
	Tag Help File Types
	Creating Tag Help for a New Document Type
	Customizing Tag Help for an Existing Document Type

	Customizing PDF Publishing
	PDF Publishing Overview
	Using PTC ALD Publishing Engine for PDF
	Using FOSI Publishing Engine for PDF
	Watermarks
	Watermarks when Publishing with PTC ALD
	Watermarks when Publishing with FOSI

	Creating PDF Bookmarks Using Arbortext Styler
	Creating PDF Bookmarks Using FOSI
	Creating Document Properties
	With Arbortext Styler
	With FOSI

	Choosing PDF Configuration Options
	PDF Configuration Files for PTC ALD
	PDF Configuration Files for FOSI

	Linking Between PDF Files
	Configuring Security Options
	Security Options for PTC ALD Publishing
	Security Options for FOSI Publishing

	Adding Fonts Used by Graphics
	Configuring Fonts for FOSI Publishing
	PDF DTD Element Usage (FOSI)
	Pdfconfig Document Type

	General Element
	Annotations Element
	Compatibility Element
	PDF Element
	PDFX Element

	Compression Element
	Cropmarks Element
	Docinfo Element
	Entry Element

	Images Element
	DownSample Element

	Merge Element
	Insert Element

	Open Element
	Security Element

	Color Element
	Convert Element
	Model Element
	Spot Element
	CMYK Element
	Grayscale Element
	RGB Element

	Font Element
	DefaultFont Element
	FontName Element

	EmbedAlways Element
	FontName Element

	EmbedNever Element
	FontName Element

	Locations Element
	Path Element

	Map Element
	FontName Element
	FontPath Element

	Simulation Element
	Bold Element
	Italics Element

	Substitute Element
	FontName Element

	Label Element
	Documentation Element

	Customizing Publishing Rules
	Customizing Publishing Rules
	Publishing Rule Output Files
	Publishing Rule Output
	Publishing Rule Set Output

	Publishing Rule Parameters
	Adding a Publishing Rule Parameter
	Publishing Rule Set Parameters
	Adding a Publishing Rule Set Parameter
	Overriding Rule Parameters
	Rule and Rule Set Error Handling
	Arbortext Publishing Engine Document Conversion

	Working with XUI (XML-based User Interface) Dialog Boxes
	XUI Overview
	Defining the Dialog Box
	Displaying the Dialog Box using the AOM
	Describing Dialog Box Controls
	Specifying Dialog Box Layout
	Box Layout
	Grid Layout
	Morph Layout

	Specifying Event Listeners
	Returning Values from Dialog Boxes
	Manipulating XUI Dialog Boxes using the AOM
	Customizing the Preferences Dialog Box

	XUI Dialog Boxes and ACL
	Working with Images
	Working with Menus
	Menus on Menubars
	Shortcut and Dropdown Menus

	Working with Toolbars
	Working with Tables
	Working with Trees
	Selecting Objects in Tree Controls
	Dragging and Dropping Tree Control Content

	Working with Dockable Dialog Boxes
	Geometry
	Example
	Dockable Dialog Boxes and the AOM

	Identifying the Parent Window of a Dialog Box
	Embedding XUI Dialog Box Controls in a Document
	XUI Display Recommendations
	XUI Element Reference
	<activex> Element
	<box> Element
	<button> Element
	<cell> Element
	<checkbox> Element
	<colordropdown> Element
	<column> Element
	<combobox> Element
	<contextmenu> Element
	<contextmenugroup> Element
	<datetime> Element
	<description> Element
	<grid> Element
	<groupbox> Element
	<header> Element
	<image> Element
	<imagegroup> Element
	<imagelist> Element
	<label> Element
	<listbox> Element
	<listdropdown> Element
	<listitem> Element
	<menubar> Element
	<menugroup> Element
	<menuitem> Element
	<morph> Element
	<param> Element
	<picturebox> Element
	<popupmenu> Element
	<radio> Element
	<radiogroup> Element
	<row> Element
	<script> Element
	<separator> Element
	<slider> Element
	<spacer> Element
	<spinner> Element
	<tabbox> Element
	<tablecontrol> Element
	<tabpanel> Element
	<textbox> Element
	<toolbar> Element
	<toolbargroup> Element
	<treecontrol> Element
	<treenode> Element
	<unit> Element
	<unitdimensionbox> Element
	<value> Element
	<window> Element

	Working with ActiveX Controls
	Overview
	Arbortext Editor and ActiveX Controls
	Running Scripts
	Related AOM Interfaces

	Executing ActiveX Controls Using XUI
	Example: Embedded Calendar Control
	Implementation

	Example: Previewing Word and Excel Documents

	Executing ActiveX Controls Using the .dcf File to Bind to an Element dDrectly
	Configuring the .dcf File
	Establishing Element-to-Control Binding
	Example: Calendar Control
	Operation Overview
	Scripting Overview
	Implementation

	Example: Entering Address Information with an HTML Form

	Running Arbortext Editor in an ActiveX Control
	Characteristics of the ActiveX Arbortext Editor
	The EditorControl.dll Control
	HRESULT Return Values
	open Method
	show Method
	close Method

	Integrating Arbortext Editor with Web Pages
	The Protocol Syntax
	The arbortext-editor Protocol
	The Security Zone Policy
	Processing Query Strings
	Accessing Query String Parameters

	Merging Data from Other Sources
	Data Merging Overview
	Merging Data with Arbortext Editor
	Query Definitions
	Configuring for Data Merge
	The .dcf File
	The Data Merge Configuration File (The .dmf File)
	Hiding Parameter Values

	Notes and Limitations

	Working with Arbortext Import/Export
	Configuring for Exporting
	Export Process Overview
	Creating Export Stylesheets
	Deploying Export Stylesheets
	Configuring Client Workstations
	Customize RTF Style and Field Names
	Associate a Program for Previewing RTF Documents
	Specifying a Custom Template File

	Configuring for Importing
	Configuring Client Workstations

	Arbortext Import/Export-Related ACL Functions
	Using Arbortext Import/Export in Batch Mode
	Log Files, Error Return Codes, and Event Log Errors

	Troubleshooting
	Platform Issues
	Improving Import Performance and Freeing Disk Space
	Adjusting Java Memory Availability
	Importing Very Large Documents
	Known Import Limitations
	Known Export Limitations

	Customizing Copying and Pasting from Other Applications
	Customizing Copying and Pasting from Other Applications
	Copy and Paste Overview
	Disabling Copy and Paste
	Modifying the Source Types Used for Copy and Paste
	Using Arbortext Import to Customize the MapTemplate Files
	Implementing Copy and Paste for a Custom Document Type
	Customizing the Paste Special Dialog Box
	Limitations

	Customizing DITA Support
	Customizing DITA support
	Customizing the DITA Resource Manager
	Customizing the displayed Resource Manager tabs
	Customing the Default Look in Location
	Customizing the Type of Files to Display in the Show and Type Options
	Customizing the Tags Selected in the Insert Option
	Customizing the Tags Displayed in the Insert Option

	Index

