
Configuration Guide for
Arbortext Publishing Engine

8.0.0.0

Copyright © 2019 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
"PTC") are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes. Information described herein is
furnished for general information only, is subject to change without notice, and should not be construed as a
warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the
piracy of PTC software products, and we pursue (both civilly and criminally) those who do so using all legal
means available, including public and private surveillance resources. As part of these efforts, PTC uses data
monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our software.
This data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection and
transmission of such data (including to the United States), cease using the illegal version, and contact PTC to
obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Contents

About This Guide ..7

Preparing to Configure Arbortext Publishing Engine... 11
Arbortext Publishing Engine Tools and Resources...13
Components of Arbortext Publishing Engine ...13
Initialization Process ...18
Load Balancing and Clustering ..20
Monitoring and Reporting Using a Web Browser ...21

Configuring Arbortext Editor to Use Arbortext PE server ...25
Publishing Configuration ...26
Arbortext Publishing Engine Security Framework ..27

Understanding Transactions on the Arbortext PE server...37
Transaction States..39
Using the Transaction Archive ...40

Understanding Queuing on the Arbortext PE server ...41
How Queuing Works ...42
Configuring a Queue Manager...43
Configuring Queues..44
The Queued Transaction Scheduler ...45
Queuing Query Parameters...46
Queuing for Arbortext Editor Clients ...47
Monitoring Queues ...49

Understanding Publishing Rules...51
Managing Publishing Rules ...54
Deploying Publishing Rules ...54

Windows Configuration..57
Configuring a User Account on Windows ..58
Using the Arbortext Publishing Engine Configuration Program60
Integrating Arbortext Publishing Engine with Apache Tomcat66

Setting Configuration Parameters ...69
The e3config.xml Configuration File ...71
Arbortext Publishing Engine Global Parameters ..71
Specifying a Request Handler..83
Specifying Request Selectors ..89
Specifying Test Sets..91
Specifying Caches..92
Specifying Queues..93
Configuring Sub-process Pools.. 100

3

Specifying the AllowedFunctions List.. 107
Specifying Initializers .. 109

Requesting Administrative Information.. 111
Requesting a Status Report... 112
Requesting a License Report... 114
Requesting a Version Report ... 115
Monitoring the Transaction Archive .. 115
Requesting the Queue Reports.. 118
Requesting a Java Properties Report ... 121
Requesting Web Services Definitions... 121
Requesting a Publishing Configuration Report .. 121
Usage Report ... 123
Requesting a Zip Archive for Troubleshooting ... 123
Requesting a Rescan of Publishing Configuration ... 123
Reloading Scripts ... 123
Running the Samples.. 124

Troubleshooting Arbortext Publishing Engine Operations ... 125
Using Arbortext Publishing Engine Interactive for Testing..................................... 126
Troubleshooting Publishing ... 126
Using the Arbortext Publishing Engine Test Utility.. 127
Troubleshooting Errors.. 127
Getting Trace Information .. 128
Publishing Issues.. 129
Reporting Problems to PTC Technical Support.. 130

Repository Connection Sample Script ... 131
Connecting to a Repository Adapter ... 132

Index.. 135

4 Configuration Guide for Arbortext Publishing Engine

Document Revision History

7.1 M040

Section Update
Various Added requirement to configure

Apache Tomcat in line with current
security best practices.

5

About This Guide

This guide covers the configuration information you need to set up Arbortext
Publishing Engine for your site. It contains information on the initial set up of
configuration parameters. Then you can use it to tweak your site implementation
and to aid in troubleshooting.
This Configuration Guide for Arbortext Publishing Engine manual provides
information on configuring and managing the Arbortext PE Request Manager and
its Arbortext PE sub-processes. It includes descriptions of archiving and queuing
transactions, as well as monitoring and reporting capabilities for the Arbortext PE
Request Manager and its Arbortext PE sub-processes. It also covers using
Arbortext Publishing Engine as a publishing server for Arbortext Editor clients.
You can configure how to track transactions between clients and the Arbortext PE
server. You can set logging and trace parameters to collect information when
troubleshooting. You can save interim files produced during publishing, collect all
document type files being used during transactions, and archive transactions.
Be sure to review Arbortext Publishing Engine Release Notes and Installation
Guide for Arbortext Publishing Engine before you proceed with configuring
Arbortext Publishing Engine. Also, Arbortext Editor, Arbortext Publishing
Engine, Arbortext Styler, and Arbortext Architect Release Notes contains release
information that may pertain to your use of Arbortext PE sub-processes, document
types, stylesheets, and custom applications. Pay particular attention to publishing,
API and other information that's not related to the user interface. Read it to get a
complete view of release information before you complete your Arbortext
Publishing Engine installation or upgrade.
Refer to Components of Arbortext Publishing Engine on page 13 for a description
of components specific to Arbortext Publishing Engine.

7

Prerequisite Knowledge
This documentation is intended for the Arbortext PE server administrator. This
document assumes advanced skill using servlet containers, web servers, and
HTTP protocols. To install, set up, and configure Arbortext Publishing Engine,
you should have substantial experience as a web server administrator. To
understand the information in this manual, you should be familiar with the
implementation at your site and with standard system administration tasks.
In a typical implementation, a client program or web browser sends an HTTP or
SOAP request to a web server. The web server interprets the URL and passes the
request to the servlet container. The servlet container knows how to call Arbortext
PE Request Manager from its own configuration file, and it constructs and passes
a request object and a response object to the Arbortext PE Request Manager. From
the request object, the Arbortext PE Request Manager determines the client who
sent the request, what work to perform, and what data to return in the response
object to the servlet container. In turn, the servlet container returns the response to
the web server, which then returns it to the client making the request.
A list of terms you should review:

• Request object — This is a Java object that contains all the information from a
client HTTP or SOAP request. A servlet is configured to handle it by
evaluating a portion of the URL for routing.

• Response object — This is a Java object that's created in conjunction with the
Request object and constructed to handle the returned results. A custom
application uses its methods to specify the information to be returned as the
HTTP or SOAP response.

• Servlet — Aweb component, managed by a servlet container, that generates
dynamic content. Servlets interact with web clients using a request and
response model implemented by the servlet container. This request and
response model is based on the behavior of the Hypertext Transfer Protocol
(HTTP).

• Servlet container — A servlet container deploys the web application into its
runtime environment. It loads and manages a servlet throughout its lifecycle
using the servlet context. When the servlet container initializes the servlet, it
creates the servlet context object which contains information about the
servlet's runtime environment.

• Servlet context — A Java object that manages the runtime state of a servlet for
the servlet container. It defines the servlet's view of the web application it's
running in.

• SOAP — Formerly, an acronym for Simple Object Access Protocol, but now
it's simply known as SOAP. SOAP is a cross-platform communication
protocol based on XML that controls an exchange commonly consisting of a

8 Configuration Guide for Arbortext Publishing Engine

request and a response. The data is exchanged in a SOAP message that usually
uses HTTP as the transport mechanism. The server processes the SOAP
message through a web service that the client calls when making a request.

For information about using SOAP with Arbortext Publishing Engine, see the
Programmer's Guide to Arbortext Publishing Engine.

Caution
There are potential security issues with SOAP and the Axis2 libraries. PTC
recommends that you use HTTPS if you use SOAP. For more information,
see Arbortext Publishing Engine Security Framework in the Configuration
Guide for Arbortext Publishing Engine.

• SOAP message — The SOAP message is an XML document that follows a
specific format. The client sends a request in a SOAP message to the web
service, and the message contains a SOAP envelope. The SOAP envelope can
consist of Header, Body (required), and Fault elements. The SOAP envelope
supplies a requesting call to a server-side application through the web service.
The SOAP envelope also includes instructions for returning a response.

• Web application — A collection of servlets, JavaServer Pages, HTML
documents, images, archives, or other data.

• WSDL — An acronym for Web Services Description Language, which is a
server-side document that describes the criteria by which a client application
can call an application using SOAP. WSDL defines a SOAP web service by
exposing its structure in XML format.

About This Guide 9

1
Preparing to Configure Arbortext

Publishing Engine
Arbortext Publishing Engine Tools and Resources ...13
Components of Arbortext Publishing Engine..13
Initialization Process..18
Load Balancing and Clustering ...20
Monitoring and Reporting Using a Web Browser ..21

Before you begin setting up the Arbortext PE server, be sure you read the
following:

• Review Installation Guide for Arbortext Publishing Engine to be sure
Arbortext Publishing Engine was correctly installed, including integration
with a servlet container or web server application.

• Configuring Arbortext Editor to Use Arbortext PE server on page 25, if you
will be configuring Arbortext Editor clients.

• Understanding Transactions on the Arbortext PE server on page 37, if you will
be managing transactions, especially using the transaction archive capability.

• Understanding Queuing on the Arbortext PE server on page 41, if you will be
implementing and managing queuing.

• Windows Configuration on page 57
• Setting Configuration Parameters on page 69, especially The e3config.xml

Configuration File on page 71.
Before you proceed with Arbortext Publishing Engine configuration, you should
be aware of the following:

11

• The configuration files have predefined objects with either assigned or implicit
default parameter values that enable much of Arbortext Publishing Engine
functionality as installed. You will not need to change most of these values.

• If someone at your site creates custom applications that implement any of the
Arbortext Publishing Engine Java interfaces that will run on the server side of
Arbortext Publishing Engine, you may need to create new object definitions,
attributes, and parameters in the configuration files to allow them to run. The
interfaces are described in Programmer's Guide to Arbortext Publishing
Engine.

You'll need to work closely with the programmer implementing these
applications for your site as the parameter list specified in the configuration
files must meet the structure and requirements of the interface implemented in
the custom application.

It’s best to set up your server in a non-production area first until you have the
configuration set up properly.

12 Configuration Guide for Arbortext Publishing Engine

Arbortext Publishing Engine Tools and
Resources
The following describes specific Arbortext Publishing Engine tools and resources
for configuring, developing, and testing your production environment.

Tools and Resources

Component Description
Arbortext Publishing Engine index
page

HTML page that provides monitoring
and reporting operations for Arbortext
Publishing Engine and links for running
test applications

Arbortext Publishing Engine status
report

HTML page that displays a status
report for Arbortext Publishing Engine
and Arbortext PE sub-process activities

Arbortext Publishing Engine
transaction archive

Archival tool that can be configured to
keep transaction requests and
responses, log messages, and archive
the files used to process them.

Arbortext Publishing Engine
Configuration program

Utility that controls some setup
activities for Arbortext Publishing
Engine

Arbortext Diagnostics program Tool for tracing and logging Arbortext
PE sub-process information, including
the user account name for Arbortext
Publishing Engine.

Arbortext Publishing Engine Test
Utility

Tool for testing Java, JavaScript,
VBScript, and ACL custom scripts

Arbortext Publishing Engine Interactive User interface for the Arbortext PE sub-
process used primarily for Arbortext
Publishing Engine configuration,
application development, and testing

Components of Arbortext Publishing
Engine
The following list describes the components of Arbortext Publishing Engine.
Unless otherwise noted, Java programmers can implement their customized
versions of these components.

Preparing to Configure Arbortext Publishing Engine 13

• Arbortext PE Request Manager — The Arbortext Publishing Engine Java
servlet that handles all HTTP and SOAP requests and responses for document
conversion and manipulation. It implements the standard init, service,
and destroy methods of a servlet.

Incoming requests are passed to active Arbortext Publishing Engine Request
Handlers according to configured criteria. When a response is returned to the
servlet, the Arbortext PE Request Manager conveys the response to the servlet
container, which returns the response to the client making the request.

• Arbortext Publishing Engine Request Context — A Java object that
implements the E3RequestContext interface. The Arbortext Publishing Engine
Request Context provides services and information about resources available
to the context and writes to log files.

The Arbortext Publishing Engine Request Context object is created by the
Arbortext PE Request Manager init method. It provides information to each
Arbortext Publishing Engine Request Handler, Arbortext Publishing Engine
Request Selector, Arbortext PE sub-process pool, Arbortext Publishing Engine
Cache Manager, Arbortext Publishing Engine Queue Manager, and Arbortext
Publishing Engine Initializer. The Arbortext Publishing Engine Request
Context provides information about the Arbortext Publishing Engine
environment such as parameter values, and services such as the location of an
Arbortext PE sub-process service pool. It can also write to a servlet log and
permits custom code to modify the global state of the Arbortext Publishing
Engine environment.

• Arbortext Publishing Engine Request Handler — A Java object that
implements the E3RequestHandler interface. The Arbortext PE Request
Manager passes an incoming request to each defined Arbortext Publishing
Engine Request Handler to determine which one is configured to service it.

A custom Arbortext Publishing Engine Request Handler must implement the
init, destroy, and service methods. The init method is called during
Arbortext PE Request Manager initialization, and it will receive the Arbortext
Publishing Engine Request Context object and the parameters from the
Arbortext Publishing Engine configuration file (e3config.xml). The
service method is called to process a client request, creating a request
object and a response object. The Arbortext PE Request Manager goes to each
Arbortext Publishing Engine Request Handler, in the order they're defined,
looking for a response that signifies whether it can process the query contained
in the request. The Arbortext PE Request Manager calls the Arbortext
Publishing Engine Request Handler's destroy method during termination.

• Arbortext Publishing Engine Request Function — A Java object that
implements the E3RequestFunction interface. The Arbortext Publishing
Engine Request Handler is configured to map query parameters from the

14 Configuration Guide for Arbortext Publishing Engine

request to Arbortext Publishing Engine Request Functions. Each built-in
Arbortext Publishing Engine function is mapped to a corresponding built-in
Arbortext Publishing Engine Request Function. For example, the f=status
function is mapped to the com.arbortext.e3.FunctionStatus interface.

The Arbortext Publishing Engine Request Handler distributed with Arbortext
Publishing Engine can be customized to add custom function names and
mappings without writing a new Arbortext Publishing Engine Request
Handler.

• Arbortext Publishing Engine Request Selector — A Java object that
implements the E3RequestSelector interface. Each Arbortext Publishing
Engine Request Selector object applies test criteria to a request to help
determine routing. If the request matches a predefined condition, the request is
accepted by its Arbortext PE sub-process service pool for processing.

A Request Selector has an init and a test method. The init method is
called during Arbortext PE Request Manager initialization; and it receives the
information in the Arbortext Publishing Engine Request Context object and
the parameters from the Arbortext Publishing Engine configuration file
(e3config.xml). The test method is called when the Arbortext PE
Request Manager needs to evaluate a request against a set of tests associated
with an Arbortext PE sub-process pool. For example, a request selector could
test a request for an HTTP header content-type: text/xml and return
TRUE or FALSE.

Arbortext Publishing Engine Request Selectors can be logically combined
using AND or OR in the Arbortext Publishing Engine Request Evaluator,
otherwise known as the TestSet defined for each Arbortext PE sub-process
pool.

• Arbortext Publishing Engine Request Evaluator — A Java object that
implements the E3RequestEvaluator interface. The Arbortext Publishing
Engine Request Evaluator can be defined in the TestSet section for each
SubprocessPool, QueueManager, Queue, and Notifier defined in
the Arbortext Publishing Engine e3config.xml file.

This wrapper-type TestSet object can combine a set of defined Arbortext
Publishing Engine Request Selector tests to create test criteria. Two or more
tests can be logically combined using AND and OR logic to form more
complex criteria. For example, a TestSet might have a test to detect a
particular content-type header and another test to detect a particular
query parameter that also has a specific value. If an HTTP request meets this
criteria, the Arbortext Publishing Engine Request Evaluator returns a boolean
value of TRUE and the request would be accepted.

Preparing to Configure Arbortext Publishing Engine 15

• Arbortext Publishing Engine Initializer — A Java object that implements the
E3Initializer interface.

This object's init method is called after all other objects are initialized. An
initializer can execute startup tasks, such as retrieving and caching publishing
configuration reports or transforming and caching stylesheets.

• Arbortext Publishing Engine Request Object — A Java object that implements
the E3ApplicationRequest interface and contains all information being
submitted in an HTTP or SOAP request to Arbortext Publishing Engine.

• Arbortext Publishing Engine Response Object — A Java object that
implements the E3ApplicationResponse interface and contains the response to
the HTTP or SOAP client making a request.

• Arbortext PE sub-process — An individual Arbortext Publishing Engine
process, similar to Arbortext Editor, that performs document formatting,
conversion, or other document manipulation for the Arbortext PE Request
Manager as requested by an HTTP or SOAP client.

• Arbortext PE sub-process Pool — A Java object that implements the com.
arbortext.E3SubprocessPool interface and controls a group of Arbortext PE
sub-processes that are identical and interchangeable. The Arbortext PE
Request Manager evaluates an HTTP or SOAP request against each Arbortext
PE sub-process pool in the order they're defined in the Arbortext Publishing
Engine e3config.xml configuration file.

Each Arbortext PE sub-process pool is uniquely identified and has its own
parameters, such as minimum and maximum number of processes, time-out
values, and so on. If you have more than one, each Arbortext PE sub-process
pool must have an Arbortext Publishing Engine Request Evaluator TestSet
defined in e3config.xml to specify the criteria for assigning HTTP
requests to it.

One Arbortext PE sub-process pool must always be configured as the default
pool; the default pool allocates an Arbortext PE sub-process to service any
HTTP request if no other pool is configured or available. Because a request is
assigned to the first Arbortext PE sub-process pool with matching criteria, the
order in which pools are defined is important. Because the default pool is
designed to service any HTTP request, put the default pool last to be sure that
all other enabled pools are evaluated.

The Arbortext PE sub-process Pool can't be customized.
• Arbortext PE sub-process Context — A Java object that implements the

E3SubprocessContext interface.

An Arbortext PE sub-process Context object contains any parameters
specified in the SubprocessContext element for a SubprocessPool,
along with the Arbortext PE sub-process pool name and the Arbortext PE sub-

16 Configuration Guide for Arbortext Publishing Engine

process number (taken from the range of minimum to maximum number of
Arbortext PE sub-processes).

Arbortext PE sub-process Context serves two purposes:

○ An Arbortext Publishing Engine Request Handler can retrieve the
information provided by the Arbortext PE sub-process Context.

○ The Arbortext PE sub-process Context object is passed to the individual
Arbortext PE sub-process taking the request, making it available to
Arbortext Publishing Engine custom applications (ACL, Java, JavasScript,
and VBScript).

• Arbortext Publishing Engine Queue Manager — Java object that implements
the com.arbortext.e3.QueueManager interface.

An Arbortext Publishing Engine Queue Manager determines whether an
HTTP request should be queued. The Arbortext PE Request Manager offers
the request to each queue manager in the order in which they are defined in the
Arbortext Publishing Engine configuration file. When a queue manager
accepts the request, Arbortext PE Request Manager stops and takes the HTTP
response from the Queue Manager and passes it to the client.

• Arbortext Publishing Engine Queue — Java object that implements the com.
arbortext.e3.ArbortextQueue interface.

The Arbortext Publishing Engine Queue is a container of ordered transactions
that are awaiting execution. Transactions are placed on a queue by an
Arbortext Publishing Engine Queue Manager. The Queue Manager offers the
request to each queue in the order in which they are defined in the Arbortext
Publishing Engine configuration file. When a queue accepts the request, it
holds it until the Queued Transaction Scheduler selects it for processing. After
completion, a queued transaction is deleted from its queue.

• Arbortext Publishing Engine Notifier — Java object that implements the com.
arbortext.e3.E3Notifier interface.

A notifier is called by the Arbortext PE Request Manager each time a
transaction changes from one state to another. A notifier can be implemented
and configured to respond to a transaction state change by performing an
action, such as send an email.

• Arbortext Publishing Engine Transaction — A transaction is a request and
response pair processed by the Arbortext Publishing Engine. The transaction
includes the request transmitted to Arbortext PE Request Manager by a client,
the response returned, and any intermediate files or logs generated when
producing the response. The transaction is created upon receiving the request,
and associated files are placed in the active transaction directory to wait for
processing. There are two types of transactions:

Preparing to Configure Arbortext Publishing Engine 17

○ an immediate transaction

Arbortext Publishing Engine transmits the response to the waiting client
immediately after processing is complete. The immediate transaction will
then be deleted from the active transaction directory. You can configure an
immediate transaction to be archived in the Transaction Archive directory
afterward.

○ a queued transaction

Arbortext Publishing Engine places a transaction on a queue (provided the
request meets queuing criteria) until it can be processed. After the
transaction is processed, the client can retrieve the resulting output from
the active transaction directory using the transaction ID. The transaction
will be deleted from the active transaction directory according to the
configuration settings for duration and retrieval by the client. You can
configure a queued transaction to be archived in the Transaction Archive
directory afterward.

Initialization Process
During initialization, Arbortext Publishing Engine starts its minimum number of
Arbortext PE sub-processes according to a configuration specification.
Periodically, Arbortext Publishing Engine checks for idle Arbortext PE sub-
processes and tracks the lifetime duration of each Arbortext PE sub-process.
When an HTTP or SOAP request is passed to Arbortext PE Request Manager,
Arbortext Publishing Engine assigns it to the idle Arbortext PE sub-process with
the least elapsed time since last use. If there is no idle Arbortext PE sub-process,
Arbortext Publishing Engine will start a new Arbortext PE sub-process to handle
the request if the maximum number of Arbortext PE sub-processes allowed is
larger than the minimum number. of Arbortext PE sub-processes.
Finding the right balance of configuration settings depends on your hardware,
network traffic, system capabilities, volume and size of requests, and other factors
that are particular to your site. In most cases, you will achieve the most efficient
throughput by setting the maximum number of Arbortext PE sub-processes to the
number of processors on the Arbortext Publishing Engine server system. This
guideline ensures all CPUs will be used and avoids unnecessary context
switching, which can hinder throughput.

Arbortext PE Request Manager Startup
Like every Java Servlet, the Arbortext PE Request Manager provides three
methods that are called by the Java servlet container in which it runs: init,
service, and destroy.

18 Configuration Guide for Arbortext Publishing Engine

The Arbortext PE Request Manager's init method is called by the Java servlet
container, either when the container itself starts or when the container receives the
first request for Arbortext Publishing Engine. During initialization, the Arbortext
PE Request Manager will perform the following functions:

1. Locates and reads the e3config.xml configuration file and constructs an
E3ConfigFile object containing defined elements, their attributes, and
their parameters.

2. Creates the Arbortext Publishing Engine Request Context that provides
initialization information to all the Arbortext Publishing Engine Java objects
specified in the e3config.xml file.

3. Starts and initializes each Java object, using its parameters described in
e3config.xml, such as request selector tests, cache managers, queue
managers, request handlers, subprocess pools, and initializers. Generally
speaking:

• Each object described in e3config.xml must implement a supported
Arbortext Publishing Engine Java interface with an init method.

• The Arbortext Publishing Engine Request Context object is passed to each
init method.

• Objects are initialized in the order in which they appear in
e3config.xml.

• As each defined object is initialized, the Arbortext PE Request Manager
adds knowledge about that object to its data structure, as acquired through
the Arbortext Publishing Engine Request Context object.

After initialization, HTTP requests can be processed. The servlet container calls
the Arbortext PE Request Manager's service method each time an HTTP
request is received. The service method performs the following operations:

1. Passes the request to each Arbortext Publishing Engine Cache Manager, in the
order they're defined in e3config.xml. If a cache manager has a cached
response that can satisfy the request, the response is returned to the client and
the service function returns.

2. Passes the request to each Arbortext Publishing Engine Queue Manager, in the
order they're defined in e3config.xml. If a Queue Manager is willing to
accept the request for processing later, the Queue Manager sets the response to
be returned to the client and stores the request. Then the service function
returns.

3. Passes the request to each Arbortext Publishing Engine Request Handler, in
the order they're defined in e3config.xml. The Request Handler

Preparing to Configure Arbortext Publishing Engine 19

determines if it can process the request or if the request needs an Arbortext PE
sub-process.

4. If the request requires an Arbortext PE sub-process, the Request Handler will
pass it to each Arbortext PE sub-process pool, in the order they’re defined in
e3config.xml until one can accept it for processing.

Load Balancing and Clustering
Load balancing and clustering can improve scalability, availability, fail-over
capabilities and performance.

• Load balancing distributes the work load to multiple identical servers based a
predefined load-balancing policy. It can be implemented using hardware,
software, or a combination of both. Two popular methods use DNS round
robin distribution or server hardware to direct network traffic using some kind
of network device.

Choosing a load balancing approach depends on existing infrastructure, cost,
and demand, among other considerations. You will need to research specific
hardware and software solutions for implementing load balancing.

• Clustering is implemented as software installed on a group of servers
organized into clusters. It shares the work load according to the software
protocol.

Clustering can support features not available with server load balancing, such
as persistent session data across multiple server nodes. Clustering can be more
difficult to implement.

Arbortext Publishing Engine can be deployed using either a server load balancing
approach or clustering, except for those that use web farms. Arbortext Publishing
Engine should not be clustered in a group of virtual servers running on a single
physical server.
It's easier to implement load balancing for Arbortext Publishing Engine as it does
not specifically need the session data used in clustering or sticky routing.
Whenever Arbortext Publishing Engine is deployed on multiple physical servers,
regardless of the method you choose, all servers running Arbortext Publishing
Engine must have completely identical installation trees with all customizations in
place.
In Apache Tomcat, load balancing can be implemented by directing requests to the
provided servlet Balancer. The Balancer servlet requires some Java code rules to
implement a useful load balancing scheme. Refer to the Balancer servlet
documentation for more information. In Tomcat, clustering requires programming

20 Configuration Guide for Arbortext Publishing Engine

Java code, so its implementation is more difficult. Choose clustering only if you
need the additional benefits for other reasons, as they are not used by Arbortext
Publishing Engine.

Modifications Made by Requests
When using load balancing or clustering, it is important that requests do not rely
on modifications made by previous requests. For example, a request could run a
script that modifies a set command option. The set command option will be
modified only on the Arbortext PE sub-process running on the Arbortext PE
server handling the request. A request to Arbortext Publishing Engine can't rely on
any action performed by a previous request. Requests are fulfilled by multiple
Arbortext PE sub-processes that do not maintain a session state or record of a
previous reques. Subsequent requests could go to a different Arbortext PE sub-
process or a different Arbortext PE server. This means that Arbortext PE Request
Manager has no information to determine how to route subsequent requests based
on previous ones.

Using the Administration Tools
Arbortext Publishing Engine is deployed by installing it on each server in a group.
Usually, a central server handles the distribution load, and it is the only server
identified to clients for their use. The identity of other servers in the group may
only be known to administrators. For an administrator to access the functionality
available for Arbortext Publishing Engine, a request must be made to the index
page on each server where Arbortext Publishing Engine is installed. Accessing the
index page on the central server distributes the request to an unidentified,
subordinate server. This means that you need to access each server individually to
obtain Arbortext Publishing Engine reports, monitor activity, and review or collect
archived transaction files for troubleshooting. Refer to Monitoring and Reporting
Using a Web Browser on page 21 for information about the features available
from the Arbortext Publishing Engine index page.

Monitoring and Reporting Using a Web
Browser
Arbortext Publishing Engine has an index page with links that return information
and perform a variety of administrative actions and sample document conversions.
After you've successfully installed and configured Arbortext Publishing Engine,
this index page is available from a web browser. Use a URL that follows the
example:
http://servername:port/e3/

Preparing to Configure Arbortext Publishing Engine 21

In the URL, servername is the name of the Arbortext PE server machine, and port
is the port number the servlet container or web server uses to monitor HTTP
requests on its behalf.

View Arbortext Publishing Engine Information
• The Status link returns a status report. It includes:

○ basic installation, system, COM, allowed functions and global parameters
information.

○ Arbortext PE sub-process pool status, including whether it's enabled or
disabled, its associated configuration settings, the process IDs and
allocation status of each Arbortext PE sub-process.

○ all configuration settings for caches, queues, request handlers, and request
selectors.

○ information on the Queue List, if queues are configured. Information about
individual queues is available from the Queue List page.

○ system Environment Variables. If PTC_D_LICENSE_FILE is set, it will be
included in the Environment Variables report.

• The License link retrieves basic information about the installation, as well
as the license source, the user under which Arbortext Publishing Engine is

22 Configuration Guide for Arbortext Publishing Engine

running, and the number of processor cores and packages on the Arbortext PE
server. It also lists the optional software components installed and whether
they are licensed.

A license error report will be returned with the information that PTC_D_
LICENSE_FILE is either missing or set to an incorrect value (and the incorrect
value will be reported).

• The Version link retrieves version information about Arbortext Publishing
Engine and its Arbortext PE sub-processes.

• The Transaction Archive link retrieves information on the transaction
archive, if one has been implemented. More information about individual
archived transactions is available from the Transaction Archive page.

• You can retrieve a report on the Queue List, if queues are configured.
Information about individual queues is available from the Queue List page.

• The Java Properties link returns all information about the JVM.
• The Web Service Definitions link returns the Arbortext Publishing

Engine WSDL definitions.
• You can retrieve any of three variations of the Publishing Configuration report.
• You can retrieve a Usage Report with a summary of clients and

transactions, and usage by client.
• You can run an Application Save to retrieve configuration about Arbortext PE

sub-processes.
• All Available Information returns a zip archive containing all the information

available about Arbortext Publishing Engine listed in this section, as well as
the output from the sample PE applications in the testing section and the
Application Save zip archive.

Administer Arbortext Publishing Engine
You can rescan the publishing configuration information and its cache for use by
Arbortext Editor clients.
You can reload scripts and update cached stylesheets on Arbortext PE server for
use by all clients.

Test Arbortext Publishing Engine
You can convert a sample document to any of the supported output formats listed.

Preparing to Configure Arbortext Publishing Engine 23

You can run Arbortext Publishing Engine sample test applications which return
basic information about server configuration. The source code for these sample
applications is available from your installation in PE_HOME\e3\samples, and
they're described in the Programmer's Guide to Arbortext Publishing Engine.
None of the actions available from the Arbortext Publishing Engine index page
are queued.

24 Configuration Guide for Arbortext Publishing Engine

2
Configuring Arbortext Editor to

Use Arbortext PE server
Publishing Configuration ..26
Arbortext Publishing Engine Security Framework...27

Arbortext Editor users can be set up to use Arbortext Publishing Engine to publish
their documents. For information on the specific versions of Arbortext Editor
clients supported by Arbortext Publishing Engine, consult the system and software
requirements section of the Installation Guide for Arbortext Publishing Engine.
Arbortext Editor users need to ask the Arbortext Publishing Engine administrator
for the URL that specifies the server, port number, and Arbortext Publishing
Engine servlet specification as configured by the web application server or servlet
container where Arbortext Publishing Engine is installed. In a standard
installation, Arbortext Editor users have the option to enter the URL for the
Arbortext PE server. These options are also available to Arbortext Editor users
from the Publishing Engine panel of Tools ▶▶ Preferences.
If your site will be deploying a compact installation of Arbortext Editor, be sure to
consult the Arbortext Editor Deployment Kit Guide. The compact deployment
recommends adding set peservices and set peserverurl options to the
Deploy Directory’s siteprefs.xml file.
Arbortext Editor users can request a report containing Arbortext Publishing
Engine publishing information, such as document types, stylesheets, framesets,
and content pipelines available from Arbortext Publishing Engine when
publishing documents. On the Arbortext Editor client, go to the Help ▶▶ PE
Configuration command.

25

Publishing Configuration
The configuration information returned in the Arbortext Publishing Engine
Publishing Configuration report lists all the document types, document type
configuration files, and stylesheets available from the Arbortext PE server. You
can review this information by choosing the link for the format you want for View
information about the publishing configuration from the Arbortext Publishing
Engine index page. Click the Short link to retrieve the HTML version of the
report. (Refer to Monitoring and Reporting Using a Web Browser on page 21 for
more information on using the index page.)
The PE Publishing Configuration report lists all available stylesheets, and it
references a stylesheet by both its path and its name in separate entries. The report
warns of any duplicate stylesheet names on the server. If a stylesheet name is not
unique on the server, Arbortext Publishing Engine uses the first one it finds.
If Arbortext Publishing Engine is restarted, the Arbortext Editor client is not
aware of any changes. To be certain Arbortext Editor has up-to-date publishing
information, users must perform one of the following to cause Arbortext Editor to
automatically obtain the latest Arbortext Publishing Engine publishing
configuration information:

• Disable and then enable Use Publishing Engine in the Publishing Engine panel
of Tools ▶▶ Preferences.

• Turn peservices off and then on again in Tools ▶▶ Preferences ▶▶ Advanced.
• Exit and restart Arbortext Editor.
Arbortext Editor uses can take advantage of the Arbortext Publishing Engine
queuing capabilities. For more information, refer to Queuing for Arbortext Editor
Clients on page 47.
Arbortext Editor can also compare its publishing configuration with Arbortext
Publishing Engine publishing configuration using the Tools ▶▶ Compare Config with
PE menu item. In the Compare Publishing Configuration with PE dialog box,
Arbortext Editor users can generate the Publishing Configuration Comparison
report, which notes the differences between the publishing environment on the
client and on the server. This report is helpful in troubleshooting publishing
processing, and you should include it with the data you submit when reporting a
problem to Technical Support.
The Arbortext Editor user has a companion tool to use for troubleshooting. If there
are problems with publishing, the user can run a Tools ▶▶ Save Application and
choose from two Save options for gathering data about publishing:

• Local Data

saves the application data associated with the local machine’s publishing
configuration, and it also enables Compare Local Configuration with PE. If it’s
checked, the application save will contain the comparison of the local

26 Configuration Guide for Arbortext Publishing Engine

machine’s publishing configuration with the Arbortext PE server
configuration.

• PE Data

transmits the current document to the Arbortext PE server. The server opens
the document and generates an application save on the server. It will include
the data requested from the choices for Copy document type and Copy all
applications.

Note
If you are using a content pipeline on the Arbortext PE server for processing
large documents and have memory consumption problems, you can improve
content pipeline publishing processing by using the doc_estimate_dfs
ACL function and set bigjobthreshold ACL command option. Refer to
the Arbortext Command Language Reference for information.

Arbortext Publishing Engine Security
Framework
Arbortext Publishing Engine includes a security framework that allows every
request sent to the Arbortext PE Request Manager to be classified as "disabled",
"unrestricted", or "restricted" based on users and groups defined in Apache
Tomcat.

• Disabled requests are not processed.
• Unrestricted requests are processed without authentication.
• Restricted requests are only processed if they are submitted by an

authenticated user who is a member of a configured security role.

○ Authenticated requests submitted by other users are not processed.
○ If a client submits an unauthenticated request, the Arbortext PE Request

Manager will reject the request in a way that instructs the client to prompt
for an ID and password and resubmit the request. If the client
authenticates successfully, and the user is a member of the required role,
then the request will be processed.

If a request cannot be processed, the Arbortext PE Request Manager will return an
error message in the HTTP response returned to the client. For every request
received, the Arbortext PE Request Manager will write a line to an audit file
explaining why the request was processed or not processed.

Configuring Arbortext Editor to Use Arbortext PE server 27

Note
While enabling the Arbortext Publishing Engine security framework provides
a layer of security against improper access to Arbortext Publishing Engine, it
should be considered as only one component of your site’s broader security
plan.

The security framework is enabled, disabled, and configured using entries in
e3config.xml. If the framework is disabled, none of the described request
processing takes place and the Arbortext PE Request Manager will operate as it
did in earlier versions of PE. When installing Arbortext Publishing Engine, the
user is prompted to enable the framework. If the user chooses to enable the
framework,e3config.xml will be updated accordingly. By default, the
framework is disabled.
The security framework makes use of the user ID and role support provided by
Apache Tomcat. Tomcat supports defining user IDs, securing each user ID by a
password, and mapping each user ID into one or more roles. The Arbortext
Publishing Engine security framework makes use of this support to determine
whether a restricted request should be processed or rejected.
The following sections detail how to enable and configure the framework, and
provide the requirements for configuring Apache Tomcat to work with the
Arbortext Publishing Engine security framework.

Note
You must also ensure that Tomcat is configured in line with current security
best practices.

Enabling the Security Framework
During installation of Arbortext Publishing Engine, you can choose to enable the
Arbortext Publishing Engine security framework. However, Apache Tomcat must
be properly configured before enabling the Arbortext Publishing Engine security
framework. If the security framework is enabled without Tomcat being already
properly configured, Arbortext Publishing Engine will not function properly.
Once Arbortext Publishing Engine is installed and the security framework and
Tomcat are properly configured, enable the security framework by opening
e3config.xml and setting the
com.arbortext.e3.enableSecurityFramework parameter to a value
of true as in the following example.

28 Configuration Guide for Arbortext Publishing Engine

<!-- This parameter specifies whether the security framework
is enabledor disabled. For compatibility with versions
of PE earlier than 7.0 M030, set it to "false".
CAUTION: if this value is set to "false", PE will allow
any user to submit any request. No authentication will
be performed.
-->
<Parameter name="com.arbortext.e3.enableSecurityFramework"
value="true"/>

Restart Arbortext Publishing Engine for the change to take effect.

Configuring Security Constraints
Security constraints are the mechanism used by the Arbortext PE Request
Manager to classify a request as disabled, unrestricted, or restricted. Each security
constraint consists of one or two parameters and a test set. When the Arbortext PE
Request Manager receives a request, it searches the list of security constraints
defined in e3config.xml until it finds a security constraint with a test set
matching the request. The search is in the order security constraints are configured
in e3config.xml. If no security constraint matches the request, the Arbortext
PE Request Manager rejects the request with an error message.
If a security constraint’s access parameter value is restricted, the
Arbortext PE Request Manager checks to see if the request is authenticated. If not,
the Arbortext PE Request Manager rejects the request using an HTTP result code
that states authentication is required. Most web browsers will prompt for an ID
and password and resubmit the request. If the password is legal for the ID, the
resubmitted request will be considered properly authenticated. If the request is
authenticated, it will have an associated user ID and the Arbortext PE Request
Manager will check to see whether the user ID has the role specified by the
security constraint's role parameter value. If the ID has the role specified, the
request is allowed to proceed. If the role does not, the Arbortext PE Request
Manager rejects the request with an error message.
Following is a sample security constraint configuration as delivered in
e3config.xml. Note that the security constraint named “admin-requests”
refers to the standalone test set “admin-tests” using the ref attribute, while
security constraint named “unrestricted-requests” has an in-context test set.
<!-- Security Constraints that determine who can submit which
requests. Note that users and roles are defined in web.xml
and in Tomcat's tomcat-users.xml configuration files.
-->
<SecurityConstraints>
<!-- The following requests must be submitted by an
authenticated user with the "pe-admin" role. -->
<SecurityConstraint id="admin-requests">
<Parameter name="access" value="restricted"/>
<Parameter name="role" value="pe-admin"/>

Configuring Arbortext Editor to Use Arbortext PE server 29

<TestSet ref="admin-tests"/>
</SecurityConstraint>
<!-- The following requests may be submitted by any user.
No authentication is required. -->
<SecurityConstraint id="unrestricted-requests">
<Parameter name="access" value="unrestricted"/>
<TestSet>
<Or>
<Test name="test-request-unrestricted"/>
<Test name="test-editor-queuing"/>
</Or>
</TestSet>
</SecurityConstraint>
</SecurityConstraints>

Creating security constraints can become fairly complex, and it is possible to code
an incomplete or erroneous security constraint in e3config.xml. For example,
a constraint might not have an access parameter, a constraint with an access
parameter value of restricted might not have a role parameter defined, or
the test set might reference a non-existent standalone test set. The Arbortext PE
Request Manager will check for such inconsistencies when it initializes and reads
e3config.xml. For each error it finds, it will make an entry in its error log. Be
aware of the following items:

• If a constraint's test set does not exist, or contains tests that are invalid, the
constraint will match all requests.

• If the Arbortext PE Request Manager detects any error, the security constraint
will behave as if it has an access parameter value of disabled. This will
result in any request that the security constraint handles being rejected, with
errors returned to the client and written to the servlet log.

Security constraints are described on the Arbortext Publishing Engine status
report. The entry for any inconsistent constraints will state that the constraints are
inconsistent.

Configuring Users and Roles

Configuring Roles on Arbortext Publishing Engine
At installation, e3config.xml references only one role: "pe-admin". You may
want to define more roles. (For example, restricting f=java requests to users
with the role "java-client" and f=acl requests to users with the role "acl-client".)

30 Configuration Guide for Arbortext Publishing Engine

To define additional roles, perform these steps:

1. Open e3config.xml and create security constraints with role parameters
specifying the new roles.

2. OpenPE_HOME\e3\e3\WEB-INF\web.xml and define each new role
created in e3config.xml. The content of web.xml is defined in the Java
Servlet Standard.

Following is an example of the role-related content of web.xml as installed:
<!-- These are the security roles referenced by e3config.xml.
If you need additional roles in e3config.xml, you must add
them here, too. Note that you must modify Tomcat's tomcat-
users.xml file to define user IDs which are members of these
roles.
-->
<security-role>
<role-name>
pe-admin
</role-name>
</security-role>
<security-role>
<role-name>
pe-user
</role-name>
</security-role>

(The role pe-user is not used in e3config.xml, but is included as an
example.)

Configuring Users and Roles in Apache Tomcat
You must configure Apache Tomcat with the user IDs and roles that Arbortext
Publishing Engine will be checking for. Configure roles and users in the file
conf\tomcat-users.xml, found in the top-level Tomcat installation
directory. Apache Tomcat is installed with a tomcat-users.xml that contains
only comments. No roles or users are defined by default.
Follow is an example of roles and users as they could be defined in tomcat-
users.xml:
<tomcat-users>
<role rolename="pe-admin"/>
<role rolename="pe-user"/>
<user username="ptc" password="ptcpassword" roles="pe-admin"/>
<user username="user" password="userpassword" roles="pe-user"/>
</tomcat-users>

Configuring Arbortext Editor to Use Arbortext PE server 31

Caution
Do not use the configuration as shown here in your production system.
Unauthorized people trying to access your Arbortext PE server may try these
published values.

You must also ensure that Tomcat is configured in line with current security
best practices.

This defines two roles and two user IDs, each of which is a member of one role.
Configuring with this example can be useful for testing. If you use a web browser
to access the Arbortext Publishing Engine Index Page and are asked for
authentication, authenticate as user "ptc" and you should be allowed access.
Authenticate instead as "user" and access should be disallowed.

Note
Defining users and roles in tomcat-users.xml is supported by Apache
Tomcat as installed. However, defining a site's users and roles in this manner
may not be the best solution for many environments. For example, you may
wish to have your users IDs and passwords be defined by your existing
Tomcat-based corporation security infrastructure. Refer to the documentation
supporting your existing system for information on its integration with other
systems.

Security Framework Logging
Each time the Arbortext PE Request Manager receives a request and evaluates it,
it writes an entry to an audit log file describing the request itself, the decision
reached `(allow to proceed, reject), and the reason for the decision. Following is
an example from an audit log file:
09:27:20 [http-apr-8080-exec-2] INFO GateLogEntry.auditLog -
uri='/e3/servlet/e3' secured='false' host='127.0.0.1'
addr='127.0.0.1' protocol='HTTP/1.1' scheme='http' method='GET'
query='f=status' sc='admin-requests' authReq='true'
alreadyAuth='false' triedAuth='true' rcAuth='false'
remoteUser=null' allowed='false' why='du' status='401'
reason='Response set up to request authentication.'
09:27:25 [http-apr-8080-exec-3] INFO GateLogEntry.auditLog -
uri='/e3/servlet/e3' secured='false' host='127.0.0.1'
addr='127.0.0.1' protocol='HTTP/1.1' scheme='http'
method='GET' query='f=status' sc='admin-requests'
authReq='true' alreadyAuth= 'false' triedAuth='true'

32 Configuration Guide for Arbortext Publishing Engine

rcAuth='true' remoteUser=ati' allowed='true' why='arm'
status='200' reason='user 'ati' has role 'pe-admin''
10:53:47 [http-apr-8080-exec-6] INFO GateLogEntry.auditLog -
uri='/e3/jsp/queuelist.jsp' secured='false' host='127.0.0.1'
addr='127.0.0.1' protocol='HTTP/1.1' scheme='http' method='GET'
query='null' sc='admin-requests' authReq='true'
alreadyAuth='false' triedAuth='true' rcAuth='false'
remoteUser=null' allowed='false' why='du' status='401'
reason='Response set up to request authentication.'
10:53:47 [http-apr-8080-exec-7] INFO GateLogEntry.auditLog -
uri='/e3/jsp/queuelist.jsp' secured='false' host='127.0.0.1'
addr='127.0.0.1' protocol='HTTP/1.1' scheme='http' method='GET'
query='null' sc='admin-requests' authReq='true'
alreadyAuth='false' triedAuth='true' rcAuth='true' remoteUser=ati'
allowed='true' why='arm' status='200'
reason='user 'ati' has role 'pe-admin''
10:53:52 [http-apr-8080-exec-5] INFO GateLogEntry.auditLog -
uri='/e3/servlet/e3' secured='false' host='127.0.0.1'
addr='127.0.0.1' protocol='HTTP/1.1' scheme='http' method='GET'
query='f=app&file=$aptpath/e3/e3/e3demo.3f'
sc='unrestricted-requests' authReq='false' alreadyAuth='false'
triedAuth='false' rcAuth='false' remoteUser='null' allowed='true'
why='aru' status='200'
reason='No authentication required for this request.'

Each entry starts with the time of the request, the thread ID, the message level,
and the issuing module. Each entry then reports the following items:

• uri—URI of the request as received by Arbortext Publishing Engine
• host—Name of the Arbortext PE server
• addr— IP address of the Arbortext PE server
• protocol—Request protocol
• scheme— Scheme of the URL (http or https)
• query— The request query string
• sc— ID of the security constraint that matched the request
• authReq— "true" if authentication was required. Otherwise, "false".
• alreadyAuth— "true" if the request was already authenticated
• triedAuth— "true" if the Arbortext PE Request Manager tried to

authenticate the request
• rcAuth— "true" or "false" as returned from the authentication attempt
• remoteUser—User ID of an authenticated request
• allowed— "true" if the security constraint allowed the request to proceed.

Otherwise, "false".
• why—Value to provide to PTC Technical Support when filing a case

Configuring Arbortext Editor to Use Arbortext PE server 33

• status—HTTP result code returned if access was denied
• reason—Description of why access was or was not allowed
Use the following approaches to ensure requests are being properly accepted and
rejected.

• Examine the audit log file.
• Open e3config.xml and set the debug flag to “true”. Send requests to

Arbortext Publishing Engine and examine the servlet log.

Customizing the Security Framework
When customizing the Arbortext Publishing Engine security framework, be aware
of the following items.

• By default the Arbortext Publishing Engine security framework divides all of
the requests that Arbortext Publishing Engine processes into 2 classes:
administrative and non-administrative. The former processes are restricted, the
latter are unrestricted. The framework can be made more precise by adding
additional security constraints that are more finely grained; matching
individual f=acl requests, f=java requests, an so on, rather than matching
all requests.

• Some requests that Arbortext Publishing Engine supports should not be made
restricted, because they are submitted by client programs that cannot process
requests for IDs and passwords. For Arbortext Publishing Engine composition
(in which Arbortext Editor submits publishing requests to the Arbortext PE
Request Manager, the following requests must remain unrestricted:

○ f=java class=com.arbortext.e3ci.Application

○ f=java class=com.arbortext.e3c.Application

○ f=qt-cancel

○ f=qt-discard

○ f=qt-list

○ f=qt-retrieve

The final four f=qt- functions are only required if Arbortext Editor is
submitting QUEUED transactions. If your site doesn't use queuing, you can
restrict these four functions and disable queuing by setting the parameter
com.arbortext.e3.queueCompositionOperations to never.

• For composition requests from the WVS Arbortext Publishing Engine Worker,
the following request must remain unrestricted:
f=java class=com.arbortext.ptc.windchill.Compose

34 Configuration Guide for Arbortext Publishing Engine

• For composition requests from the Windchill Service Information Manager
Worker (also called the SIS Worker), the following request must remain
unrestricted:
f=acl function=main::composeSisPE

• Be aware that, in addition to the controlling the security framework, the
e3config.xml file restricts the ACL, APP, Java, JavaScript, and VBScript
PE applications that can run.

• Besides configuring Arbortext Publishing Engine, several items can be
configured in Apache Tomcat by modifying web.xml or Tomcat's
servlet.xml.

In servlet.xml, you can configure the following items.

○ Enable HTTPS with or without client-side certificate authentication
○ Disable HTTP so that only HTTPS requests are accepted
○ Control how session IDs are managed

For more information, refer to the documentation provided for Tomcat by the
Apache Software Foundation.

In web.xml, you can configure the following items.

○ Session timeouts
○ The authentication method used
○ How cookies are used
○ Additional security roles

For more information, refer to the Java Servlet Standard.

Note
You must also ensure that Tomcat is configured in line with current
security best practices.

Configuring Arbortext Editor to Use Arbortext PE server 35

3
Understanding Transactions on

the Arbortext PE server
Transaction States ..39
Using the Transaction Archive ..40

A transaction is a request transmitted to Arbortext PE Request Manager by a
client, the response returned after processing, and any intermediate files or logs
generated in the process of producing the response. After receiving a request,
Arbortext PE Request Manager assigns a unique transaction ID, provides an
optional transaction name if supplied, and allocates an associated Transaction
Directory for the request. Arbortext Publishing Engine stores the data associated
with the request in that directory. As it processes the request and generates a
response, Arbortext Publishing Engine writes additional control information,
intermediate files, and the response itself to the transaction directory.
A transaction is considered complete when the process is finished and a result is
generated. The result of a complete transaction can be successfully published
output or instead, contain errors or warnings, as long as the transaction finished.
If the request is an immediate transaction, meaning it will be processed as soon as
possible, Arbortext Publishing Engine transmits the response to the waiting client
immediately after processing is complete. The immediate transaction will then be
deleted from the active transaction directory. However, you can configure the
transaction to be archived in the Transaction Archive directory afterward.
If the request is a queued transaction, meaning Arbortext Publishing Engine places
the transaction on a queue, it will wait in a queue until it can be processed
according to the queuing configuration criteria. The associated files are placed in
the active transaction directory to be available when the transaction is processed.
After the transaction is processed, the client can retrieve the resulting output from
the active transaction directory using the transaction ID. The transaction will be

37

deleted from the active transaction directory according to the configuration
settings for duration and retrieval by the client. Arbortext Editor users retrieve the
output using Tools ▶▶ Queued Transactions.
When a transaction is completed, expires, or is deleted from the active transaction
directory, the Arbortext PE Request Manager determines if the transaction meets
the criteria for archiving in a Transaction Archive directory afterward. A public
Transaction Archive can be visible to users from the Arbortext PE server index
page. If a particular transaction is considered secure, an alternate transaction
archive can be configured to store it, where it will be unavailable through the
index page. You can configure transaction archive parameters in
e3config.xml.
Arbortext PE Request Manager tracks the transaction ID so that it’s not reused,
but it has no knowledge about whether the transaction has been archived. The
parameters that control transaction handling and storage are described in The
Global Active Transaction Parameters on page 71 and the The Global Transaction
Archive Parameters on page 74. To learn about queuing, refer to Understanding
Queuing on the Arbortext PE server on page 41. Transactions can also be named,
supplied in the submitted query from an application or Arbortext Editor, or
configured using a global parameter. Refer to Queuing Query Parameters on page
46 and The Global Transaction Name Parameter on page 73 for more information.
You can track queued transactions that are waiting to be processed or are
completed. See Monitoring Queues on page 49 for more information.

38 Configuration Guide for Arbortext Publishing Engine

Transaction States
A transaction can exist in one of a number of distinct states during its lifecycle.

• initializing

The Arbortext PE server is receiving the request.
• waiting

The transaction is waiting to be allocated to an Arbortext PE sub-process (for
immediate requests).

• queued

The transaction was placed in a queue and is waiting to be executed by the
Queued Transaction Scheduler.

• processing

The transaction is being executed by an Arbortext PE sub-process.
• +

complete

The transaction is finished. A completed transaction can be completed
successfully or completed with errors. Note that if the results is an error report
rather than the expected document, the transaction is still considered complete.

A transaction can also expire while waiting for an Arbortext PE sub-process
allocation (if it’s an immediate transaction).

• cancelled

The transaction has been cancelled.
The transaction lifecycles are as follows:

• An immediate request transaction follows the lifecycle:

Initializing ⇒Waiting ⇒ Processing ⇒ Complete
• A queued request transaction follows the lifecycle:

Initializing ⇒ Queued ⇒ Processing ⇒ Complete or Cancelled
A completed transaction may be available in the Transaction Archive if it meets
the archiving criteria. Refer to Using the Transaction Archive on page 40 for more
information.

Transaction Notifiers
When a queued transaction changes from one state to another, it can inform a
configured notifier object of the change. A notifier object can be called by the
Arbortext PE Request Manager each time a queued transaction changes from one

Understanding Transactions on the Arbortext PE server 39

state to another. Notifiers are configured in e3config.xml. A notifier accepts
parameters that control its operation, as well as an optional TestSet to respond
only to certain types of transaction states. A notifier can be configured to take an
action based on a change in queued transaction state. These states can be specified
in the notifier parameter com.arbortext.e3.target-states, described
in Configuring a Notifier on page 97.

Using the Transaction Archive
The Transaction Archive can store all files used in processing a transaction after
it’s finished. The parameters that control the behavior for archiving transactions
are described in The Global Transaction Archive Parameters on page 74.
The Transaction Archive lists the transactions that have been processed and
subsequently archived on the Arbortext PE server. This report is available from
the Transaction Archive link on the Arbortext Publishing Engine index page. The
report displays the transactions from newest to oldest. Refer to Monitoring the
Transaction Archive on page 115 for information.

40 Configuration Guide for Arbortext Publishing Engine

4
Understanding Queuing on the

Arbortext PE server
How Queuing Works..42
Configuring a Queue Manager..43
Configuring Queues...44
The Queued Transaction Scheduler..45
Queuing Query Parameters ...46
Queuing for Arbortext Editor Clients..47
Monitoring Queues ..49

Client requests can be queued, and one or more Queue Managers and queues can
be set up to process transactions according to their configuration criteria. When
queuing is set up on the server, Arbortext PE Request Manager creates a
transaction ID for a request and then passes it to each Queue Manager. When a
Queue Manager accepts the transaction, it then offers the transaction to each
queue in turn. The queue that accepts the transaction makes the request available
to be processed during its active interval, and then it stores the result in the active
transaction directory according to its configuration. You can configure how long
transactions are kept in the active transaction directory. You can also configure
which transactions will be archived, as well as how long they will be kept.

41

How Queuing Works
Queuing stores transactions for processing at a later time. The queue’s
configuration criteria determine when its transactions will be processed. Because
parameters can interact with each other, it’s important to set up a test area while
you are configuring your queues.
A request to queue a transaction can come from a variety of clients, such as
Arbortext Editor users, custom applications, or web browsers. In each case, the
initial response from the Arbortext PE server is to notify the client that the request
has been queued and to return the assigned transaction ID. This initial notification
can be returned in HTML or XML form.
A Queue Manager is the queuing gatekeeper for incoming requests. A Queue
Manager examines a request and determines whether to offer it to queues, and
then offers it to any configured Arbortext Publishing Engine queues until one
accepts it or they all refuse it. When a queue accepts the request, the request
becomes a transaction which is stored in the queue until the Queued Transaction
Scheduler can execute it (see The Queued Transaction Scheduler on page 45 for
information).
The queue configuration determines how and when queued transactions are
available for the Queued Transaction Scheduler to process. Queued transactions
are made available during a queue's active time interval. When a transaction is
executed, the result is stored in the active transaction directory, and the transaction
request is deleted from the queue. Configuration criteria determine this active time
interval, order of transaction processing within the queue, simultaneous execution,
and so forth.
There is a distinction between a Queue Manager and queues. A Queue Manager
controls what gets queued. However, a queue controls how queued transactions
are handled, such as their order of processing, when the Queued Transaction
Scheduler is allowed to execute them, and other conditions. In distinguishing
between Queue Managers and Queues, custom code could determine which
requests get queued without having to worry about how queued transactions are
stored. Custom code could also control how queued transactions are handled
without having to worry about which transactions get queued.
Resource allocation and consumption is managed according to the following:

• An Arbortext PE sub-process pool will only allocate an Arbortext PE sub-
process to the Queued Transaction Scheduler if no immediate requests are
waiting for an Arbortext PE sub-process from that pool.

• The maxConcurrentQueuedTransactions global parameter can set
the number of transactions that are allowed to execute simultaneously overall.
See The Global Active Transaction Parameters on page 71 for information.

• The max-concurrent-transactions queue attribute (set for an
individual queue) can set the number of transactions that are allowed to

42 Configuration Guide for Arbortext Publishing Engine

execute simultaneously from that queue. See The max-concurrent-transactions
Attribute on page 96 for information.

• The maxConcurrentQueuedTransactions Arbortext PE sub-process
pool attribute can set the number of Arbortext PE sub-processes from that pool
that can be simultaneously allocated to the Queued Transaction Scheduler.
Setting this value to zero prohibits queued transactions, and reserves the entire
pool only for immediate transactions. See The
maxConcurrentQueuedTransactions Attribute on page 102.

When you are ready to set up queuing, the following sections explain the
configuration parameters you might use:

• Active transaction parameters described in The Global Active Transaction
Parameters on page 71.

• Transaction archive parameters described in The Global Transaction Archive
Parameters on page 74

• Global queuing parameters described in The Global Queuing Parameters on
page 76.

• Queue parameters described in Specifying Queues on page 93.
You can also set up Arbortext PE sub-process pools that are dedicated to taking
only immediate requests or only queued requests. Refer to Configuring Sub-
process Pools on page 100 for information.

Note
For backward compatibility, Arbortext PE Request Manager always handles
requests from older versions of Arbortext Editor as immediate (rather than
queued) requests by default (which requires no special configuration).

Configuring a Queue Manager
A Queue Manager screens requests to determine which requests are offered to the
queues, and then it sends responses to the client with information about the
queued transaction. Each time Arbortext PE Request Manager receives a request,
it determines whether it should pass the request to each configured Queue
Manager. Ordinarily, you only need one Queue Manager, but if you have more
than one, the request is offered to each, in the order they are defined in
e3config.xml. A Queue Manager declines a request by returning a null
response, in which case the Arbortext PE Request Manager continues to the next
defined Queue Manager. If a Queue Manager accepts the request, it returns an
HTTP Response to the Arbortext PE Request Manager, which returns the response
to the client.

Understanding Queuing on the Arbortext PE server 43

A Queue Manager can further filter a request using a TestSet parameter to
control which requests to examine and whether to offer the request to the queues.
See Specifying Test Sets on page 91 for information.
A Queue Manager is a Java object that must implement the com.arbortext.e3.
E3QueueManager interface. Each QueueManager can have an associated list of
parameters, as defined by an application that implements the com.arbortext.e3.
E3QueueManager interface.

The Arbortext Publishing Engine Queue Manager
One Arbortext QueueManager is defined in e3config.xml, with its class set to
com.arbortext.e3.QueueManager and ID default-qm. The Arbortext
Queue Manager examines each request looking for the HTTP query parameter
queue=yes, and takes one of the following actions:

• declines to queue a request if the request does not specify the parameter
queue=yes.

• returns an error if a request includes queue=yes but no queue can accept the
transaction.

• generates a response page for the client containing the transaction ID if
queue=yes and a queue accepts the transaction.

The response page will be in either HTML or XML format. The query parameter
response-format can specify xml or html. If response-format=xmlis
present, it will return an XML response. If it’s not specified, the default is HTML.

Configuring Queues
A queue is a container of transactions that are awaiting execution. Transactions
are placed on a queue by a Queue Manager evaluating incoming requests. A
Queue Manager offers the request to each queue in the order they are defined in
e3config.xml. After a queue accepts it, the transaction waits until the queue’s
configuration allows the Queued Transaction Scheduler to select it for execution
(see The Queued Transaction Scheduler on page 45). When execution is complete,
a queued transaction is deleted from its queue. The transaction is placed in the
active transaction directory for the client to retrieve.
Each queue can further filter a request using a TestSet parameter to accept or
decline a request based on the additional test set criteria. For example, it could
filter the request based on whether a Arbortext Editor client requests a PDF (see
Specifying Test Sets on page 91 and Queuing for Arbortext Editor Clients on page
47 for information).
A queue is a Java object that implements the interface com.arbortext.e3.E3Queue.
The sample implementation code for it is found in:

44 Configuration Guide for Arbortext Publishing Engine

PE_HOME\e3\samples\java\com\arbortext\e3\
ArbortextQueue.java

The Basic Arbortext Publishing Engine Queue
Arbortext Publishing Engine has one basic Queue implemented in
e3config.xml. It specifies the class
com.arbortext.e3.ArbortextQueue with the ID default-queue.
It accepts all requests and process them in the order they are received. You can use
this queue as a sample to follow for adding and configuring other queues. Queue
Managers process queues in the order that they are configured in the
e3config.xml file. Remember to give each queue a unique name.
The Arbortext queue supports the following basic features:

• Can examine a transaction and either accept it or decline
• Can be enabled or disabled, according to its configuration or manually
• Can be active or inactive, according to its configuration
• Can list the transactions queued within it and determine their priority
• Can allow a transaction to be moved up or down in the list
• Can allow a transaction to be deleted from the queue
• Can hold all transactions in the queue, even when it’s enabled and active
Consult Monitoring Queues on page 49 for information on queue administration.
See The Global Queuing Parameters on page 76 and Specifying Queues on page
93 for information on configuration parameters for queues.

The Queued Transaction Scheduler
The Queued Transaction Scheduler is a background process running under the
Arbortext PE Request Manager. The scheduler monitors both the queues and
Arbortext PE sub-process pools, trying to match queued, active transactions with
idle, available Arbortext PE sub-processes. When the Queued Transaction
Scheduler is searching for transactions to execute, it will process queues in the
order they are configured in e3config.xml. By default, it does not require that
all transactions on one queue start execution, or complete execution, before it
starts executing a transaction on a subsequent queue.
You can set a parameter that consists of a list of queue IDs that delay execution of
transactions on a particular queue until the transactions on all of the listed queues
are either inactive or empty of all transactions except those being held. SeeThe
previous-queues Attribute on page 96 for information.

Understanding Queuing on the Arbortext PE server 45

The global parameter
com.arbortext.e3.transactionArchive.IInterval controls the
interval for checking for queued transactions (see The Global Queuing Parameters
on page 76). It’s set to 10seconds by default, and you should not have to change
it.

Queuing Query Parameters
The Arbortext Publishing Engine implementation of a Queue Manager and
queuing supports the following HTTP query parameters. These parameters can be
used by client applications and web browsers to specify how to handle a queued
request.

Query Parameters for Queuing

Parameter Name Value Description
queue yes or no Specifies whether to queue a request. If

this parameter is omitted or set to no in the
request HTTP query, the transaction is
treated as an immediate request.
The default is no.

queue-
priority

1, 2, 3, 4, or 5 Specifies the priority of the request when
placing the transaction on a queue. 1 is the
highest and 5 is the lowest.
queue=yes must also be specified.
The default is 3

transaction-
name

descrip
tive-name

Specifies the descriptive text to be used for
a transaction name. The specification can
include the string $t, that will be replaced
with the unique transaction ID assigned on
the Arbortext PE server. For example,
transaction-name=Docs_$t

46 Configuration Guide for Arbortext Publishing Engine

Query Parameters for Queuing (continued)

Parameter Name Value Description
response-
format

xml or html Specifies the format of the response that
the Queue Manager will return to the client
submitting the request. The response will
contain the transaction ID.
queue=yes must also be specified.
The default is html.

notify-email a valid email
address

Specifies an email address to which a
notification can be sent when the
transaction completes. A notifier must be
set up on the Arbortext PE server.
Note that this parameter may be specified
with both immediate and queued requests.

If you implement a notifier, the notifier needs to receive a request-
parameter from the HTTP query set to the value of the query parameter name
that will be used to submit an email address. To use the built-in notify-email
query parameter, the request-parameter must be set to notify-email.
When the client submits a request, notify-email=
"user@mycompany.com" must also be part of the query request. See
Configuring a Notifier on page 97 for information about the sample package,
including an example for using it.

Queuing for Arbortext Editor Clients
Arbortext Editor users can be permitted to queue their publishing requests. They
can then retrieve the resulting output using Tools ▶▶ Queued Transactions.
Publishing requests sent from Arbortext Editor will include the ati-
operation-type parameter and the publishing type as its value. The values
for this parameter are used to determine what is displayed as the Operation on the
Queued Transaction List and Completed Transaction List web pages on the
Arbortext PE server, as well as the Transaction Archive web page. Refer to
Monitoring Queues on page 49 and Requesting the Queue Reports on page 118 for
more information.
Queuing can be set up for Arbortext Editor users by configuring its Publishing
Engine preferences or choosing queuing from a publishing dialog box. Refer to
Using Arbortext Publishing Engine for Publishing Documents help topic in the
Arbortext Help Center.
The ati-operation-type parameter can specify the following:

• appsave

Understanding Queuing on the Arbortext PE server 47

means Generate Application Save

• epub

means Publish For EPUB

• htmlfile

means Publish HTML

• htmlhelp

means Publish HTML Help

• import

means Import Document

• lnr

means Generate Line Numbers

• pdf

means Publish PDF

• rtf

means Export to RTF

• web

means Publish Web

• xsl

means Publish Using XSL

You can use the ati-operation-type parameter to configure a queue to
accept transactions of a specific publishing operation by creating a TestSet that
looks for the appropriate publishing types. See Specifying Test Sets on page 91 for
information.
When you submit queued transactions to the server, you can assign a descriptive
name to the transaction. Transactions are identified by their unique transaction ID,
so a queued transaction name allows you to provide a more readable description
for the published document. Given that you can specify any text for a queued
transaction name, it is not unique for finding a particular transaction or retrieving
specific results. You can also set the value for individual publishing requests in the
Transaction Name field in the File ▸ Publish dialog boxes when publishing a
document.

48 Configuration Guide for Arbortext Publishing Engine

Monitoring Queues
Several tools are available to monitor queues and their transactions. The Queue
List link on the Arbortext Publishing Engine index page (described in Monitoring
and Reporting Using a Web Browser on page 21) displays the list of configured
queues.
From the Queue List web page, you can get information about the queues:

• Info link displays the Queue page containing the queue’s configuration.
• Enabled reports the queue state.
• Action lets you toggle the enabled/disabled state.
• Active reports whether the queue is currently active.
• Queued Transactions displays the number of queued transactions. The numeral

link displays the Queued Transaction List page.
• Completed Transactions displays the number of completed transactions, The

numeral link displays the Completed Transaction List page.
For more information on queuing reports, refer to Requesting the Queue Reports
on page 118. For more information on transaction list reports, refer to The
Transaction List Page on page 119.

Understanding Queuing on the Arbortext PE server 49

5
Understanding Publishing Rules

Managing Publishing Rules..54
Deploying Publishing Rules..54

A publishing rule is a set of parameters that are applied to a document publishing
process. Some parameters are general and apply to all outputs, such as a stylesheet
or profiling. Other parameters are specific to the output type, such as HTML
encoding, PDF configuration file, or Web frameset. A publishing rule offers a way
to save favorite publishing choices to be reused. Multiple rules can be grouped
together into a rule set, and then used to publish a document multiple times to
multiple outputs.
Arbortext Editor users can create a publishing rule on the fly and save it to use
again when publishing the next time. A Arbortext Editor user defines a publishing
rule by choosing:

• Tools ▶▶ Administrative Tools ▶▶ Publishing Rules

• Create Rule from any of the dialog boxes that are launched from the choices
on the File ▶▶ Publish menu:

○ For Web

○ For HTML Help

○ For EPUB

○ HTML File

○ PDF File

○ RTF File

○ Using XSL

51

Note
Import/Export, Print Preview, and Print do not support publishing rules.

Arbortext Editor users can then choose File ▶▶ Publish ▶▶ Using Rule and select a
rule or rule set from the list to publish the document. Publishing rules are
documented in the online help for Arbortext Editor. Refer to Publishing Rules
Overview in Arbortext Help Center, under Authoring with Arbortext Editor ▶▶ Help ▶▶
Printing and Publishing ▶▶ Publishing Rules

Publishing rules can also be specified by client programs or by the built-in
Arbortext Publishing Engine f=convert function parameter. For more
information, refer to the Programmer's Guide to Arbortext Publishing Engine.
Publishing rules parameters are documented in the Customizer's Guide.
The publishing process in effect at the time the publishing rule is saved determines
the type of publishing rule. There are two types of publishing rules as determined
by the publishing mode the user is currently using:

• A local publishing rule is created if Arbortext Editor is using Arbortext
Styler or a local Print Composer option license for publishing. A local
publishing rule can be saved in the following locations:

○ publishingrules subdirectory of the application and custom
directories

○ publishingrules directory of the Arbortext Editor installation
○ the user’s home directory

local publishing rules can be selected for publishing only if Arbortext
Editor is using Arbortext Styler or a local Print Composer option license.

• A server publishing rule is created if Arbortext Editor is using Arbortext
Publishing Engine for publishing (Tools ▶▶ Preferences ▶▶ Publishing Engine,
the preference for Use Publishing Engine is checked). In this case, a server
rule is still saved locally (in the same possible locations as local publishing
rules).

server publishing rules can be selected for publishing only if Arbortext
Editor is using Arbortext Publishing Engine for publishing (meaning the Use
Publishing Engine preference is checked).

Arbortext Editor looks for publishing rule files in several locations, and offers the
user a list of publishing rules that are of the type supported by their current
publishing mode:

52 Configuration Guide for Arbortext Publishing Engine

• in a publishingrules subdirectory of application and custom
directories

• in the publishingrules directory of the Arbortext Editor installation
• in the Arbortext Editor user’s home directory
• on the Arbortext PE server, if Arbortext Editor is using Arbortext Publishing

Engine for publishing.
Arbortext Editor users can check the online help for more information on creating
publishing rules and rule sets.

Understanding Publishing Rules 53

Managing Publishing Rules
An administrator can manage a set of reusable publishing parameters by adopting
a strategy for creating, saving and deploying publishing rules. Because the type of
rule is determined by the publishing process in effect when the rule is created, you
need to be aware of the following:

• If the user is using Arbortext Styler or a local Print Composer option license
for publishing, the rule is saved as a local rule. A local rule is available to
the Arbortext Editor user only when publishing using one of these options.
The user can’t select a server publishing rule.

• If the user sends publishing requests to Arbortext Publishing Engine (the
Publishing Engine preference for Use Publishing Engine is checked), the rule is
saved as a server rule. A server rule is still saved locally. A server rule
is available to the Arbortext Editor user only when publishing with Arbortext
Publishing Engine. The user can’t select a local publishing rule.

A Arbortext Editor client can display a server publishing rule list consisting of
some combination of server rules that were created and saved locally combined
with server rules deployed on the Arbortext PE server. The next section
describes deployment strategies.
The Publishing Configuration report contains information about publishing rule
files. It includes only those publishing rule files that are free of errors. If a rule file
is incorrectly formed, has the same unique ID as another rule file, or some other
error, that information will be noted in the publishing configuration log, but it will
not be included in the Publishing Configuration report. Rule files with errors are
not presented as choices to Arbortext Editor clients. Refer to Publishing
Configuration on page 26 for information.
For information on customization of Publishing Rules using advanced parameters,
consult Customizing Publishing Rules in the Customizer's Guide.

Deploying Publishing Rules
A publishing rule or rule set intended for deployment on the Arbortext PE server
must be created using Arbortext Publishing Engine Interactive. This means that
when the rule file is saved, its type will be local on the server, but it will be
offered to Arbortext Editor clients and other client applications as a server rule.
Publishing rules can be put in the server’s custom\publishingrules
directory or a custom\publishingrules directory defined by the
APTCUSTOM environment variable.
An administrator can also deploy local publishing rules for multiple Arbortext
Editor users who are not using Arbortext Publishing Engine (meaning they have
Arbortext Styler or a local Print Composer option license). The rule files can be

54 Configuration Guide for Arbortext Publishing Engine

made available from a common custom\publishingrules directory
accessible to their local machines, where the location is most likely defined by
setting the path in the user’s APTCUSTOM environment variable.

Understanding Publishing Rules 55

6
Windows Configuration

Configuring a User Account on Windows...58
Using the Arbortext Publishing Engine Configuration Program60
Integrating Arbortext Publishing Engine with Apache Tomcat ..66

This chapter provides information on setting up a user account for Arbortext
Publishing Engine, optional configuration performed by the Arbortext Publishing
Engine Configuration program, and integrating Arbortext Publishing Engine with
Tomcat.

57

Configuring a User Account on Windows
By default, Arbortext PE sub-processes run under a special user account called
SYSTEM that has restricted access. You may want to configure Arbortext
Publishing Engine to run under a specified user account.
The default Arbortext Publishing Engine user account doesn't have network
privileges, so it can't access any network resources such as a file shared on another
host or a remote printer. For example, if you were to write a custom Arbortext
Publishing Engine application that sends a print job to a network printer, you
would need to configure Arbortext Publishing Engine to run under a specified user
account.
If Arbortext Publishing Engine needs to specify a file on a network using a UNC
path (uniform naming convention, which takes the form \\servername\
sharedir), the default Arbortext Publishing Engine SYSTEM account wouldn't
be able to access it. However, a user account can be configured to access files
specified by a UNC if the user account has the proper permissions and the UNC
file system shares the directories with the Arbortext Publishing Engine user
account.
If Arbortext Publishing Engine is configured to run as a specified user account,
you must log in using that account if you want to run Arbortext Publishing Engine
Interactive. When Arbortext Publishing Engine is configured this way, Windows
doesn't allow Arbortext Publishing Engine Interactive to be run under a different
user account for security reasons. However, any Administrator level user account
can run the Arbortext Publishing Engine Configuration program.
When you are configuring Arbortext Publishing Engine to run as a specific user
account on Windows, the Arbortext Publishing Engine user account:

• can be set up to access network resources, if needed.
• should have internet access as it handles HTTP traffic.
• should have an interactive login so that someone can log in to perform testing

and troubleshooting.
• should have a password that doesn't expire so that Arbortext Publishing

Engine won't suddenly terminate if the account is locked without warning. Of
course, passwords should still be changed regularly.

• should have a default printer selected in the Windows Printers window. The
default printer must be a PostScript printer if you will be producing PostScript.

• does not need to have local administrator privileges on the server that it's
installed on.

58 Configuration Guide for Arbortext Publishing Engine

To set up Arbortext Publishing Engine as a specific user account:
You'll need to set permissions and restrictions for a specified Arbortext Publishing
Engine user account. The system administrator familiar with setting up user
accounts, especially your site's security policies and user privileges, may need to
perform the following steps.

Note
Your site may have security policies in place that require an IT administrator
familiar with those policies to perform these steps.

1. You should be logged in with Administrator privileges on the host machine
where Arbortext Publishing Engine is installed.

2. In Administrative Tools, open Computer Management. In the Computer
Management window, find the Local Users and Groups folder and
display the Users folder under it. From the Action menu of the Computer
Management window, choose New User, In the New User window, create a new
account and its password. Set the properties you want for the password and
click Create.

3. In Administrative Tools, open Local Security Policy. In the Security Settings
window, display the Local Policies folder under it. Click the User
Rights Assignment subdirectory to display a list of possible settings.
Find Log on as a batch job in the Policy list and double click on it.

4. In the Log on as a batch job Properties dialog box, click the Add User or Group
button. In the Select Users or Groups dialog box, be sure the object type
includes Users and the Location is the local server machine. Enter the
Arbortext Publishing Engine user account name in the object name text box.
Click the OK button to return to Log on as a batch job Properties. Click OK to
save changes and close the dialog box. Set any other privileges you want for
this account.

5. In Administrative Tools, open Component Services and navigate to Computers
▶▶ My Computer ▶▶ DCOM Config. Find and display the Properties for the
Arbortext Editor entry by right clicking on the entry.

6. In the Arbortext Editor Properties dialog box, click the Identity tab. Choose the
This user option. Fill in the User and Password fields for the Arbortext
Publishing Engine account you created. You need to specify the domain or
computer name as well as the user name; enter the account name and then
click the Browse button to specify the User information.

7. Click OK to accept the changes to Arbortext Editor Properties. Click OK again
to exit.

Windows Configuration 59

8. You may need to check that the Arbortext Publishing Engine user account has
permission to write to some specific directories. For example, you will want to
be sure it can write to temporary or log directories of the Windows system and
other applications, such as the servlet container directories that store log files.
For instance, you would want to check permissions for the following:

• The temporary directory set by the System's environment variable.
• Java log and temporary directories for the servlet host application, for

example, Tomcat’s logs and temp directories. On the Arbortext
Publishing Engine index page, click the Java Properties link to retrieve the
JVM System Properies page. The java.io.tmpdir property value will display
the location.

• The C:\ProgramData directory.
• Check any file path specified in the e3config.xml file, such as the

transaction archive directory.
Right click on the appropriate directory and choose Properties. Choose
Security and check if the Arbortext Publishing Engine user account is in the
list and has Full Control. If not, you will need to add the Arbortext Publishing
Engine user account and give it Full Control for the folder.

9. Restart the system. The next time Arbortext Publishing Engine runs, it will run
as the Arbortext Publishing Engine user account you created.

Verifying the Specified User Account
You can verify that Arbortext Publishing Engine is running under the Arbortext
Publishing Engine user account. The Arbortext Diagnostics utility is a program
available on Windows that displays tracing information. You can launch it from
the Arbortext Diagnostics shortcut in your PTC program group. The Arbortext
Diagnostics window contains the Module List tab that displays the Arbortext PE
sub-process information and the Trace Log tab that displays tracing output. The
Module List panel should display the Arbortext Publishing Engine user account
name instead of SYSTEM.

Using the Arbortext Publishing Engine
Configuration Program
The Arbortext Publishing Engine Configuration program lets you choose a default
printer, integrate Arbortext Publishing Engine with Tomcat, and generate a
diagnostic report. You can click a button that opens the e3config.xml file to
edit other Arbortext Publishing Engine configuration settings.

60 Configuration Guide for Arbortext Publishing Engine

The Apply button appearing on each tab of Arbortext Publishing Engine
Configuration applies your changes as specified. If you're using the Tomcat servlet
container, it automatically stops and restarts Tomcat for the changes to take effect.
You can continue to make further configuration changes without closing and
reopening the Arbortext Publishing Engine Configuration program each time.
Each tab in the Arbortext Publishing Engine Configuration has its own Item Help
that explains the values you can set in each of the fields. Select a field to display
its Item Help.

Note
Do not use a mapped or subst drive to browse for your Arbortext Publishing
Engine installation to run Arbortext Publishing Engine Configuration. When
Arbortext Publishing Engine runs as the SYSTEM account, a mapped drive
will not be available to it, which then causes problems for the COM server.

Setup Tab
The Setup tab provides some basic information about the setup of Arbortext
Publishing Engine.

Windows Configuration 61

• The location of the Arbortext Publishing Engine web.xml is displayed in the
Deployment Descriptor field.

• Edit Configuration launches Arbortext Publishing Engine Interactive and
automatically opens the e3config.xml file containing the Arbortext
Publishing Engine configuration settings.

• Service Account displays the Identity of the Arbortext Publishing Engine. If
the value in this field is Launching User, then the Arbortext PE sub-
processes run under the servlet container account. Most servlet containers run
as a Windows service under the Windows SYSTEM account. For more
information about setting up the Arbortext Publishing Engine as a specific
user account, refer to Installation Guide for Arbortext Publishing Engine.

• Service Account group displays a Default Printer for the Arbortext Publishing
Engine user account. If you use Arbortext Publishing Engine to produce
PostScript output, you need to choose a PostScript printer from the list. You
don’t need to choose a PostScript printer for producing PDF.

62 Configuration Guide for Arbortext Publishing Engine

If the Arbortext Publishing Engine is running as a specified user, you need to
choose the default printer for the Arbortext Publishing Engine user account in
the Windows Printers window.

Note
If a print request from Arbortext Editor uses PTC ALD, a PDF will be
returned to the user for printing.

To set the default printer for a specified Arbortext Publishing Engine user
account, you must login under this account and set the default printer as you
would for any Windows account. However, the Arbortext Publishing Engine
Configuration doesn't display the default printer even after you have manually
set it. The (must set manually) message persists in the Default Printer field. You
can try a test using PostScript output to confirm the printer is recognized by
the Arbortext Publishing Engine.

Advanced Tab
The Advanced tab displays several group boxes for managing Arbortext
Publishing Engine advanced configuration settings.

Windows Configuration 63

• The Advanced group box settings control Arbortext Publishing Engine
behavior in managing aspects of its environment.

○ The Hidden Desktop Heap Size sets the system heap size for the
Arbortext PE sub-processes. The Arbortext Publishing Engine
automatically suggests an appropriate value based on the number of
Arbortext PE sub-processes specified in the Setup tab.

○ Hard Error Setting determines whether the hard error popup window
is displayed when an application fails. During the Arbortext Publishing
Engine development phase at your site, you should keep this setting at the
default Display all hard errors for troubleshooting purposes. In a
production environment, this setting should be changed to Suppress
all hard errors so that the Arbortext PE Request Manager can
automatically restart an Arbortext PE sub-process without waiting for a
user at the keyboard to dismiss the hard error popup window. All errors are

64 Configuration Guide for Arbortext Publishing Engine

reported to the Windows Event log whether they are displayed or
suppressed, so errors can be checked there.

• The Generate Diagnostic Information button produces a detailed report about
Arbortext Publishing Engine and its environment to assist with
troubleshooting. You should include the diagnostic report with any request for
technical product support from Arbortext.

• The COM Registration box verifies the Arbortext PE sub-process binary that
registered with the COM server on the system. This information might be
useful for troubleshooting.

Tomcat Tab

The Tomcat tab has a Tomcat group box which displays the Tomcat installation
path, whether SOAP is enabled, the HTTP port Tomcat monitors, and whether the
Tomcat service is stopped or started. You can add or remove the automatic
integration between this installation of Arbortext Publishing Engine and Tomcat.
When you click Add, the Arbortext Publishing Engine Configuration program will
integrate with Tomcat. You can enable SOAP at the same time by choosing
Enable. For information on using a SOAP client with Arbortext Publishing
Engine, consult the Programmer's Guide to Arbortext Publishing Engine.

Windows Configuration 65

Caution
There are potential security issues with SOAP and the Axis2 libraries. PTC
recommends that you use HTTPS if you use SOAP. For more information, see
Arbortext Publishing Engine Security Framework in the Configuration Guide
for Arbortext Publishing Engine.

The Launch PE index page button tests Arbortext Publishing Engine configuration
by loading the Arbortext Publishing Engine index page through the Tomcat servlet
container.
Consult Integrating Arbortext Publishing Engine with Apache Tomcat on page 66
for more information on performing the integration.

Note
• Tomcat has an AJP connector defined in server.xml which monitors port

8009. However, if port 8009 is already in use, Tomcat doesn't address the
conflict. Arbortext Publishing Engine Configuration configures isapi_
redirect.properties to use port 8009 to integrate with Tomcat.

About Tab
The About tab provides the version and copyright information for the Arbortext
Publishing Engine Configuration program.

Integrating Arbortext Publishing Engine
with Apache Tomcat
If the Arbortext Publishing Engine Configuration program detects Tomcat on the
system, it prompts you during installation to integrate Tomcat with Arbortext
Publishing Engine. Integrating with Tomcat is required for Arbortext Publishing
Engine. If you choose to bypass these prompts, you can still perform these
integrations later.

Note
You must ensure that Tomcat is configured in line with current security best
practices.

66 Configuration Guide for Arbortext Publishing Engine

To integrate Arbortext Publishing Engine with Tomcat
1. If it's not already open, start the Arbortext Publishing Engine Configuration

program. The Arbortext Publishing Engine Configuration program is available
from its Arbortext Publishing Engine program group shortcut. Choose the
Tomcat tab.

2. In the Tomcat group box, look at the value in the PE Integration field. If the
value is none, click the Add button to add Arbortext Publishing Engine
information to the Tomcat configuration file TOMCAT_HOME\conf\
server.xml. If the field value is other, you may need to investigate
another Arbortext Publishing Engine installation before you can proceed. If
the value is other, choosing Add replaces the other Arbortext Publishing
Engine integration with this new one.

3. If the value in the Service Status field is stopped, you can click the Restart
button. You don't need to Stop the service before making changes; the
Arbortext Publishing Engine Configuration program will stop and restart the
Tomcat service when you choose OK to exit.

4. Click the Launch PE index page button to open the Arbortext Publishing
Engine index page. The Arbortext Publishing Engine page has links for getting
information, converting a demo document to a variety of output formats,
running test applications, and obtaining the list of Arbortext Publishing Engine
web services. If the Arbortext Publishing Engine index page appears in a web
browser, Tomcat is running, and it has been successfully configured to find the
Arbortext PE Request Manager.

5. On the Arbortext Publishing Engine index page, you can click on the Status
link to test whether Arbortext PE Request Manager can return a status report.
If a status report is returned, then Tomcat is successfully running the Arbortext
PE Request Manager.

6. To test that Arbortext Publishing Engine can handle a request to do work, click
on one of the links under Test Arbortext Publishing Engine. If information or
the requested converted file is returned, then Arbortext Publishing Engine is
working properly.

Windows Configuration 67

7
Setting Configuration Parameters

The e3config.xml Configuration File ..71
Arbortext Publishing Engine Global Parameters...71
Specifying a Request Handler ..83
Specifying Request Selectors...89
Specifying Test Sets ..91
Specifying Caches...92
Specifying Queues ..93
Configuring Sub-process Pools .. 100
Specifying the AllowedFunctions List .. 107
Specifying Initializers ... 109

The configuration file e3config.xml contains parameter definitions used as
configuration settings for Arbortext Publishing Engine. The default values are
adequate for most sites to begin development and testing. As you build your
Arbortext Publishing Engine production system, you'll need to review and
possibly enable or change parameter or attribute values in this file.
The Arbortext Publishing Engine Java, JavaScript, VBScript, and ACL sample
programs retrieve the Arbortext Publishing Engine configuration parameters and
values through the Arbortext Publishing Engine HTML index page. These sample
programs are explained in Monitoring and Reporting Using a Web Browser on
page 21.
You can also retrieve these configuration parameters from your custom
applications:

• For Java or JavaScript applications, call the E3ApplicationConfig interface.
• For VBScript or ACL applications, call the PEAppConfig package.
Consult the Programmer's Guide to Arbortext Publishing Engine for information
on using the Arbortext Publishing Engine interfaces and packages when writing
custom applications.

69

To become more familiar with the specific parameters and attributes used in this
file, refer to the remaining sections in this chapter. After you've reviewed their
explanations, you can proceed to edit the file to make changes appropriate for
your site.

70 Configuration Guide for Arbortext Publishing Engine

The e3config.xml Configuration File
You will need to review and edit the e3config.xml configuration file, which is
an XML file that Arbortext Publishing Engine reads each time it starts.
If you are interested in reviewing the document type and DCF files for
e3config.xml, they're located in PE_HOME\doctypes\e3config.

Editing the e3config.xml file
1. Open the file in Arbortext Publishing Engine Interactive on the server where

you've installed Arbortext Publishing Engine:You can start Arbortext
Publishing Engine Interactive from its shortcut on your Arbortext program
group.

2. Choose File ▶▶ Open and locate the file:
PE_HOME\e3\e3\WEB-INF\e3config.xml

3. Customize existing parameters and attributes or add new ones as needed. You
will need to be familiar with your site's Arbortext Publishing Engine
implementation and any custom applications.

4. You can choose a parameter element and then choose Edit ▶▶ Modify Attributes
to display the Modify Attributes dialog box.You’ll supply a parameter name
and a parameter value.

5. Choose File ▶▶ Save to save your changes.

Arbortext Publishing Engine Global
Parameters
There are several global parameters that can be configured at the beginning of the
e3config.xml configuration file. These parameters set temporary directory
locations, debugging levels, transaction behavior, archiving behavior, and queuing
behavior. These global parameters are explained in the following sections.

The Global Active Transaction Parameters
The following global parameters manage active transaction storage before, during,
and after processing.

• com.arbortext.e3.transactionDirectory

Specifies the directory where Arbortext Publishing Engine puts transaction
subdirectories. For every request, Arbortext Publishing Engine will create a
subdirectory in this directory and store intermediate files in it, as well as build
the response to the request. The default directory is explicitly set to
activeTransactions. Its location is in the directory specified by

Setting Configuration Parameters 71

com.arbortext.e3.tempFileDirectory, described in The Global
com.arbortext.e3.tempFileDirectory Parameter on page 82.

If your implementation will process a large number or size of transactions, you
should put the directory in a location that is not in the server’s temporary
storage area. You should also periodically monitor the completed transactions
directory to assess the disk space being used.

• com.arbortext.e3.transaction.maxCompletedTransac-
tionAge

This parameter specifies the maximum time, in hours, that a transaction
directory will be kept in the Active Transaction Directory. This parameter
applies only to queued transactions that have been completed but the results
have not been retrieved. The default is explicitly set to 168 hours (or one
week).

When Arbortext Publishing Engine finishes processing a queued transaction, it
notes the time. When the interval specified by this parameter has elapsed,
Arbortext Publishing Engine may copy the transaction directory into the
transaction archive (according to the setting of the
com.arbortext.e3.transactionArchive.selector parameter).
Either way, the transaction directory is then deleted.

Queued transaction results that have been retrieved are deleted according to
the interval specified by maxRetrievedTransactionAge.

• com.arbortext.e3.transaction.maxRetrievedTransac-
tionAge

This parameter specifies the maximum time, in hours, that a transaction
directory will be kept in the Active Transaction Directory. This parameter
applies only to queued transactions that have been completed, and the results
have been retrieved at least once. The default is explicitly set to 48 hours (two
days).

After Arbortext Publishing Engine finishes processing a queued transaction,
it’s available for retrieval. When Arbortext Publishing Engine receives and
processes the first request to retrieve a queued transaction result, it notes the
time. When the interval specified by this parameter has elapsed, Arbortext
Publishing Engine may copy the transaction directory into the transaction
archive (according to the
com.arbortext.e3.transactionArchive.selector parameter).
Either way, the transaction directory is then deleted.

Queued transaction results that have not been retrieved are deleted according
to the interval specified by maxCompletedTransactionAge.

72 Configuration Guide for Arbortext Publishing Engine

Note
If a transaction directory was created for an immediate (non-queued) request,
Arbortext Publishing Engine will copy the transaction directory into the
transaction archive if appropriate and delete it from the active transaction
directory immediately upon completion.

The Global Transaction Name Parameter
The com.arbortext.e3.defaultTransactionName parameter
specifies the descriptive name to use for all incoming requests that do not already
specify a transaction name. The specification can include the string $t, to specify
the unique transaction ID assigned on the Arbortext PE server as part of the
transaction name. For example:
<Parameter name="com.arbortext.e3.defaultTransactionName"
value="unnamed-$t" />

The default value is explicitly set to tran-$t.
Arbortext Editor clients can specify a transaction name using the Queued
Transaction Names dialog box (available from Publishing Engine category of
Tools ▶▶ Preferences) or the Transaction Name field on the File ▶▶ Publish set of
dialog boxes.
Applications can specify the query parameter transaction-name. Refer to
Queuing Query Parameters on page 46 for information.

The Arbortext Publishing Engine Security
Framework Parameter
The com.arbortext.e3.enableSecurityFramework parameter
specifies whether the Arbortext Publishing Engine security framework is enabled
or disabled. For example:
<Parameter name="com.arbortext.e3.enableSecurityFramework"
value="true" />

The default value is false.
The security framework allows every request sent to the Arbortext PE Request
Manager to be classified as "disabled", "unrestricted", or "restricted" based on
users and groups defined in Apache Tomcat. Refer to Arbortext Publishing Engine
Security Framework on page 27 for framework capabilities and details on
configuring the framework. If the framework is disabled, none of the described
request processing takes place and the Arbortext PE Request Manager not
authenticate requests.

Setting Configuration Parameters 73

Note
While enabling the Arbortext Publishing Engine security framework provides
a layer of security against improper access to Arbortext Publishing Engine, it
should be considered as only one component of your site’s broader security
plan.

The Global Transaction Archive Parameters
The following global parameters manage the transaction archive capability,
described in Monitoring the Transaction Archive on page 115. Use Transaction
Archive link on the Arbortext Publishing Engine index page to view the archived
transactions list, described in Monitoring and Reporting Using a Web Browser on
page 21, .

• com.arbortext.e3.transactionArchiveDirectory

Specifies the directory where archive entries are stored. The default is
explicitly set to the subdirectory transactionArchive, under the
temporary directory specified by
com.arbortext.e3.tempFileDirectory, described in The Global
com.arbortext.e3.tempFileDirectory Parameter on page 82.

If your implementation will archive a large number or size of transactions, you
should put the directory is a location that is not in the server’s temporary
storage area. You should also periodically monitor the transactions held in the
archive; see Monitoring the Transaction Archive on page 115.

• com.arbortext.e3.alternateTransactionArchiveDirecto-
ry

Specifies the alternate directory where secure archive entries are stored. The
default is explicitly set to the subdirectory
alternateTransactionArchive. You can supply an absolute path to
the location, or a relative path under the temporary directory specified by
com.arbortext.e3.tempFileDirectory.

• com.arbortext.e3.transactionArchive.enable

Specifies whether the transaction archive is enabled. By default, it’s set to
true. Specify false to turn off archiving transactions.

If it is set to true, then a transaction can be archived, as determined by the
com.arbortext.e3.transactionArchive.selector (set to any
valid value other than none). The values of the test-archive-

74 Configuration Guide for Arbortext Publishing Engine

transaction or test-alternate-transaction-archivetest sets
determine where the transaction should be archived.

• com.arbortext.e3.transactionArchive.clearOnStart

Specifies whether to clear the transaction archive when Arbortext Publishing
Engine starts.

○ false (explicitly set as the default) keeps archive entries when Arbortext
Publishing Engine starts.

Keeping archived entries means the archive keeps all its entries each time
Arbortext Publishing Engine starts.

○ true clears archive entries each time Arbortext Publishing Engine starts.
• com.arbortext.e3.transactionArchive.maxAge

Specifies the maximum time in hours that an entry will remain in an archive
before it is automatically deleted. A value of 0 means never delete archive
entries. The default is explicitly set to 48 hours.

• com.arbortext.e3.transactionArchive.maxSize

Specifies the maximum size in megabytes that a transaction archive may
occupy on disk. If an entry causes the archive to exceed this size, entries will
be deleted starting with oldest first, until the archive is less than the maximum
size. A value of 0 means no deletions will be performed based upon maximum
size. The default is explicitly set to 500.

• com.arbortext.e3.transactionArchive.selector

Specifies the filters for determining which requests are saved in the archive, as
determined by the test sets for test-archive-transaction and test-
alternate-transaction-archive (see Specifying Test Sets on page
91 for more information).

○ none saves no entries.
○ error saves error entries, including requests with a response other than

200, requests which cause an Arbortext PE sub-process to terminate
abnormally, and requests for which transmission of the response to the
client fails.

○ log (explicitly set as the default) saves error entries, as well as requests
with log entries or intermediate files.

○ all saves all requests, including successful requests.
• com.arbortext.e3.transactionArchive.testSet

Specifies the name of the test set that identifies transactions that should be
archived. This parameter is set to archive-transaction-test, the test
set ID as provided by default in e3config.xml (see Specifying Test Sets on

Setting Configuration Parameters 75

page 91 for more information). The
com.arbortext.e3.transactionArchive.selector parameter
determines whether archiving is required.

This parameter archives transactions even if
com.arbortext.e3.transactionArchive.enable is set to
false.

• com.arbortext.e3.transactionArchive.alternateLoca-
tion.testSet

Specifies the name of the test set that identifies transactions that should be
archived in an alternate location. This parameter is set to archive-
transaction-to-alternate-location-test, the test set ID as
provided by default in e3config.xml (see Specifying Test Sets on page 91
for more information). The
com.arbortext.e3.transactionArchive.selector parameter
determines whether archiving is required.

This parameter archives transactions even if
com.arbortext.e3.transactionArchive.enable is set to
false.

• com.arbortext.e3.transactionArchive.threadInterval

Specifies the number of seconds between execution of the transaction archive
management thread. The thread checks for transactions completed since the
last run, as well as for transactions older that the interval specified by
com.arbortext.e3.transactionArchive.maxAge. The default is
explicitly set to 10.

The thread will also check for completed transactions that should be archived,
as well as archived completed requests that should be deleted, as configured
by the maxCompletedTransactionAge and
maxRetrievedTransactionAge parameters.

The Global Queuing Parameters
The following global parameters set the server queuing policies that will be used
by Arbortext Publishing Engine clients.

• com.arbortext.e3.maxConcurrentQueuedTransactions

Specifies the maximum number of queued transactions that may run
concurrently.

The default is set to -1, which means there is no limit, and the Queued
Transaction Scheduler will execute as many queued transactions as it can
match with idle Arbortext PE sub-processes.

76 Configuration Guide for Arbortext Publishing Engine

You can set to 0 to prevent any queued transactions from executing.
Transactions may still be queued, but they will never be executed.

• com.arbortext.e3.scheduler.threadInterval

Specifies the number of seconds between execution of the Queued Transaction
Scheduler. The thread checks for queued transactions ready for processing and
idle Arbortext PE sub-processes, subject to the value specified for the global
maxConcurrentQueuedTransactions parameter and the
maxConcurrentQueuedTransactions parameter specified for each
Arbortext PE sub-process pool. The default is 10 seconds. You should not
need to change this value.

Be sure you refer to Specifying Queues on page 93 for more information on the
queue configuration parameters.

Global Queuing Parameters for Arbortext Editor Clients
In addition, the following parameters apply specifically to a site where Arbortext
Editor clients are using Arbortext PE server to fulfill publishing requests. These
parameters control whether the Arbortext Editor client is allowed to queue a
request and to, optionally, submit information to receive notification about the
completed transaction.
The settings for these parameters are included in the Publishing Configuration
report that is sent to Arbortext Editor clients using Arbortext Publishing Engine
for publishing. The Publishing Configuration document establishes the queuing
policies for Arbortext Editor clients. Refer to Requesting a Publishing
Configuration Report on page 121 for information on looking at this report on the
server.

• com.arbortext.e3.queueCompositionOperations

Specifies whether Arbortext Editor clients are allowed to submit queued
publishing requests. The possible values are always, optional, and
never. By default, this value is explicitly set to optional, which allows
the Arbortext Editor user to choose whether to queue a request. The value
never means Arbortext Editor clients will never be permitted to queue a
request..

Note
For backward compatibility, Arbortext PE Request Manager always fulfills
requests from 5.3 and older versions of Arbortext Editor immediately by
default (which requires no special configuration).

• com.arbortext.e3.compositionIdentificationPolicy

Setting Configuration Parameters 77

Specifies a valid HTTP query parameter name used to identify the user
making a publishing request. The default is explicitly set to header.

When set to header, Arbortext Editor publishing requests set the HTTP
From header as the query parameter name that will identify the user. The
value is then set to the user ID under which Arbortext Editor is running
(displayed in Identification in Tools ▶▶ Preferences ▶▶ Publishing Engine,
returned by the ACL username function).

If this parameter is set to another value, then Arbortext Editor will treat that as
the name of the HTTP query parameter. The value of it is then set to the value
of the ACL set pecompositionid command option on the Arbortext
Editor client. The pecompositionid option is available from Arbortext
Editor Tools ▶▶ Preferences ▶▶ Advanced.

Note
The
com.arbortext.e3.compositionIdentificationPolicy
parameter can be used for notifications on transactions that have not been
queued, though its common use is to notify clients about queued
transactions.

• com.arbortext.e3.compositionEmailPolicy

Specifies an HTTP query parameter name that will be used to provide an
email address to Arbortext Publishing Engine. This is the parameter that will
specify the email address where the Arbortext PE server will send an email
notification, if a notifier is configured. The default value is explicitly set to
queue-email.

Arbortext Editor clients will treat the value of this parameter as the name of
the HTTP query parameter that specifies the user’s email address. The value of
the parameter is then set to the user’s email address as displayed in Notification
Email Address (Tools ▶▶ Preferences ▶▶ Publishing Engine).

The Arbortext Editor user specifies the email address using Notification Email
Address or the ACL set pecompositionemail command option
(available from Arbortext Editor Tools ▶▶ Preferences ▶▶ Advanced).

Refer to Configuring a Notifier on page 97 for information on setting up an
email notifier.

78 Configuration Guide for Arbortext Publishing Engine

Note
The com.arbortext.e3.compositionEmailPolicy parameter
can be used for notifications on transactions that have not been queued,
though its common use is to notify clients about queued transactions.

The Global Debugging Parameters
The debug parameter logs information about transactions between clients and the
server. However, you can set debug to include broader log levels. These
parameters are applied after the PE_HOME\e3\e3\WEB-INF\classes\
e3log4j.properties file is processed.

• debug

Sets the log level for output messages. Explicitly set to false by default,
which reports only fatal and error messages.

You can set it to warn, info, or debug.

Report data is sent to the servlet container or web application server log files.
If you set the log level to include more data, be aware that the log files can
become very large.

• delete-temp

Controls whether temporary storage for each Arbortext PE sub-process is
deleted when it terminates. Explicitly set to true by default, which deletes
the temporary storage upon termination. You can set it to false to preserve
the Arbortext PE sub-process temporary storage for debugging. However,
reset it to true when you are finished.

Caution
Setting delete-temp to false will consume disk space quickly, so
don’t leave it set to false for long.

Setting Configuration Parameters 79

The Global Application Logging Parameters
The application logging parameters control the type and level of logging for all
applications running on Arbortext Publishing Engine. All the logging parameters
follow the convention of the Java log4j package. For information on
e3log4j.properties and how to use it, consult the standard documentation
provided for log4j, available from:
logging.apache.org/log4j/docs/manual.html
The logging parameters that follow can take the following values:

• OFF

• FATAL

• ERROR

• WARN

• INFO

• DEBUG

• TRACE

• ALL

• INHERIT

• com.arbortext.e3.applicationLog

Specifies the log level for all applications. By default, it’s explicitly set to
WARN, meaning messages are logged for FATAL, ERROR, and WARN levels.

• com.arbortext.e3.applicationLog.compose

Specifies the log level for publishing requests submitted from a Arbortext
Editor client. By default, it’s explicitly set to INHERIT, which means use the
setting for com.arbortext.e3.applicationLog.

• com.arbortext.e3.applicationLog.convert

Sets the log level for requests submitted using the f=convert function. By
default, it’s explicitly set to INHERIT, which means use the setting for
com.arbortext.e3.applicationLog.

After determining the logging level for an application, the Arbortext PE Request
Manager and Arbortext PE sub-processes will ignore any attempt by the
application to make log entries with a lower priority. For example, if the logging
level is WARN, then messages with a level of INFO, DEBUG, and TRACE are
ignored.
If the logging level is INFO, DEBUG, or TRACE, then intermediate files can be
accepted and saved. Use the Transaction Archive link on the Arbortext Publishing
Engine index page (described in Monitoring and Reporting Using a Web Browser

80 Configuration Guide for Arbortext Publishing Engine

http://logging.apache.org/log4j/docs/manual.html

on page 21) to view the archived transactions. An archived transaction can include
intermediate files if the application saves them. Refer to Monitoring the
Transaction Archive on page 115 for more information.
Learn how to use logging from custom applications in the Programmer's Guide to
Arbortext Publishing Engine.

• com.arbortext.e3.applicationLog.acl

Sets the log level for tracing in ACL applications
• com.arbortext.e3.applicationLog.acl.package.function

Sets the log level for the ACL application specified by package::function
• com.arbortext.e3.applicationLog.java.class

Sets the log level for the Java application specified by class
• com.arbortext.e3.applicationLog.javascript.function

Sets the log level for the JavaScript application specified by function
• com.arbortext.e3.applicationLog.vbscript.function

Sets the log level for the VBScript application specified by function

Parameter Search Order
The Arbortext PE Request Manager starts with the most specific construct and
proceeds to the broadest. For example, if a Java application is named
com.arbortext.petest.petest123, Arbortext PE Request Manager
determines the logging level by looking for the following configuration
parameters in order:

• com.arbortext.e3.applicationLog.java.com.arbortext.-
petest.petest123

• com.arbortext.e3.applicationLog.java

• com.arbortext.e3.applicationLog

Arbortext PE Request Manager applies the value of the first parameter specified in
the e3config.xml file. After the log level is determined, attempts to make log
entries with a lower priority are ignored.

Application Log Output
An application log is always included in the set of files saved to a transaction
archive. However, you can specify an additional location for sending application
log messages:

• com.arbortext.e3.applicationLog.display

By default, explicitly set to false to log messages to the transaction archive.

Setting Configuration Parameters 81

If set to true, application log messages are also written to the Arbortext
Diagnostics window. See Getting Trace Information on page 128 for more
information.

• com.arbortext.e3.applicationLog.displayPatternLayout

Specifies the Java log4j pattern to use when constructing log entries to
standard output or the Arbortext Diagnostics window. The
com.arbortext.e3.applicationLog.display must also be set to
true.

The default is set to :
%d{HH:mm:ss} [%t] %-5p %c{2} - %m

Refer to the log4j documentation for an explanation of the pattern.

The Global com.arbortext.e3.epicInstallation
Parameter
The com.arbortext.e3.epicInstallation parameter specifies the path
to the installation directory for Arbortext Publishing Engine. By default, Arbortext
Publishing Engine assumes a relative path from the location of the PE_HOME/
e3/e3/WEB-INF/e3config.xml file you're editing, which is ../../...
This parameter is not explicitly set in e3config.xml.

The Global com.arbortext.e3.tempFileDirectory
Parameter
The com.arbortext.e3.tempFileDirectory specifies where Arbortext
Publishing Engine creates temporary files.
By default, Arbortext Publishing Engine assumes the location of
java.io.tmpdir, which is a JVM system property. You can determine this
location by clicking the Java Properties link on the Arbortext Publishing Engine
index page. You can also view the location by clicking the Status link on the
Arbortext Publishing Engine index page (refer to Monitoring and Reporting Using
a Web Browser on page 21 for information). This parameter is not explicitly set in
e3config.xml. You shouldn't need to change the value.
The parameter values for com.arbortext.e3.transactionDirectory
(described in The Global Active Transaction Parameters on page 71) and
com.arbortext.e3.transactionArchiveDirectory (described in
The Global Transaction Archive Parameters on page 74) are appended to this
value.

82 Configuration Guide for Arbortext Publishing Engine

The Global com.arbortext.e3.tempFilePrefix
Parameter
The com.arbortext.e3.tempFilePrefix parameter specifies a file name
prefix for temporary files created by Arbortext PE Request Manager. A common
prepended string makes the files easier to find because the files are grouped
together in the temporary directory. By default, the value is explicitly set to ati,
which prepends the string ati to the file names. You shouldn't need to change the
value.

The Global com.arbortext.e3.tempFileSuffix
Parameter
The com.arbortext.e3.tempFileSuffix parameter specifies a file
extension for temporary files created by Arbortext PE Request Manager. By
default, the value is explicitly set to .tmp. You shouldn't need to change the
value.

Specifying a Request Handler
A RequestHandler processes each incoming HTTP request and has a class
attribute specifying its associated Java class and an id attribute specifying its
name. Each RequestHandler can have an associated list of parameters,
corresponding to the implementation of the com.arbortext.e3.E3RequestHandler
interface.
To support routing of HTTP and SOAP requests meeting specified criteria, you
may need to define a corresponding ClientFunction. You would define one
in the AllowedFunctions section to permit an application call to it. Refer to
Specifying the AllowedFunctions List on page 107 for more information.

The RequestHandler for Arbortext Publishing
Engine Functions
The Arbortext Publishing Engine Request Handler is implemented to support
client functions that perform the work of processing a request. A client function
refers to one either supplied by Arbortext or a custom application. Each request
has a parameter that specifies a query specification resolving to a corresponding
f=function-name or f-function-name function call. The parameters
map each supported type of function-name to its underlying Java interface
which handles the processing for Arbortext Publishing Engine.

Setting Configuration Parameters 83

The RequestHandler object specified in e3config.xml is
com.arbortext.e3.RequestHandler with the ID e3-functions.
This RequestHandler manages HTTP requests that meet one of the defined
query conditions and are not otherwise routed by a previously invoked
RequestHandler.
The com.arbortext.e3.RequestHandler has a list of parameters
defining the query specification. In each case, an HTTP or SOAP request is
evaluated for a match to assist in routing the request to the proper Arbortext PE
sub-process pool. By default, parameters are associated with ClientFunction
entries in the AllowedFunctions section of the e3config.xml file where
permission for functions to run is specified.
In the following list of default parameters, the parameter name specifies the type
of function call and the value specifies the associated Java interface that enables
the underlying processing. Each of the Java classes in turn implements the com.
arbortext.e3.E3RequestFunction interface. To implement a custom query
parameter and support for the associated processing mechanism, you can review
these parameter specifications for guidelines.

Default Request Handler Parameters

name value
query-function-name f specifies the prefix for a function
function-prefix f- also specifies a prefix for a function
f-acl and f-eval com.arbortext.e3.Functio

nAcl processes calls to ACL functions
f-convert com.arbortext.e3.Function

NewConvert processes calls to
convert documents. It supports the
built-in convert function call and its
associated series of explicitly supported
parameters (explained in the
Programmer's Guide to Arbortext
Publishing Engine).

f-init com.arbortext.e3.FunctionI
nit triggers a reload of custom ACL
and JavaScript applications in an
Arbortext PE sub-process pool. It
supports the built-in init function
call. Manual initialization is also
available from a link on the Arbortext
Publishing Engine index page (refer to
Monitoring and Reporting Using a Web

84 Configuration Guide for Arbortext Publishing Engine

Default Request Handler Parameters (continued)
name value

Browser on page 21).
f-java com.arbortext.e3.Function

Java processes calls to Java
applications. It supports the built-in
java application call and its associated
class parameter specifying the Java
class name.

f-javascript com.arbortext.e3.Function
Javascript processes calls to
JavaScript functions. It supports the
built-in javascript function call
and its associated function
parameter specifying the JavaScript
function name.

f-vbscript com.arbortext.e3.Func
tionVbscript processes calls to
VBScript functions. It supports the
built-in vbscript function call and
its associated function parameter
specifying the VBScript function name.

f-oldconvert com.arbortext.e3.Function
Convert processes calls to convert
documents that use an older
methodology. It supports the backward
compatibility supplied by the
oldconvert function call.

f-license com.arbortext.e3.Function
License requests a report about the
Arbortext Publishing Engine license. It
supports the built-in license
function, which is an administrative
tool that returns a license report. A
license report is also available from a
link on the Arbortext Publishing Engine
index page (refer to Monitoring and
Reporting Using a Web Browser on
page 21 for information).

f-status com.arbortext.e3.Function
Status requests a report from the
Arbortext PE Request Manager. It

Setting Configuration Parameters 85

Default Request Handler Parameters (continued)
name value

supports the built-in status function,
which is an administrative tool that
returns an XHTML report. A status
report is also available from a link on
the Arbortext Publishing Engine index
page.

f-version com.arbortext.e3.Function
Version requests a report on your
Arbortext Publishing Engine version. It
supports the built-in version
function, which is an administrative
tool that returns a version report. A
version report is also available from a
link on the Arbortext Publishing Engine
index page.

f-compconfig-rescan com.arbortext.e3.Function
Rescan triggers a rescan of publishing
configuration information used by
Arbortext Editor clients. A rescan is
also available from a link on the
Arbortext Publishing Engine index
page.

f-supportdata com.arbortext.e3.Function
SupportData collects data to put
into a zip archive to submit to PTC
Support. A zip archive is also available
from a link on the Arbortext Publishing
Engine index page.

q-enable com.arbortext.e3.function.
QueueEnable enables queuing. The
queuing functions f=q-queue-
function can be used by a custom
application to send requests to a Queue
Manager. These functions are described
in the Programmer's Guide to Arbortext
Publishing Engine.

q-holdall com.arbortext.e3.function.
QueueHold holds all queued
transactions. The queuing functions f=

86 Configuration Guide for Arbortext Publishing Engine

Default Request Handler Parameters (continued)
name value

q-queue-function can be used by
a custom application to send requests to
a Queue Manager.

q-list com.arbortext.e3.function.
QueueList enables listing queues.
The queuing functions f=q-queue-
function can be used by a custom
application to send requests to a Queue
Manager.

qt-cancel com.arbortext.e3.function.
TransactionCancel cancels a
queued transaction. The queuing
functions f=qt-queued-
transaction-function can be
used by a custom application to send
requests to a Queue Manager. These
functions are described in the
Programmer's Guide to Arbortext
Publishing Engine.

qt-discard com.arbortext.e3.function.
TransactionDiscard discards a
queued transaction. The queuing
functions f=qt-queued-
transaction-function can be
used by a custom application to send
requests to a Queue Manager.

qt-execute com.arbortext.e3.function.
TransactionExecute executes a
queued transaction. The queuing
functions f=qt-queued-
transaction-function can be
used by a custom application to send
requests to a Queue Manager. These
functions are described in the
Programmer's Guide to Arbortext
Publishing Engine.

qt-hold com.arbortext.e3.function.
TransactionHold holds a queued
transaction. The queuing functions f=

Setting Configuration Parameters 87

Default Request Handler Parameters (continued)
name value

qt-queued-transaction-
function can be used by a custom
application to send requests to a Queue
Manager.

qt-list com.arbortext.e3.function.
TransactionList lists all queued
transactions. The queuing functions f=
qt-queued-transaction-
function can be used by a custom
application to send requests to a Queue
Manager. These functions are described
in the Programmer's Guide to Arbortext
Publishing Engine.

qt-move com.arbortext.e3.function.
TransactionMove moves a queued
transaction. The queuing functions f=
qt-queued-transaction-
function can be used by a custom
application to send requests to a Queue
Manager. .

qt-retrieve com.arbortext.e3.function.
TransactionRetrieve retrieves a
queued transaction. The queuing
functions f=qt-queued-
transaction-function can be
used by a custom application to send
requests to a Queue Manager.

88 Configuration Guide for Arbortext Publishing Engine

Default Request Handler Parameters (continued)
name value
qt-setpriority om.arbortext.e3.function.

TransactionPriority sets the
priority of a queued transaction. The
queuing functions f=qt-queued-
transaction-function can be
used by a custom application to send
requests to a Queue Manager.

qt-status com.arbortext.e3.function.
TransactionStatus gets the
status of a queued transaction. The
queuing functions f=qt-queued-
transaction-function can be
used by a custom application to send
requests to a Queue Manager.

For information about writing and implementing custom Java, JavaScript,
VBScript, and ACL applications, consult the Programmer's Guide to Arbortext
Publishing Engine.

Specifying Request Selectors
A RequestSelector has a class attribute specifying its associated Java class and
an id attribute specifying its identifying name. Its purpose is to test an incoming
HTTP request and help determine its routing. Each RequestSelector can
have an associated list of parameters, as defined and used by the application that
implements the com.arbortext.e3.E3RequestSelector interface.
An Arbortext PE sub-process pool can use one or more defined
RequestSelector tests to determine whether it should handle the request.
You can create sophisticated tests for routing a request to a specific Arbortext PE
sub-process pool by combining them using And or Or logic in a Test Set
configured in a sub-process pool.
There are several RequestSelector classes defined:

• class com.arbortext.e3.TestHeaderMatch, ID test-text-xml

Determines if an HTTP request has a particular message header and that the
header value matches a specified pattern.

The parameters header-name and header-pattern, defined as

Setting Configuration Parameters 89

Content-type and text/xml, detect a Content-type: text/xml
header.

• class com.arbortext.e3.TestQueryMatch, ID test-f-java

Determines if an HTTP request has a query name and query pattern that match
a specified name and pattern.

The parameters query-name and query-pattern, defined as f and
java, detect f=java or f-java requests.

• class com.arbortext.e3.TestQueryMatch, ID test-convert

Determines if an HTTP request has a query name and query pattern that match
a specified name and pattern.

The parameters query-name and query-pattern, defined as f and
convert, detect f=convert document conversion requests.

• class com.arbortext.e3.TestQueryMatch, ID test-tie

Determines if an HTTP request has a query name and query pattern that match
a specified name and pattern.

The parameters query-name and query-pattern, defined as class
and com.arbortext.e3c.*, detect Arbortext Publishing Engine
publishing requests that originate from Arbortext Editor clients.

• class com.arbortext.e3.TestQueryMatch, ID test-wvs-class

Determines if an HTTP request has a query name and query pattern that match
a specified name and pattern.

The parameters query-name and query-pattern, defined as class
and com.arbortext.ptc.windchill.Compose, detect Arbortext
Publishing Engine publishing requests that originate from Windchill
Visualization Service (WVS). The WVS uses Arbortext Publishing Engine to
publish XML and SGML documents stored in Windchill to outputs such as
PDF and HTML.

For further information on WVS configuration and usage with Arbortext
Publishing Engine, refer to Configuring Arbortext Publishing Engine for the
Windchill Visualization Service. For more information about the WVS, refer
to the Windchill Business Administrator's Guide.

• class com.arbortext.e3.TestQueryMatch, ID test-archive-
transaction

Determines if an HTTP request has a query name and query pattern that match
a specified name and pattern.

90 Configuration Guide for Arbortext Publishing Engine

The parameters query-name and query-pattern, defined as
archive-transaction and yes, detect archive-transaction
requests.

• class com.arbortext.e3.TestQueryMatch, ID test-alternate-
transaction-archive

Determines if an HTTP request has a query name and query pattern that match
a specified name and pattern.

The parameters query-name and query-pattern, defined as
alternate-transaction-archive and yes, detect alternate-
transaction-archive requests.

Specifying Test Sets
A TestSet can specify one or more Test names used to filter the HTTP
request. A Test refers to a RequestSelector ID of the same name that
specifies what to filter in the HTTP request. A Queue Manager, a queue, an
Arbortext PE sub-process pool and a defined notifier can each specify a
TestSet. You can create sophisticated tests for routing a request by combining
Tests using optional And or Or logic within a TestSet.
For example, you could implement a sub-process pool dedicated to fulfilling
Arbortext Editor publishing requests. A sub-process pool with id="pool-tie"
could define two Tests in a TestSet, called test-f-java and test-tie.
Use And logic, so that both must be present to succeed. The Test names refer to
configured RequestSelector of the same name, test-f-java and test-tie,
defined as follows:
<RequestSelector class="com.arbortext.e3.TestQueryMatch" id="test-f-java"
<Parameter name="query-name" value="f"/>
<Parameter name="query-pattern" value="java" />
</RequestSelector>
RequestSelector class="com.arbortext.e3.TestQueryMatch" id="test-tie">
<Parameter name="query-name" value="class"/>
<Parameter name="query-pattern" value="com.arbortext.e3c.*" />
</RequestSelector>

Then the sub-process pool would define the TestSet to specify these tests:
<TestSet>
<And>
<Test name="test-f-java" />
<Test name="test-tie" />
</And>
</TestSet>

Setting Configuration Parameters 91

A couple of test sets are configured in e3config.xml by default for archiving
transactions. If a transaction matches the criteria in one of the test sets, then the
transaction will be archived (provided
com.arbortext.e3.transactionArchive.enable is set to true):

• The test for archiving transactions that are made available through the
Transaction Archive link on the Arbortext Publishing Engine index page:
<TestSet id="archive-transaction-test">
<Test name="test-archive-transaction"/>
</TestSet>

The transaction archive parameter that identifies the ID of the test set for the
query to match:
<Parameter name="com.arbortext.e3.transactionArchive.testSet"
value="archive-transaction-test" />

The query parameter looks for a match on the request for archive-
transaction=yes.

• The test for archiving transactions that are stored in an alternate location (not
made available through the Transaction Archive link):
<TestSet id="archive-transaction-to-alternate-location-test">
<Test name="test-alternate-transaction-archive" />

The transaction archive parameter that identifies the ID of the test set for the
query to match:
<Parameter name="com.arbortext.e3.transactionArchive.
alternateLocation.testSet"
value="archive-transaction-to-alternate-location-test" />

The query parameter looks for a match on the request for alternate-
transaction-archive=yes.

For further information about configuring a RequestSelector, refer to Specifying
Request Selectors on page 89.

Specifying Caches
A Cache Manager stores something temporarily in anticipation of a request to use
it, which can improve processing performance. The Cache Manager defines what
to cache and when to cache it. Each CacheManager must implement the com.
arbortext.e3.E3CacheManager interface.
A CacheManager object has been implemented to manage publishing
configuration conversion. The class
com.arbortext.e3.CompConfigCache, ID compconfig-cache
caches configuration information for Arbortext Editor clients that use Arbortext
Publishing Engine as a publishing server.

92 Configuration Guide for Arbortext Publishing Engine

Specifying Queues
The queue element has several configuration parameters that control the
following:

• A queue can be enabled or disabled. If it is enabled, it can be active or
inactive.

When a queue is enabled, it can accept transaction requests. However, it can
only allow the Queued Transaction Scheduler to execute transactions when it
is active.

When a queue is disabled, it can still accept transaction requests. However, no
transactions can be executed by the Queued Transaction Scheduler, even if the
queue is active. A disabled queue must be enabled to make its requests
available for execution; however, those transactions can only be processed
during an active period.

The queue’s startup state can be configured (see The initial-state Attribute on
page 95). However, an administrator can explicitly enable or disable a queue
from the Queue List web page (see Requesting the Queue Reports on page
118).

• A queue can be configured to be active only during specified periods (see The
active-interval Attribute on page 94). An active queue supplies transactions to
the Queued Transaction Scheduler. An inactive queue only accepts
transactions, but it does not allow Queued Transaction Scheduler to execute
them until it becomes active. An active queue must also be enabled to process
its transactions.

• A queue can be required to wait until other queues have either started or
finished their transactions (see The previous-queues Attribute on page 96).

• A transaction can have a priority assigned to it within a queue (see the
queue-priority parameter in Queuing Query Parameters on page 46).

Transaction priorities are 1 through 5, highest to lowest, which can be
designated by the incoming request. Transactions assigned the same priority
within a queue are processed first in, first out. If no priority is assigned, it
defaults to 3.

• A transaction can be executed when the previous transaction is completed,
after all previous transactions have started, or must execute even if previous
transactions are not able to run. Execution criteria is applied to each priority
group (see The scheduling-option Attribute on page 96).

• A hold can be placed on individual transactions within a queue or on every
transaction in the queue. A hold will persist each time Arbortext Publishing

Setting Configuration Parameters 93

Engine starts. Refer to The Transaction List Page on page 119 and The hold-
all Attribute on page 95 for information.

• A transaction can be executed ahead of all other transactions in the system,
overriding any other configuration settings that might prevent it.

• The number of queued transactions allowed to execute simultaneously overall
is controlled by a global parameter
maxConcurrentQueuedTransactions (described in The Global
Active Transaction Parameters on page 71) and by the max-concurrent-
transactions queue attribute for individual queues (described in The
max-concurrent-transactions Attribute on page 96).

• The number of Arbortext PE sub-processes allocated simultaneously for
processing queued transactions within a pool is controlled by the
maxConcurrentQueuedTransactions parameter, described in The
maxConcurrentQueuedTransactions Attribute on page 102.

• An Arbortext PE sub-process pool can be configured to be a dedicated
queuing pool, meaning it only accepts queued requests. See Specifying a
Dedicated Queuing Pool on page 106.

Refer to The e3config.xml Configuration File on page 71 for more information on
how to change attributes.

The active-interval Attribute
Specifies the times and days during which a queue is active and its transactions
can be executed. The default is the empty string "", which means the queue is
always active.
Enter a list of time periods separated by semicolons, using the form:
p1;p2;p3

A period can be one of the following:
sunday, monday, tuesday, wednesday, thursday, friday,
saturday, sunday, weekday, or weekend
You can also include the time of day by adding a comma after the day and then
specifying the time range, using the form:
HH:MM-HH:MM

A time range consists of a 24 hour specification. If the second HH:MM
specification is earlier than the first, then it specifies a time on the following day.
If the second HH:MM is omitted, it defaults to 23:59.
For example:

• Parameter name="active-interval" value="weekday"

94 Configuration Guide for Arbortext Publishing Engine

The queue is active all day Monday through Friday but not on weekends.
• Parameter name="active-interval" value=

"weekday,20:00–06:00;weekend"
The queue is active Monday through Friday from 8 p.m. to 6 a.m. the next
morning and all day on weekends.

• Parameter name="active-interval" value=
"monday,12:00–16:00;wednesday,17:00"
The queue is active on Mondays from 12 p.m. to 4 p.m. and on Wednesdays
from 5 PM to midnight. The end of the day is implied when no end time is
specified.

The hold-all Attribute
Specifies whether transactions placed on the queue should be automatically held.

If set to yes, all transactions on the queue will be marked Hold using on the
Transaction List page for Queued Transaction List. The default no means that
transactions are not held automatically and are available to be processed. A hold
persists each time Arbortext Publishing Engine starts. A queue may be enabled
and active even if all its transactions are being held, but no transactions will be
processed. Individual transactions can be held or released by the administrator
using the Hold actions described in The Transaction List Page on page 119.

The initial-state Attribute
Specifies the state of a queue.

• enabled

specifies that the queue should always be enabled.
• disabled

specifies that the queue should always be disabled.
• saved (the default)

specifies that the state should be set to what it was the last time the Arbortext
PE server was shut down.

The state of the queue can be changed by the administrator using the Queue List
link on the Arbortext Publishing Engine index page. See Requesting the Queue
Reports on page 118 for information.

Setting Configuration Parameters 95

The max-concurrent-transactions Attribute
Specifies the maximum number of transactions from the queue that the Queued
Transaction Scheduler may run simultaneously. Specify a number or zero. The
default value, 0, means there is no limit.

The previous-queues Attribute
Specifies a list of queue IDs separated by commas. The default is the empty string
"", which means there are no dependencies on other queues. If you specify one or
more queue IDs, transactions on this queue will not execute until each of those
queues are inactive, disabled, or empty except for transactions that are being held.
Separate a list of queues using commas:
Parameter name="previous-queues" value="queue3,queue5"

The scheduling-option Attribute
Specifies how queued transactions should be executed.

• strict-complete

No transaction shall start executing until all previous transactions on the queue
have finished executing, including held transactions. Note that choosing this
value means that transactions from this queue will never execute in parallel.

• strict-parallel

No transaction shall start executing until all previous transactions on the queue
have started executing.

• relaxed (the default)

A transaction may start executing if earlier transactions on the queue are not
able to execute for some reason.

By default, the relaxed approach is to allow the Queued Transaction Scheduler
to try executing transactions in order, but place a higher emphasis on keeping busy
and executing transactions rather than ensuring that transactions are processed in
order.
Example
A queue contains three transactions, in order: A, B, and C. The Queued
Transaction Scheduler scans the queue looking for a transaction to execute.
Transaction A can’t be executed for some reason (it might be held or it might be
waiting for an Arbortext PE sub-process to become available from a specific
pool). The Queued Transaction Scheduler would obey the queue’s configuration
for strictness:

96 Configuration Guide for Arbortext Publishing Engine

• If a queue is configured strict-complete or strict-parallel, the
Queued Transaction Scheduler would not execute transaction B, because A
could not run.

• If the queue is configured relaxed, then the scheduler would execute
transaction B instead.

Example
A queue contains three transactions, in order: D, E, and F. The Queued
Transaction Scheduler scans the queue searching for a transaction to execute.
Transaction D is executing. If the queue is configured strict-complete,
transaction E can’t run because D is not finished. If the queue is configured
strict-parallel or relaxed, transaction E could be started.

Queuing Function Reference
The queuing functions (f=q-queue-function and f=qt-queued-
transaction-function) can be used by a custom application to send
requests to a Queue Manager. These functions are described in the Programmer's
Guide to Arbortext Publishing Engine.

Configuring a Notifier
You can configure a transaction notifier to report the progress of a queued
transaction. An example is a notifier that can send email notification to a client
when a queued transaction has been completed.
Notifiers are configured in e3config.xml. A notifier accepts parameters that
control its operation, as well as an optional TestSet to respond only to certain
types of transactions. A notifier Java object implements the class
com.arbortext.e3.E3Notifier, found in:
PE_HOME\lib\classes\pecommon.jar

A sample Java notifier is available in:
PE_HOME\e3\samples\java\com\arbortext\e3\queue\MailNotifier.java

For more information on using JavaMail, consult the JavaMail documentation at:
http://java.sun.com/products/javamail
A notifier can send an email message when a transaction meets the following
criteria:

• The request contains a query parameter that matches the notifier's TestSet
specification, if one is specified.

• The request includes a query parameter that matches the value of the notifier's
request-parameter

Setting Configuration Parameters 97

http://java.sun.com/products/javamail

The message will be sent to the email address provided using the parameter name
specified by request-parameter and the email address specified by the
parameter’s value.
The following parameters can be specified in e3config.xml to control the
behavior of the sample notifier. All parameters except request-parameter
and target-states will be passed to the JavaMail package.

• com.arbortext.e3.request-parameter (required)

Specifies the name of a request parameter. The notifier will only send email
about state changes in transactions whose requests include this parameter’s
value. Email will be sent to the address given by the value of this parameter.
There is no default value.
Parameter name="request-parameter" value="queue-email"

The HTTP query must then include a parameter such as:
queue-mail="user@host"

In the query, you would replace the value of user and host with the email
address where you want to send notification.

• com.arbortext.e3.target-states (required)

Specifies which states are of interest in a comma-separated list of state names.
Case and white space are ignored. There is no default value.

○ initializing

○ waiting

○ queued

○ processing

○ complete

○ cancelled

States are explained in Transaction States on page 39.
• mail.from (required)

Specifies the return address for each email message. Used by the
InternetAddress.getLocalAddress method to specify the email
address.

• mail.host (optional)

Specifies the default Mail server, usually in the form
mailhost.yourcompany.com.

The default value is the localhost, so you will likely need to specify your
mail host.

• mail.transport.protocol (optional)

98 Configuration Guide for Arbortext Publishing Engine

Specifies the protocol to use for sending email, for example, IMAP. The
default is SMTP.

You can use mail.debug to specify the debug mode for troubleshooting.
Setting this to true will turn on debug mode. The default value is false, which
turns it off. You can also use the JavaMail Session.setDebug method to
control the debug mode.
Depending on the protocol being used, the system could be prompted for more
information or you may have more than one type of supported protocol. However,
it's not likely you will need to implement any of the following on your productions
system. Be sure you completely understand what is required for your protocol
before using these parameters.

• mail.user (optional)

Specifies the user name for connecting to the email server. The default value is
mail.user.

The JavaMail Transport object has a connect method that uses this property to
obtain the user name, if the mail.protocol.user property is not supplied.

• mail.protocol.host (optional)

Specifies the Mail server using the specified protocol. If not specified, the
value falls back to the mail.host property and SMTP is presumed. For
example, you could specify IMAP for protocol.

• mail.protocol.user (optional)

Specifies the protocol to use for the specified user when connecting to the
Mail server. If not specified, the value falls back to mail.user property.

Sample Notifier
In the e3config.xml file, a sample notifier for email has been configured in a
commented section. Look for:
<Notifier class="com.arbortext.e3.queue.MailNotifier" id="notifier1">
<Parameter name="mail.host" value="mailhost.yourcompany.com" />
<Parameter name="mail.from" value="test@yourcompany.com" />
<Parameter name="target-states" value="complete,processing" />
<Parameter name="request-parameter" value="queue-email" />
</Notifier>

You would remove the comment markers and replace the values with the mail
server information for your site. For example:
<Notifier class="com.arbortext.e3.queue.MailNotifier" id="notifier1">
<Parameter name="mail.host" value="int-mail.acme.com" />
<Parameter name="mail.from" value="job-update@acme.com" />
<Parameter name="target-states" value="complete,queued" />
<Parameter name="request-parameter" value="queue-email" />
</Notifier>

Setting Configuration Parameters 99

Then, be sure to set the compositionEmailPolicy parameter (see The
Global Queuing Parameters on page 76 for information.):
Parameter name="com.arbortext.e3.compositionEmailPolicy"
value="queue-email" />

The notifier would respond to a query that included a parameter like the
following:
name="queue-mail" value="user@host"

Where user@host is the email where the notification should be sent. This query
can originate from a
Arbortext Editor clients would supply this value through their Notification Email
Address in Tools ▶▶ Preferences ▶▶ Publishing Engine. The Notification Email
Address is included in the publishing request.

Configuring Sub-process Pools
A SubprocessPool has an id attribute specifying its identifying name. Each
SubprocessPool can have an associated list of parameters. Each SubprocessPool
also specifies a Test Set that evaluates HTTP requests and accepts those that meet
the test criteria. A request is offered to each Sub-process pool defined in
e3config.xml in the order in which it appears.
Custom SubprocessPool objects are not supported in this release.
The default SubprocessPool must be defined. It should always be defined last in
the list as the SubprocessPool objects are evaluated in the order specified in the
e3config.xml file. Each predefined SubprocessPool, including the default, is
explained in more detail in the following sections. The dialog box where you set
the SubprocessPool attributes looks like the following:

100 Configuration Guide for Arbortext Publishing Engine

Refer to The e3config.xml Configuration File on page 71 for more information on
how to change attributes.
The SubprocessPool objects explicitly specified in e3config.xml are:

• ID pool-wvs

This sub-process pool processes all requests from the Windchill Visualization
Service (WVS). This pool is disabled by default, so you need to enable this
pool to use it.

• ID pool-default

This sub-process pool is specified as the defaultpool, and it processes all
requests not processed by previously defined pools. It also can accept their
overflow if their cascade attribute is set. This pool is enabled by default. It
does not specify a TestSet so that it can accept any request not directed to
another pool. It must be the last pool defined in the e3config.xml file.

Setting Configuration Parameters 101

The cascade Attribute
Specifying cascade provides the name of the Arbortext PE sub-process pool to
which a request can be routed if all the Arbortext PE sub-processes in this pool are
busy.

The default Attribute
Specifying default signifies whether this Arbortext PE sub-process pool is the
default pool.

The enabled Attribute
Specifying enabled determines whether this Sub-process pool is enabled to take
requests.

The id Attribute
Specifying id provides the unique identifier of the Arbortext PE sub-process
pool.

The maxBusyInterval Attribute
Specifying maxBusyInterval sets the maximum time in seconds that an
Arbortext PE sub-process is assumed to be busy processing a request. This
attribute allows Arbortext Publishing Engine to terminate an Arbortext PE sub-
process that is no longer accessible due to an error condition. The default value is
1800 seconds, or thirty minutes. Setting the value to 0 means there is no limit.

Caution
It's possible that an Arbortext PE sub-process could be terminated while it's
processing a lengthy job. When you set maxBusyInterval, estimate a
value that's higher than the time it would take to process the most extensive
request you might submit.

The maxConcurrentQueuedTransactions Attribute
Specifying maxConcurrentQueuedTransactions sets the maximum
number of queued transactions that may be processed simultaneously by the
Arbortext PE sub-process pool.
There are two other possible values, -1 and 0.

102 Configuration Guide for Arbortext Publishing Engine

If it’s set to -1, the default, there is no specified limit, and the Arbortext PE sub-
process pool will execute as many queued transactions as it can by keeping all
Arbortext PE sub-processes busy.
If it’s set to 0, no queued transactions will be accepted by the Arbortext PE sub-
process pool, effectively reserving the entire pool for immediate transactions only.
If you need to reserve a Sub-process pool for queued requests, refer to Specifying
a Dedicated Queuing Pool on page 106.

The maxIdleInterval Attribute
Specifying maxIdleInterval sets the maximum time in seconds Arbortext
Publishing Engine allows an Arbortext PE sub-process to be idle. If an Arbortext
PE sub-process is idle for the specified time, it's terminated.
The maxIdleInterval value only applies if maxSubprocesses is greater
than minSubprocesses and there are more Arbortext PE sub-processes
running than the number specified by minSubprocesses.

The maxLifetime Attribute
Specifying maxLifetime sets the maximum time in seconds that an Arbortext
PE sub-process can remain in the pool before being terminated to recycle the
service.

The maxShutdownInterval Attribute
Specifying maxShutdownInterval sets the maximum number of seconds that
Arbortext Publishing Engine will wait to allow an Arbortext PE sub-process to
shut down on its own. If an Arbortext PE sub-process has been instructed to shut
down by the Arbortext PE Request Manager and it's still running after this period
of time, it will be terminated.

The maxSubprocesses Attribute
Specifying maxSubprocesses sets the maximum number of Arbortext PE sub-
processes in the service pool. You can minimize the overhead associated with
launching and terminating Arbortext PE sub-processes by setting
maxSubprocesses and minSubprocesses to the same number. There is no
physical limit to the maximum number you can set, but be aware of the overhead
required to run more than you really need to handle the request load.
In most cases, you will achieve the most efficient throughput by setting
maxSubprocesses to the number of processors on the Arbortext Publishing
Engine server system. This guideline ensures all CPUs will be used and avoids
unnecessary context switching, which can hinder throughput.

Setting Configuration Parameters 103

The maxSubprocessWait Attribute
Specifying maxSubprocessWait sets the maximum time in seconds that
Arbortext Publishing Engine will wait for an Arbortext PE sub-process to become
available to process a request. If the time limit is exceeded, it returns a message
that all Arbortext PE sub-processes are busy.

The minSubprocesses Attribute
Specifying minSubprocesses sets the number of Arbortext PE sub-processes
automatically started when the Arbortext PE Request Manager gets its first
request. You can minimize the overhead associated with launching and
terminating Arbortext PE sub-processes by setting maxSubprocesses and
minSubprocesses to the same number.

The subprocessEnvironment Attribute
You can specify subprocessEnvironment to have Arbortext Publishing
Engine set the environment variables of the Arbortext PE sub-processes. To
ensure that Arbortext PE sub-processes have the expected values for environment
variables, set them using the subprocessEnvironment parameter for each
Arbortext PE sub-process pool in the e3config.xml.
If you are using the Tomcat servlet container, be aware that newer versions clear
some environment variables, such as CLASSPATH, and then set them to values
needed by Tomcat prior to starting the Tomcat servlet container.
Any other variables in the Arbortext Publishing Engine environment are passed to
its Arbortext PE sub-processes unchanged.

The workThreadInterval Attribute
Specifying workThreadInterval sets an interval in integer seconds for
Arbortext Publishing Engine to check the status of the Arbortext PE sub-
processes. Arbortext Publishing Engine can check for the following:
• An Arbortext PE sub-process has started and is ready to process a request
• An Arbortext PE sub-process has been idle for too long and should be

terminated
• An Arbortext PE sub-process has been running for too long and should be

terminated
• An Arbortext PE sub-process is presumed to be hung, should be terminated,

and another one started if needed
As each check is made, Arbortext Publishing Engine takes appropriate action
according to its attributes. The default value is 5 seconds.

104 Configuration Guide for Arbortext Publishing Engine

SubprocessContext Parameter
There is one parameter for the SubprocessContext of the
SubprocessPool, com.arbortext.e3.initialScript:
Parameter name="com.arbortext.e3.initialScript" value="filepath"

initialScript allows you to set environment variables in an ACL script
before loading information from the custom directory. For example, you could
have different custom directories for each Sub-process pool because
initialScript is processed before the custom directory.
For example:
<SubprocessPool id="pool-special-script" enabled="yes" >
<SubprocessContext>
<Parameter name="com.arbortext.e3.initialScript"
value="d:\custom\script-init.acl" />
</SubprocessContext>
<TestSet>
<Test name="script-init" />
</TestSet>
</SubprocessPool>

You would use the ACL file specified by initialScript to set something
like:
main::ENV['APTCUSTOM']='D:\special_custom'

The Windchill Visualization Service Sub-process
Pool
The Windchill Visualization Service (WVS) sub-process pool (ID pool-wvs)
services all requests to Arbortext Publishing Engine from the WVS. The WVS
uses Arbortext Publishing Engine to publish XML and SGML documents stored
in Windchill PDMLink to outputs such as PDF and HTML. The WVS Test Set
detects requests that can be processed by this sub-process pool.
The Windchill Visualization Service sub-process pool defines a Test in the Test
Set called test-wvs-class, which refers to a WVS RequestSelector of the
same name.
The Windchill Visualization Service sub-process pool is disabled by default. For
further information on WVS configuration and usage with Arbortext Publishing
Engine, refer to the Arbortext Editor help topic Configuring Arbortext Publishing
Engine for the Windchill Visualization Service. For more information about the
WVS, refer to theWindchill Business Administrator's Guide.

Setting Configuration Parameters 105

The Default Sub-process Pool
The default Sub-process pool (ID pool-default) is a dedicated pool to
process any HTTP requests not caught by the other preceding ones. There is no
Test Set to filter requests, so the default pool must attempt to service a request or
return an error explaining a request can't be serviced. One pool-default must
always be defined to handle requests, though it can work alone or as a cascade
pool if it's defined last in e3config.xml.

Specifying a Dedicated Queuing Pool
If you need to reserve a Sub-process pool for queued requests, you can define a
test that will accept only queued requests by using the same Test Set as the Queue
Manager. In the following example, the subprocess pool will not accept immediate
requests, and its sub-processes will be dedicated to process queued transactions.
<RequestSelector class="com.arbortext.e3.TestQueryMatch"
id="test-queue">
<Parameter name="query-name" value="queue"/>
<Parameter name="query-pattern" value="yes"/>
</RequestSelector>

Then define a Test in a Sub-process pool Test Set, called test-queue:
<SubprocessPool id="pool-queue" enabled="yes" >
<TestSet>
<Test name="test-queue" />
</TestSet>
</SubprocessPool>

If you need to reserve a Sub-process pool for immediate requests, see The
maxConcurrentQueuedTransactions Attribute on page 102.

Specifying a Sub-process Pool for Arbortext Editor
Clients
Arbortext Editor users can run as clients of Arbortext Publishing Engine and ask
Arbortext Publishing Engine to perform their document publishing for all outputs.
You might want to dedicate a sub-process pool to fulfill Arbortext Editor
publishing requests.
Set the sub-process pool ID id="pool-tie". Then define two Tests in the Test
Set, called test-f-java and test-tie. The Test names refer to
RequestSelector objects already defined, named test-f-java and test-tie.
They’re specified using AND logic, so both must be met to succeed. The test-
f-java and test-tie tests will detect a query match for these specifications
in the HTTP request .
<SubprocessPool id="pool-tie" cascade="pool-default" enabled="yes"
maxSubprocesses="2" minSubprocesses="1"
<TestSet>
<And>

106 Configuration Guide for Arbortext Publishing Engine

<Test name="test-f-java" />
<Test name="test-tie" />
</And>
</TestSet>
</SubprocessPool>

This sub-process pool would process all requests from Arbortext Editor clients
requesting publishing operations. You need to set enabled to yes to make this
pool available, otherwise, Arbortext Editor client requests will go to the default
pool. If the Arbortext PE sub-processes in this pool are busy, the overflow can
cascade into the default pool by setting cascade to pool-default. For
information about configuring a RequestSelector, refer to Specifying Request
Selectors on page 89.

Specifying the AllowedFunctions List
Custom applications must be loaded in an Arbortext PE sub-process pool. Writing
custom applications is covered in the Programmer's Guide to Arbortext
Publishing Engine. However, to make custom applications available for client
requests, you must specify access to them in the AllowedFunctions list.
The ClientFunction for Java allows any classes matching the wildcard
specification com.arbortext.* to be executed. If you have Java interfaces that use
another naming convention, you can add another ClientFunction in the
AllowedFunctions section to permit the application calls.
A ClientFunction has a pattern attribute specifying a query function or
application, as well as a type attribute specifying its underlying programming
language. Each ClientFunction can have an associated list of attributes. The
attributes are those used by the application which implements the com.arbortext.
e3.E3RequestFunction interface.
There are several ClientFunction objects already specified in the file:

• pattern e3apptest:testapp with a type of acl

pattern e3apptest2:testapp with a type of acl

These specifications enable sample ACL function test links on the Arbortext
Publishing Engine index page runs it (refer to Monitoring and Reporting
Using a Web Browser on page 21 for information). In your production
environment, you may want to remove the sample function from the list.

• pattern e3appsave:appsave with a type of acl.

If you are troubleshooting a particular document or implementation, you
should load it in Arbortext Publishing Engine Interactive and then choose
Tools ▶▶ Save Application.

• pattern for Service Information Manager main::composeSisPE with a
type of acl

Setting Configuration Parameters 107

Enables publishing from Windchill Service Information Manager.
• pattern for any Java class matching com.arbortext.* with a type of

java

pattern for any Java class matching com.ptc.arbortext.* with a
type of java

These specifications allow all Java classes delivered with Arbortext Publishing
Engine, including the Java application test link on the Arbortext Publishing
Engine index page (refer to Monitoring and Reporting Using a Web Browser
on page 21 for information).

• pattern E3AppTest with a type of javascript

By default, the sample JavaScript function test link on the Arbortext
Publishing Engine index page runs it (refer to Monitoring and Reporting
Using a Web Browser on page 21 for information). In your production
environment, you may want to remove the sample function from the list.

• pattern specifying the E3AppTest with a type of vbscript

By default, the sample VBScript function test link on the Arbortext Publishing
Engine index page runs it (refer to Monitoring and Reporting Using a Web
Browser on page 21 for information). In your production environment, you
may want to remove the sample function from the list.

How to Deploy Custom Applications
ACL function files are placed in the PE_HOME/custom/init subdirectory, or
placed in the PE_HOME/custom/scripts directory and loaded from a script
in PE_HOME/custom/init. The HTTP request sent to Arbortext Publishing
Engine would specify the f=acl query and its function=function-name
parameter that you define in this section.
Java .class or .jar files are placed in the PE_HOME/custom/classes
subdirectory. The HTTP request sent to Arbortext Publishing Engine would
specify the f=java function and its class=class-name parameter that you
define in this section.
JavaScript function files are placed in the PE_HOME/custom/init
subdirectory, or placed in the PE_HOME/custom/scripts directory and
loaded from a script in PE_HOME/custom/init. The HTTP request sent to
Arbortext Publishing Engine would specify the f=javascript function and its
function=function-name parameter that you define in this section.

108 Configuration Guide for Arbortext Publishing Engine

Note
Arbortext Publishing Engine supports only the Rhino type of JavaScript files.
You need to specify the type of JavaScript interpreter in the JavaScript file or
use the set javascriptinterpreter ACL command in an
initialization file placed in custom/init to specify the Rhino type of
JavaScript.

Specifying Initializers
Initialization actions can be automatically launched if they're defined in
e3config.xml. Each Initializer must implement the com.arbortext.e3.
E3Initializer interface.
Setting the defer value to yes means that Arbortext Publishing Engine can take
requests even if the initializer hasn't finished loading yet.
Two Initializer objects are implemented to specifically support Arbortext products
that interact with Arbortext Publishing Engine:

• class com.arbortext.e3.CompConfigInit with ID
CompConfigInit. This initializer obtains and caches a Publishing
Configuration report for Arbortext Editor clients using Arbortext Publishing
Engine as a publishing server.

• class com.arbortext.e3.queue.QueueSchedulerInit with ID
QueueSchedulerInit. This initializer starts the Queued Transaction
Scheduler.

• class com.arbortext.e3.DiskSpaceChecker with ID
DiskSpaceChecker. This initializer starts the Disk Space Checker. It has
three parameters:

○ disable, which can have the values yes or no (the default).
○ interval, which specifies an interval for checking disk space, expressed in

seconds. It is set to 600 (the default).
○ threshold, which specifies the threshold for issuing a warning to the servlet

log that disk space is low. The value is specified as a series of thresholds
where a single specification is drive_letter:integerCriteria..

The wild card * can be specified for drive letter, meaning all drives on the
Arbortext PE server.

Setting Configuration Parameters 109

The criteria is one of the characters % for percent of available space, K for
kilobytes of available space, M for megabytes of available space, G for
gigabytes of available space, or T for terabytes of available space.

threshold is set to *:10% (the default), which means issue a warning for
any disk with less than 10% available space.

Multiple specifications are separated by ;, for example,
*:20%;c:100M;g:400G. This example issues a warning if the C drive
has less than 100 megabytes available space, the G drive has less than 400
gigabytes available space; and if any other drive on the server has less than
20% available space.

The Arbortext Publishing Engine index page Status and Configuration
report has a Disk Space section where you can view the results of the last
time disk space was checked.

In addition, if a disk has less space available than the amount specified by
threshold, the Disk Space Checker writes a WARN level log message into
the servlet log (pelog.xml in Tomcat's log directory). To see the
WARN messages from the Disk Space Checker in the log, set the debug
flag in e3config.xml to true.

110 Configuration Guide for Arbortext Publishing Engine

8
Requesting Administrative

Information
Requesting a Status Report ... 112
Requesting a License Report ... 114
Requesting a Version Report.. 115
Monitoring the Transaction Archive ... 115
Requesting the Queue Reports .. 118
Requesting a Java Properties Report.. 121
Requesting Web Services Definitions.. 121
Requesting a Publishing Configuration Report... 121
Usage Report.. 123
Requesting a Zip Archive for Troubleshooting.. 123
Requesting a Rescan of Publishing Configuration .. 123
Reloading Scripts .. 123
Running the Samples .. 124

You can request various reports from the Arbortext PE Request Manager to get
information on status, license, version, publishing configuration, and Java system
properties. All of these reports are available from links on the Arbortext
Publishing Engine index page. The index page has links for obtaining reports
about Arbortext Publishing Engine environment and activities, converting a demo
document to a variety of ouput formats, running Arbortext Publishing Engine test
applications, reloading scripts or publishing configuration information on the
server, and obtaining Arbortext Publishing Engine web services (WSDL)
information.
After you've successfully installed and configured Arbortext Publishing Engine,
this page is available from a web browser by submitting a URL like the following:
http://servername:port/e3

111

Requesting a Status Report
This report contains a wide variety of information about the Arbortext PE Request
Manager and its Arbortext PE sub-processes. This report is available from the
Status link on the Arbortext Publishing Engine index page. Check this report to
review all the setup information about Arbortext Publishing Engine. The
information in this report is helpful for troubleshooting. It includes the
configuration settings defined in the e3config.xml configuration file. You can
check stylesheet and publishing configuration caching as well as the set of
allowed functions. You can also check the location where Arbortext Publishing
Engine stores transaction archives.
The Arbortext Publishing Engine status report contains:

• Information about the Arbortext Publishing Engine installation, including
version, build number, binary path, and run-time data

• System information about the Arbortext Publishing Engine environment
• COM server information as set by the Arbortext Publishing Engine

Configuration program
• Allowed functions, by type and pattern, as configured in the e3config.xml

file
• Global parameter settings for temporary file locations and naming

conventions, including the installation path, the temporary directory with
prefix and suffix values, and the active and archived transaction directories.
Values for debugging and temporary file deletion are also reported.

• Configuration summary for each Arbortext PE sub-process pool defined in the
e3config.xml file, including their parameter values (if the pool is
enabled). If the pool is enabled, the configuration summary includes run-time
data and whether Request Tests have been configured.

• Configuration summary for each Cache Manager defined in the
e3config.xml file, as well as associated run-time data. By default, the
publishing configuration and stylesheet cache managers are defined.

• Queue manager configuration and run-time data, if available
• Configuration summary for each Request Handler, as implemented and

configured in the e3config.xml file
• Summary of Request Selector tests and their parameter values as configured in

the e3config.xml file. Request Selector tests are associated with specific
Subprocess Pools (also configured in the e3config.xml) as filters for
routing requests to a particular pool. The Request Selector tests are listed in
the Request Test Criteria section for each pool.

112 Configuration Guide for Arbortext Publishing Engine

• Configuration summary for Initializers as defined in the e3config.xml file
and associated run-time data if it's available. By default, the publishing
configuration and stylesheet transformations are initialized at startup.

• A list of Arbortext applications installed on the server, such as the Technical
Information Application. These applications are installed in the
application directory of the Arbortext Publishing Engine installation tree.

• Transaction archive configuration and status, including location, size, log
level, number of transactions, and age of oldest transaction stored.

The following is an example of the Arbortext Publishing Engine Status report,
showing the first sections of the report:

Requesting Administrative Information 113

Requesting a License Report
The License Information report contains Session Information, including the
Service Contract Number, software version and system, and installation path. It
provides the number of Processor Cores and Processor Packages,
which is for the license on your system.

114 Configuration Guide for Arbortext Publishing Engine

The License source provides the information contained in the license
environment variable, PTC_D_LICENSE_FILE. Use the License link to check
the license information stored on the system if you are experiencing license
problems. See the Arbortext Publishing Engine Licensing chapter of the
Installation Guide for Arbortext Publishing Engine if you are having license
problems.
The license report also provides information about optional components you have
installed and whether each is licensed for your site. Use this report to make sure
all features for your site are properly licensed and enabled as you expect.

Requesting a Version Report
This report contains version information for Arbortext PE Request Manager and
its Arbortext PE sub-processes, including information about any applications
installed in the application directory.
This report is available from the Version link on the Arbortext Publishing Engine
index page. Use this report to verify version and location information about the
installation as well as some minimal run-time data.

Monitoring the Transaction Archive
The Transaction Archive page lists the transactions that have been processed and
archived on the Arbortext PE server, according to archiving configuration. This
report is available from the Transaction Archive link on the Arbortext Publishing
Engine index page. The report displays the archived transactions from newest to
oldest. The parameters that control the behavior for archiving transactions are
described in The Global Transaction Archive Parameters on page 74.

Note
A transaction can be archived in an alternate location that is not available from
the Arbortext Publishing Engine index page. The alternate transaction archive
allows transactions containing sensitive data to be stored in a location where
permission would be required to access them. Refer to The Global Transaction
Archive Parameters on page 74 for more information on the alternate
transaction archive.

Each transaction is identified by a unique ID that's assigned at the time the request
was received. An ID may be reused only after the transaction it identifies is
deleted from the archive. If the archive entries are configured to persist across
Arbortext Publishing Engine sessions, IDs of transactions in the archive at startup
also won't be reused until they're deleted.

Requesting Administrative Information 115

A transaction name may appear on the Transaction Archive page if one has been
specified by the Arbortext Editor client, a transaction-name query
parameter (see Queuing Query Parameters on page 46), or by the global
com.arbortext.e3.defaultTransactionName parameter (see The
Global Transaction Name Parameter on page 73).
Each transaction ID number is a link to the Transaction detail page displaying
information about the selected transaction. Each transaction has a check box that
you can select before choosing an action from the menu at the top. A global check
box in the title bar (just above the first transaction) selects all transaction entries.
Clearing this check box clears all check marks. Each transaction displays
information about its operation, start and end time, result, and the requesting
client.
For each transaction in the archive, Arbortext Publishing Engine stores a zip file
that contains the following information:

• the request, including the function, URI, headers, query parameters, and
request body

• the response, including status code, HTTP headers, and response body
• whether a transmission error prevented the response from being returned to the

client
• whether the Arbortext PE sub-process terminated while processing the request.

If so, it returns the associated termination error file, assertion message, COM
error information, or other relevant error information.

• an application log for the request
• the intermediate files associated with the request
The menu offers the following actions:

• Delete

Put a check mark in one or more boxes and then click this button to delete the
selected transactions.

• Delete Successful

Click this button to delete all successful transactions, which are those that
have a returned status of 200.

• Zip Archive

116 Configuration Guide for Arbortext Publishing Engine

Put a check mark in one or more boxes and then click this button to return a
zip archive containing information about each selected transaction.

The Transaction Detail Page
When you click the link for the Job ID number, the Transaction detail page is
returned. It displays more detailed information about the selected transaction. For
each transaction, the report contains the following information:

• Summary of the operation, including name of operation, start and end time
stamp, result, client, and a log if available.

• Summary of the response, including encoding, locale, state, status, and a
response body (with its content-type) if available

• Summary of the intermediate files produced during processing the request
• Summary of the request, including the request body if available, and detailed

information about the request query and client.
The menu offers the following actions:

• Delete

Click this button to delete the transaction.
• Zip Archive

Click this button to return a zip archive containing information about this
transaction.

Application Logging and Intermediate Files
A transaction detail entry and a transaction archive file can contain an application
log and a number of intermediate files. An application running in an Arbortext PE
sub-process can write to the application log when it processes the request and
produces its response. The application log, the intermediate files, and a data file
describing the intermediate files are stored by the Arbortext PE Request Manager
as internal data associated with a transaction. Each time the Arbortext PE Request
Manager directs an Arbortext PE sub-process to handle a request, it will indicate
whether application logging is enabled. When the Arbortext PE sub-process
returns the HTTP response to the Arbortext PE Request Manager, it will also pass
the application log and intermediate files.
Each intermediate file produced during processing is saved to disk, with an
optional accompanying MIME type (such as application/zip-archive or
text/html) and a description string. The content of the log and the number and
content of the intermediate files are specific to the transaction. This information is
not returned to the client as part of an HTTP response (as the HTTP protocol
doesn't allow it).

Requesting Administrative Information 117

The application logging parameters that set what is logged and the log levels are
described in The Global Application Logging Parameters on page 80.
A custom application can make entries in the application log and keep
intermediate files by calling methods in the following packages:

• Java or JavaScript applications call the E3ApplicationConfig interface
• VBScript or ACL applications call the PEAppConfig package
Refer to the Programmer's Guide to Arbortext Publishing Engine for information
on using these packages.

Requesting the Queue Reports
The Queue List displays the queues that have been configured on the Arbortext
PE server. This report is available from the Queue List link on the Arbortext
Publishing Engine index page (described in Monitoring and Reporting Using a
Web Browser on page 21.
The report displays the queues in order of their configuration in the
e3config.xml file. You can view the list of queues and enable or disable them
manually. From this page, there are links to display a queue’s configuration,
queued transactions, and completed transactions.
The parameters that control the behavior for queues are described in:

• Global queuing parameters described in The Global Queuing Parameters on
page 76.

• Queue parameters described in Specifying Queues on page 93.

The Queue List Page
The Queue List link on the Arbortext Publishing Engine index page opens the
Queue List web page, where you can get information about each configured queue
and its transactions:

• Queue displays the name of the queue as specified by its ID.
• Info link displays the queue’s configured parameters and request test set

criteria from the e3config.xml file. This is a good way to check that the
configuration is set up as you expect.

• Enabled reports the queue state.
• Action lets you Enable or Disable the queue. Enabling the queue allows its

transactions to be processed during its active period. Disabling suppresses
processing altogether, although transactions can still be placed on the queue.

118 Configuration Guide for Arbortext Publishing Engine

• Active reports whether the queue currently active, according to its
configuration and the current day and time. You can’t make a queue active or
inactive from this page.

• Queued Transactions displays the number of transactions in the queue.
Clicking the numeral displays the Queued Transaction List page of the queued
transactions waiting to be processed.

• Completed Transactions displays the number of completed transactions for the
queue. Clicking the numeral displays the Completed Transaction List page of
the transactions that are completed or cancelled and waiting for the client to
retrieve or delete.

The Transaction List Page
For the Queued Transaction List and Completed Transaction List, the report
provides the following:

• ID

Click the ID number to view a Transaction Status page
• User

Displays the name of the user who submitted the request. This is usually the
user’s login name.

• Client

Displays the IP address of the client’s machine.
• Actions

You can perform the following actions:

○ Delete

deletes the transaction

○ Download

allows you to download the transaction results

For the Queued Transaction List page only, you can also perform these actions:

○ Hold

prevents the transaction from executing and persists each time Arbortext
Publishing Engine starts.

○ Execute Now

moves the transaction to be the next in line for execution.

Requesting Administrative Information 119

○ Undo Hold

removes the hold on the transaction

○ Move to Top

moves the transaction to the top of the list

○ Move Up

moves the transaction up one place in the list

○ Move Down

moves the transaction down one place in the list

○ Move to Bottom

moves the transaction to the bottom of the list
• Operation

Displays the type of request.

For publishing requests from Arbortext Editor, the ati-operation-type
parameter provides the description. See Queuing for Arbortext Editor Clients
on page 47 for information.

• Status

Displays the current status of the transaction. See Transaction States on page
39 for an explanation.

• Submitted

Displays the time the transaction was received from the client.
• Priority

Displays the priority of the request. If no priority was specified, the transaction
is assigned a priority of 3 by default.

• Started

Displays the time the Queued Transaction Scheduler began processing the
transaction.

• Running

Displays the elapsed time since processing began.

120 Configuration Guide for Arbortext Publishing Engine

The Transaction Status page provides the same information, but you can also see
the time it finished. You can Retrieve Result or Discard Result in its data file
format. A result is whatever is being returned; it can be the published document or
a document containing errors and other information.
The form of the result depends on the form requested by the client. For instance,
Arbortext Editor clients will receive a data file that is read by the client before
extracting the resulting published document. If you click the Retrieve Result on
that type of transaction, the file will not be a human readable file. For other
applications, including the sample applications on the Arbortext Publishing
Engine index page, clicking Retrieve Result can display the published documents,
such as PDF and HTML.

Requesting a Java Properties Report
This report is available in HTML format from the Java Properties link on the
Arbortext Publishing Engine index page. This report contains the all the details
about the Arbortext Publishing Engine JVM. Check this report to determine
whether the Arbortext Publishing Engine Java environment is what you expect.

Requesting Web Services Definitions
This link returns the WSDL definitions document, which you will need if you are
implementing SOAP as your transmission protocol. To enable SOAP, open
Arbortext Publishing Engine Configuration and choose the Tomcat tab, and
choose Enable for SOAP Support.
This file is available from the Web Services Definitions link on the Arbortext
Publishing Engine index page. Consult the Programmer's Guide to Arbortext
Publishing Engine for information on using SOAP with Arbortext Publishing
Engine.

Requesting a Publishing Configuration
Report
This report contains publishing configuration used by clients such as Arbortext
Editor, including information about the document types and related publishing
files installed on the Arbortext PE server that are used to fulfill publishing
requests. It also reports Arbortext Import/Export templates, applications installed
in the application directory, and the versions of Arbortext Editor clients it
supports.

Requesting Administrative Information 121

This report is available in HTML format from the Short link on the Arbortext
Publishing Engine index page. Use this report to determine whether all your
document types, stylesheets, pipeline filters, and other publishing components are
available on the Arbortext PE server as expected.
Other forms of this report are also available:

• XML form

Detailed link on the Arbortext Publishing Engine index page.

In addition, this report contains check sums and other data that allows
Arbortext Editor clients to compare their installations with the Arbortext PE
server installation.

• Text form

Log link on the Arbortext Publishing Engine index page.

In addition, this report contains information on how Arbortext Publishing
Engine built the report by providing document type-specific information such
as the directories it scanned, files it found, and files it expected to find that are
missing,

Publishing Management for Arbortext Editor Clients
Arbortext Editor can report Arbortext Publishing Engine configuration
information from its Help ▶▶ About Arbortext Editor ▶▶ PE Configuration menu
command. The report can be used to determine duplicate stylesheet names on the
server. If a stylesheet name is not unique on the server, Arbortext Publishing
Engine uses the first one it finds.
Arbortext Editor can compare its publishing configuration with Arbortext
Publishing Engine publishing configuration using its Tools ▶▶ Compare Config with
PE menu command. The Publishing Configuration Comparison report notes the
differences between the publishing environment on the client and on the server.
This report is helpful in troubleshooting client complaints about publishing
processing.
If your applications are using a content pipeline for processing large documents
and have memory consumption problems, refer to the doc__estimate_dfs
function and set bigjobthreshold command option online help topics
(Arbortext Editor or Arbortext Publishing Engine Interactive) for information on
improving content pipeline processing.

122 Configuration Guide for Arbortext Publishing Engine

Usage Report
You can generate a Usage Report containing information about client usage and
transactions. It lists clients, IP addresses, the number of transactions requested by
each client, and when the most recent transaction was performed. The data does
not persist between sessions and is not saved to disk. You can save the report
using the web browser's File ▶▶ Save capability.

Requesting a Zip Archive for
Troubleshooting
You can retrieve a zip archive of application, document type, custom directory,
enviroment, preferences, cache, and configuration information affecting the
Arbortext PE sub-processes. This action is available from the Application Save
link on the Arbortext Publishing Engine index page. You can also run Tools ▶▶
Save Application on the Arbortext Editor client requesting publishing processing
from Arbortext Publishing Engine. Use these methods to retrieve the set of
information that the PTC technical support staff would need to help troubleshoot a
problem you have reported.
You can retrieve a zip archive of everything in the application save archive plus
server environment and publishing information from the Arbortext PE server. This
action is available from the All Available Information link on the Arbortext
Publishing Engine index page. Use All Available Information to retrieve a larger set
of information that the PTC technical support staff would need to help
troubleshoot a problem you have reported.

Requesting a Rescan of Publishing
Configuration
This link instructs an Arbortext PE sub-process to scan the publishing
configuration and reload the cache used by Arbortext Editor clients. This action is
available from the Rescan Publishing Configuration link on the Arbortext
Publishing Engine index page. Use Rescan Publishing Configuration to update the
document type information used by Arbortext Editor clients without restarting
Arbortext Publishing Engine or its Arbortext PE sub-processes. The Rescan
Publishing Configuration process will scan the document types available and add
any news ones to the list.

Reloading Scripts
This link instructs Arbortext PE sub-processes to reload custom ACL, JavaScript,
and VBScript scripts. This action is available from the Reload Subprocesses link
on the Arbortext Publishing Engine index page. Use Reload Subprocesses to load

Requesting Administrative Information 123

changes you've made to ACL, JavaScript, and VBScript files without restarting
Arbortext Publishing Engine or its Arbortext PE sub-processes. This function
reloads ACL, JavaScript, and VBScript programs from the PE_HOME/custom/
init subdirectory. It also clears the previous stylesheet cache and loads changed
stylesheets.
The Arbortext PE sub-process doesn't reload its initialization files until it receives
the next request for processing. This feature is especially convenient in the
development and testing phase, when you may need to reload your scripts
frequently without the need to stop and start Arbortext Publishing Engine.

Note
Reload Subprocesses (and the f=init function) does not affect Java
applications. After an Arbortext PE sub-process has started, its JVM can't
reload a .class or .jar file. If you change a Java application, you must
stop and restart the servlet container to make the updated Java application
available to Arbortext Publishing Engine.

Running the Samples
In the Test Arbortext Publishing Engine section, you can convert a sample XML
file to the specified formats, all supported by the Arbortext Publishing Engine
built-in conversion feature. Consult the Programmer's Guide to Arbortext
Publishing Engine for information on using it.

Note
When you specify the HTML output, graphics will not be displayed in the
returned file. This request simply returns the HTML page. Ordinarily, graphics
and the document are returned in a zip archive, which can't be displayed in a
web browser.

You can also import a variety of sample documents into XML. Consult the
Reference Guide to Arbortext Import and the online help for information on using
Arbortext Import.
The PE Test Applications are sample applications in Java, JavaScript, VBScript,
and ACL that return an HTML report about the Arbortext PE server environment.
The samples are useful to obtain this information, as well as to show how an
application is implemented. Refer to the Programmer's Guide to Arbortext
Publishing Engine for more information.

124 Configuration Guide for Arbortext Publishing Engine

9
Troubleshooting Arbortext

Publishing Engine Operations
Using Arbortext Publishing Engine Interactive for Testing ... 126
Troubleshooting Publishing .. 126
Using the Arbortext Publishing Engine Test Utility .. 127
Troubleshooting Errors .. 127
Getting Trace Information... 128
Publishing Issues .. 129
Reporting Problems to PTC Technical Support .. 130

Troubleshooting tips cover interactive testing, tracing and diagnostic utilities, log
files, and virtual memory out of space error. If you are having trouble with
licensing, refer to the Arbortext Publishing Engine Licensing chapter of
Installation Guide for Arbortext Publishing Engine.

125

Using Arbortext Publishing Engine
Interactive for Testing
Occasionally, you may find it helpful to launch Arbortext Publishing Engine
Interactive for testing or troubleshooting purposes. Launch Arbortext Publishing
Engine Interactive from its shortcut on your PTC program group.

Note
If you've configured Arbortext Publishing Engine to run as a specified user
account, you must log in using that account if you want to run Arbortext
Publishing Engine Interactive. When Arbortext Publishing Engine is
configured this way, Windows doesn’t allow Arbortext Publishing Engine
Interactive to run under a different user account for security reasons. For more
information about configuring Arbortext Publishing Engine to run as a
specified user account, refer to Installation Guide for Arbortext Publishing
Engine.

Troubleshooting Publishing
When Arbortext Editor is using Arbortext Publishing Engine for publishing
documents, you can gather transaction information on the Arbortext PE server
from the Arbortext Publishing Engine index page. Refer to Monitoring the
Transaction Archive on page 115 for more information.
In a publishing request sent from Arbortext Editor, users can choose transaction
names containing Unicode non-ASCII characters. These characters are sent as part
of the query parameters contained in the HTTP request. As a result, Tomcat needs
to be configured to encode non-ASCII characters using UTF-8.
Edit the Tomcat configuration file conf/server.xml and add the attribute
URIEncoding="UTF-8" to every Connector that is in use (not commented
out) in the file.

Note
The URIEncoding="UTF-8" attribute is a global setting and affects every
servlet running under Tomcat.

126 Configuration Guide for Arbortext Publishing Engine

Troubleshooting on the Arbortext Editor Client
The Arbortext Editor client can also generate additional publishing and logging
files useful for troubleshooting by setting set debugcomposition to on
(available in the Advanced preferences from Tools ▶▶ Preferences) and then
running the Tools ▶▶ Save Application. By default, set debugcomposition is
turned off.

Using the Arbortext Publishing Engine
Test Utility
The Arbortext Publishing Engine Test Utility is an interactive test tool that you
can use to test Java, JavaScript, and Arbortext Command Language (ACL)
Arbortext Publishing Engine applications, as well as Arbortext Publishing Engine
document conversion parameters.
The Arbortext Publishing Engine Test Utility lets you specify the parameters and
their values for custom Arbortext Publishing Engine applications. The utility
constructs a query string from these parameters and values, and then validates this
string. You can also run tests, and the utility reports the results. If errors occur,
they're included in the report.
Once you have created a list of tests, you can save them to disk as an XML file.
You can then reload the file, and run all, or some of, the tests. You can launch the
Arbortext Publishing Engine Test Utility as a stand-alone program or in embedded
mode from the Arbortext Publishing Engine Interactive Tools menu. Refer to the
Test Utility User's Guide for information on using it.

Troubleshooting Errors
Review the information for how to use the tracing and logging parameters in the
e3config.xml file, as well as other tracing and logging tips. If you're
troubleshooting Arbortext PE sub-process startup problems, you can check the
transaction archive.
When you're troubleshooting the Arbortext Publishing Engine, you may decide to
run Arbortext Publishing Engine Interactive. If you created a specific user account
for Arbortext Publishing Engine, be sure to log on the system with that user
account name to better simulate its environment.
You can also run Arbortext Publishing Engine Configuration program from your
PTC program group. It reports information about your setup, including COM
registration. You can also check your Tomcat integration.
Be sure to check all log and temporary directory folders used by the servlet
container and the Arbortext PE server. Some of these may be explicitly set in the
e3config.xml file. Check that the paths specified there exist on the system.

Troubleshooting Arbortext Publishing Engine Operations 127

The Tomcat log files in TOMCAT_HOME\logs contains log messages written by
the Arbortext PE Request Manager. The pelog.xml file contains log4j
messages that can be used for troubleshooting.

Note
• If the Tomcat Windows service won’t start, it’s possible that it can’t find

msvcr71.dll. Try updating the Windows PATH environment variable to
add the JRE bin directory. For example:
C:\Program files\Java\jre1.1.8_45\bin;

Tomcat has an AJP connector defined in server.xml which monitors port
8009. However, if port 8009 is already in use, Tomcat doesn't address the
conflict. Arbortext Publishing Engine Configuration configures isapi_
redirect.properties to use port 8009 to integrate with Tomcat.

Getting Trace Information
The Arbortext Diagnostics tool is a program available only on Windows that
displays tracing information. It tracks identification information, requests and
responses, and exceptional conditions. You can launch it from the shortcut called
Arbortext Publishing Engine Diagnostics in your PTC program group.
When an Arbortext PE sub-process starts, it launches an agent that gathers
information from the Arbortext PE Request Manager and its Arbortext PE sub-
processes. The agent passes it to the Arbortext Diagnostics program which has two
tabs:

• Trace Log tab displays tracing messages.

Tracing messages about the Arbortext PE Request Manager and Arbortext PE
sub-processes are relayed to Trace Log.

On the Arbortext Diagnostics menu, you can choose File ▶▶ Edit Trace Log to
send the tracing messages to your default text editor. From the text editor, you
can save the log to a file. If you are reporting a problem, you should generate
and send this file with any other diagnostic information to Technical Support.

• Module List tab displays identification information about the Arbortext PE
sub-processes as well as:

○ Host machine name and user name
○ Status: running or busy (that is, no response in 1/10 second)
○ Process ID of the Arbortext PE sub-process
○ Build number of the Arbortext PE sub-process executable

128 Configuration Guide for Arbortext Publishing Engine

○ Full path to the binary that was executed
From the Arbortext Diagnostics window, you can choose Options ▶▶ Preferences to
set the buffer size for the trace log and remember the window's screen position
when the program is restarted. You can choose Options ▶▶ Always On Top to keep
the Arbortext Diagnostics window on top of other application windows. Your
choices are saved to the directory where Arbortext Diagnostics started.
If Arbortext Diagnostics is not running, Trace Log information is discarded. After
you start Arbortext Diagnostics, subsequent tracing information is acquired and
displayed.

Publishing Issues
In a publishing request sent from Arbortext Editor, users can choose transaction
names containing Unicode non-ASCII characters. These characters are sent as part
of the query parameters contained in the HTTP request. As a result, Tomcat needs
to be configured to encode non-ASCII characters using UTF-8.
Edit the Tomcat configuration file conf/server.xml and add the attribute
URIEncoding="UTF-8" to every Connector that is in use (not commented
out) in the file.

Note
The URIEncoding="UTF-8" attribute is a global setting and affects every
servlet running under Tomcat.

When publishing very large documents to PDF on Windows, the publishing
process may fail with an Out of virtual memory space error message. This
situation can occur when the publishing process encounters a Windows 2GB
memory addressing limitation. You can update your Windows boot.ini file to
address 3GB of memory using the instructions provided on Microsoft's web site
at:
www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx

Caution
Ensure that you make the change exactly as described in the Microsoft
documentation. Incorrectly modifying system files can leave your workstation
in an unstable state.

Troubleshooting Arbortext Publishing Engine Operations 129

http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx

Reporting Problems to PTC Technical
Support
If you are troubleshooting a custom application in consultation with PTC
Technical Support, you can save the document, stylesheet, and environment
information necessary to reproduce a problem publishing a document. You can run
Tools ▶▶ Save Application on the Arbortext Editor client requesting publishing
processing from Arbortext Publishing Engine, or by performing the application
save on the server using the Application Save link on the Arbortext Publishing
Engine HTML page, available from a URL like the following:
http://server-name:port/e3/

As part of a support call, you may be asked to collect all available information
from the server using the All Available Information link on the Arbortext
Publishing Engine index page.

130 Configuration Guide for Arbortext Publishing Engine

10
Repository Connection Sample

Script
Connecting to a Repository Adapter.. 132

Arbortext Publishing Engine supports a connection to a repository using a script
placed in the Arbortext PE server custom\init directory. A sample connection
script is available from the e3\samples directory.

131

Connecting to a Repository Adapter
JavaScript sample functions provide a starting point for implementing repository
connections using Arbortext Publishing Engine. A sample JavaScript function in
PE_HOME\e3\samples\javascript\e3samples.js shows how to
establish a repository connection. The function name is specified in an f=
javascript HTTP request to Arbortext Publishing Engine. You must update
the list of AllowedFunctions in the e3config.xml configuration file to
add the JavaScript function names you want to use. Place your modified
JavaScript file in PE_HOME\custom\init. The functions in it are
automatically loaded when the Arbortext PE sub-process starts.

Note
If repository credentials or other sensitive information is stored in web.xml
or e3config.xml, you should remove permission to access the ACL,
JavaScript, VBScript and Java sample applications from the Allowed
Functions list in the e3config.xml configuration file. These sample
applications display the global parameters, which would be a security issue if
the parameters contain confidential information.

You can give a specific Arbortext Publishing Engine user account exclusive
permission to read a file containing user credentials. These sample functions show
how to read such a file on the server and pass the credentials. The function can
retrieve and pass a valid username and password to establish the repository
connection.
The sample function repository_connect_windchill establishes a
connection to Windchill PDMLink or Arbortext Content Manager with the PTC
Server connection.
If you will be using these samples to initiate a permanent connection to the
repository so that Arbortext Publishing Engine operations such as f=convert
will have access to the repository's objects, the session.disconnect();
line in the script will need to be removed or commented out in the function.
By default, Arbortext Publishing Engine runs on Windows under a local account
called SYSTEM. You can create a different user account for Arbortext Publishing
Engine (see Installation Guide for Arbortext Publishing Engine for instructions).
Access to files on a Windows server machine is controlled by NTFS security. You
can give this specific Arbortext Publishing Engine user account exclusive
permission to read from a particular file.
After configuring an Arbortext Publishing Engine user account, set the
permissions on your credentials text file to give exclusive read access to the
Arbortext Publishing Engine user account. All other accounts should have no
access. To test the Arbortext Publishing Engine user account's access to the secure

132 Configuration Guide for Arbortext Publishing Engine

file, log in to Windows as the Arbortext Publishing Engine user ID and try to
access the file. After you've excluded other users with accounts on your system,
you can log in using one of those accounts and make certain the file is not
accessible.
Using an ASCII text file for the password file prevents someone from trying to
obtain access to the file using a HTTP request containing the f=convert
function. An Arbortext Publishing Engine request to convert and return a text file
will fail, even if the request specifies the correct path and file name for the
credentials file.

Repository Connection Sample Script 133

Index

A
applications
allowing in e3config.xml file, 107

Arbortext Publishing Engine
configuration
testing, 21

C
cache manager, 92
client function
allowing in e3config.xml file, 107

configuration files
getting values from, 69

configuration parameters
retrieving the values, 69

configuring Arbortext Publishing
Engine
testing, 21

configuring PE
Advanced tab, 63

F
file prefix
temporary, 83

file suffix
temporary, 83

I
initializers, 109

P
PE server

usage report, 123

R
request handler, 83
Arbortext Publishing Engine, 83

request selector, 89

S
Sub-process location, 82
Sub-process pool, 100
default, 106

T
temporary directory, 82
temporary file prefix, 83
temporary file suffix, 83
test sets, 91
testing Arbortext Publishing Engine
configuration
using Arbortext Publishing Engine
index page, 21

W
Windchill Visualization Service, 105

135

	About This Guide
	Preparing to Configure Arbortext Publishing Engine
	Arbortext Publishing Engine Tools and Resources
	Components of Arbortext Publishing Engine
	Initialization Process
	Arbortext PE Request Manager Startup

	Load Balancing and Clustering
	Modifications Made by Requests
	Using the Administration Tools

	Monitoring and Reporting Using a Web Browser
	View Arbortext Publishing Engine Information
	Administer Arbortext Publishing Engine
	Test Arbortext Publishing Engine

	Configuring Arbortext Editor to Use Arbortext PE server
	Publishing Configuration
	Arbortext Publishing Engine Security Framework
	Enabling the Security Framework
	Configuring Security Constraints
	Configuring Users and Roles
	Configuring Roles on Arbortext Publishing Engine
	Configuring Users and Roles in Apache Tomcat

	Security Framework Logging
	Customizing the Security Framework

	Understanding Transactions on the Arbortext PE server
	Transaction States
	Transaction Notifiers

	Using the Transaction Archive

	Understanding Queuing on the Arbortext PE server
	How Queuing Works
	Configuring a Queue Manager
	The Arbortext Publishing Engine Queue Manager

	Configuring Queues
	The Basic Arbortext Publishing Engine Queue

	The Queued Transaction Scheduler
	Queuing Query Parameters
	Queuing for Arbortext Editor Clients
	Monitoring Queues

	Understanding Publishing Rules
	Managing Publishing Rules
	Deploying Publishing Rules

	Windows Configuration
	Configuring a User Account on Windows
	Verifying the Specified User Account

	Using the Arbortext Publishing Engine Configuration Program
	Setup Tab
	Advanced Tab
	Tomcat Tab
	About Tab

	Integrating Arbortext Publishing Engine with Apache Tomcat

	Setting Configuration Parameters
	The e3config.xml Configuration File
	Arbortext Publishing Engine Global Parameters
	The Global Active Transaction Parameters
	The Global Transaction Name Parameter
	The Arbortext Publishing Engine Security Framework Parameter
	The Global Transaction Archive Parameters
	The Global Queuing Parameters
	Global Queuing Parameters for Arbortext Editor Clients

	The Global Debugging Parameters
	The Global Application Logging Parameters
	Parameter Search Order
	Application Log Output

	The Global com.arbortext.e3.epicInstallation Parameter
	The Global com.arbortext.e3.tempFileDirectory Parameter
	The Global com.arbortext.e3.tempFilePrefix Parameter
	The Global com.arbortext.e3.tempFileSuffix Parameter

	Specifying a Request Handler
	The RequestHandler for Arbortext Publishing Engine Functions

	Specifying Request Selectors
	Specifying Test Sets
	Specifying Caches
	Specifying Queues
	The active-interval Attribute
	The hold-all Attribute
	The initial-state Attribute
	The max-concurrent-transactions Attribute
	The previous-queues Attribute
	The scheduling-option Attribute
	Queuing Function Reference
	Configuring a Notifier
	Sample Notifier

	Configuring Sub-process Pools
	The cascade Attribute
	The default Attribute
	The enabled Attribute
	The id Attribute
	The maxBusyInterval Attribute
	The maxConcurrentQueuedTransactions Attribute
	The maxIdleInterval Attribute
	The maxLifetime Attribute
	The maxShutdownInterval Attribute
	The maxSubprocesses Attribute
	The maxSubprocessWait Attribute
	The minSubprocesses Attribute
	The subprocessEnvironment Attribute
	The workThreadInterval Attribute
	SubprocessContext Parameter
	The Windchill Visualization Service Sub-process Pool
	The Default Sub-process Pool
	Specifying a Dedicated Queuing Pool
	Specifying a Sub-process Pool for Arbortext Editor Clients

	Specifying the AllowedFunctions List
	How to Deploy Custom Applications

	Specifying Initializers

	Requesting Administrative Information
	Requesting a Status Report
	Requesting a License Report
	Requesting a Version Report
	Monitoring the Transaction Archive
	The Transaction Detail Page
	Application Logging and Intermediate Files

	Requesting the Queue Reports
	The Queue List Page
	The Transaction List Page

	Requesting a Java Properties Report
	Requesting Web Services Definitions
	Requesting a Publishing Configuration Report
	Publishing Management for Arbortext Editor Clients

	Usage Report
	Requesting a Zip Archive for Troubleshooting
	Requesting a Rescan of Publishing Configuration
	Reloading Scripts
	Running the Samples

	Troubleshooting Arbortext Publishing Engine Operations
	Using Arbortext Publishing Engine Interactive for Testing
	Troubleshooting Publishing
	Troubleshooting on the Arbortext Editor Client

	Using the Arbortext Publishing Engine Test Utility
	Troubleshooting Errors
	Getting Trace Information
	Publishing Issues
	Reporting Problems to PTC Technical Support

	Repository Connection Sample Script
	Connecting to a Repository Adapter

	Index

