
Tutorial for Arbortext Import

Contents

About This Guide ...5
Prerequisite Knowledge ...5
Technical Support ..6
Documentation for PTC Products..6
Global Services ...6
Comments ..7
Documentation Conventions...7

Preface: About Arbortext Import Documentation...9
Guide to Documentation...10
Guide to This Document...10
Goals..10
A Quick Tutorial ... 11

Getting Started with Arbortext Import ...13
Launch Arbortext Import Workbench ...14
Creating a New Project Using Arbortext Import Workbench...............................18
Create a Transformation...19
Run a Transformation Object ..23
Arbortext Import Workbench, Supported Transformations30

Arbortext Import Workbench Interface ...31
Overview...32
Transformations ..33
Mapping Tab ...34
Advanced Details Tab ..36
File Menu..39
Transformation Menu...40
Tools Menu ...41
Help Menu ..43

Introduction to MapTemplates & MapObjects ...45
Overview of MapTemplates ..46
The Three Main Sections of MapTemplates ...46
Setting up a New MapTemplate ..48
Pre and Post-Processing Drivers ..52
Pre and Post-Processing Drivers Interface...53
Overview of MapObjects ..56
Main Functions of MapObjects..56
The Structure of a MapObject ...56
Creating a new MapObject ...58
MapObjects Details Pane ...67

File Processing Scenarios for Arbortext Import Supported Transformations71
Introduction ...72
Importing a Microsoft Word 2003 (.doc) document into XML72
Importing a Microsoft Word 2007 or 2010 (.docx) document into XML78
Importing an HTML document into XML...79

3

Importing a WordML document into XML ...79
Transforming Word, FrameMaker, and HTML Documents into DocBook81

Introduction ...82
Overview of the DocBook MapTemplates...82
How the Templates Work..83
How to Customize the DocBook Template ...87
Conclusion .. 129

Text Files ... 131
Parsing Text Files using Text Rules ... 131
How to Customize Configuration Files & Locations... 164

4 Tutorial for Arbortext Import

About This Guide

Note
Although still a part of the Arbortext technology stack, this feature has been deprecated
and is no longer supported by PTC.

The Arbortext Import Tutorial contains detailed, step-by-step tutorials for using Arbortext
Import. The document contains several tutorials, which build in complexity. The tutorial
guides you through the processes of building MapTemplates for parsing text files and
building MapTemplates to parse Word and HTML documents. The processes particularly
focus on using DocBook conversion templates. This document is available from the
Arbortext Import Workbench Help menu and in the Arbortext Editor Help Center.

This tutorial is not meant to be a replacement for a conceptual overview of how Arbortext
Import works. The Arbortext Import Tutorial is a companion to the Arbortext Import
Reference available in the Arbortext Editor Help Center.

Prerequisite Knowledge

Creating MapTemplates requires experience working with document types generally, and
with the specific document types that are the destinations of your MapTemplates.

Arbortext Editor and Arbortext Publishing Engine supporting documentation, along with
the Arbortext Import Tutorial can be found in the Arbortext Editor Help Center, available
as described in Documentation for PTC Products later in this section.

5

Technical Support

To contact PTC Technical Support, use the Contact Support and Customer Support Guide
links on support.ptc.com.

The PTC Support pages also provide a search facility for you to browse for knowledge
articles, best practices, and other information.

You must have a Service Contract Number (SCN) before you can receive technical
support. If you do not have an SCN, contact PTC Technical Support or Customer Care
Departments using the contact instructions found in your Customer Support Guide.

Documentation for PTC Products

You can access PTC product documentation using the following resources:

• Online Help

Click Help from the user interface for online help available for the product.

• Reference Documentation

PDFs of reference information are available from the Product Documentation area
of support.ptc.com.

Select the Arbortext tab to access the Arbortext Reference Documentation link.

• Help Center

Help Centers for the most recent product releases are available from the Product
Documentation area of support.ptc.com.

Select the Arbortext tab to access the Help Centers link.

You must have a Service Contract Number (SCN) before you can access the Arbortext
Reference Documentation or Help Centers links. If you do not have an SCN, contact PTC
Technical Support or Customer Care Departments using the contact instructions found in
your Customer Support Guide.

Global Services

PTC Global Services delivers the highest quality, most efficient and most comprehensive
deployments of the PTC Product Development System including Creo, Windchill,
Arbortext, and PTC Mathcad. PTC's Implementation and Expansion solutions integrate
the process consulting, technology implementation, education and value management
activities customers need to be successful. Customers are led through Solution Design,
Solution Development and Solution Deployment phases with the continuous driving
objective of maximizing value from their investment.

6 Tutorial for Arbortext Import

https://support.ptc.com/appserver/cs/portal/
https://support.ptc.com/appserver/cs/portal/
https://support.ptc.com/appserver/cs/portal/

Contact your PTC sales representative for more information on Global Services.

Comments

PTC welcomes your suggestions and comments on our documentation. You can submit
your feedback to the following email address:

arbortext-documentation@ptc.com

Please include the following information in your email:

• Name

• Company

• Product

• Product Release

• Document or Online Help Topic Title

• Level of Expertise in the Product (Beginning, Intermediate, Advanced)

• Comments (including page numbers where applicable)

Documentation Conventions

This guide uses the following notational conventions:

• Bold text represents exact text that appears in the program's user interface. This
includes items such as button text, menu selections, and dialog box elements. For
example,

Click OK to begin the operation.

• A right arrow represents successive menu selections. For example,

Choose File ▶▶Print to print the document.

• Monospaced text represents code, command names, file paths, or other text
that you would type exactly as described. For example,

At the command line, type version to display version information.

• Italicized monospaced text represents variable text that you would type.
For example,

installation-dir\custom\scripts\

• Italicized text represents a reference to other published material. For example,

If you are new to the product, refer to the Getting Started Guide for basic interface
information.

7

1
Preface: About Arbortext Import

Documentation

Guide to Documentation.. 10
Guide to This Document.. 10
Goals ... 10
A Quick Tutorial ..11

9

Guide to Documentation
The following user manuals will teach you how Arbortext Import works and how best to
customize it for your purposes:

• Arbortext Import Tutorial— This manual contains detailed, step-by-step tutorials
for using Arbortext Import, creating MapTemplates to parse text files, parsing
HTML and Word files, and also converting source documents into DocBook. This
document is available from the Arbortext Import Workbench Help menu and also
part of the Arbortext Editor Help Center.

• Arbortext Import Reference— This manual contains explanatory material about
Arbortext Import - including all of the key concepts, such as MapTemplates,
MapObjects, Text Parsing Rules, XML Parsing Rules, and ppXML. This document
is available from the Arbortext Import Workbench Help menu and also part of the
Arbortext Editor Help Center.

Guide to This Document
This document is meant to be a step-by-step tutorial on how to use Arbortext Import to
convert files into meaningful XML. This document contains several tutorials that build in
complexity.

This tutorial is not meant to be a replacement for a conceptual overview of how Arbortext
Import works, nor is it meant to be a reference manual. Refer to the Arbortext Import
Reference and Arbortext Import Workbench online help for conceptual and referential
information.

Goals
The goals of this tutorial are twofold. Specifically we want to:

• Provide you with a quick tutorial so you can get Arbortext Import working on your
system immediately

• Familiarize you with the different aspects of Arbortext Import, including:

– Creating and running sample transformations and MapObjects

– Creating and modifying MapTemplates

– Gaining an in-depth understanding of ppXML

– Becoming familiar with different file processing scenarios

– Understanding the debugging environment

– Understanding the terminology of Arbortext Import.

10 Tutorial for Arbortext Import

If you want to learn to use Arbortext Import, it is best to go through this entire tutorial
step-by-step and recreate these templates so that you can have a better understanding of
how to best use Arbortext Import.

A Quick Tutorial
The best way for you to learn about Arbortext Import is to start using it gradually. In that
vein, this tutorial has three parts.

• First, it will guide you through the quick process of transforming a Microsoft Word
document into a simple, stylistic-based XML that we call pre-processed XML, or
ppXML. We refer to the process of conversion from one format to another as a
transformation.

• Second, to illustrate different types of documents into ppXML, the tutorial will
show you how to transform simple HTML and Framemaker MIF documents into
ppXML, illustrating how similar it is to transform different types of documents into
ppXML.

• Third, this tutorial will show you how to transform an ASCII text file into simple,
yet semantic-based XML. This lesson will serve to expose you to the main portions
of Arbortext Import, MapTemplates, and MapObjects.

• Finally, this tutorial will guide you through the process of creating and modifying
MapTemplates and MapObjects.

Note
Many of the end results of the step-by-step tutorials are available in the examples project
that is shipped with Arbortext Import. To see the example project, choose File ▶▶Open ▶▶
Project and select Examples.xyz in the \Examples subdirectory. (The process of
how to open the example project is further described in Loading the Example Project on
page 18.)

Preface: About Arbortext Import Documentation 11

2
Getting Started with Arbortext

Import

Launch Arbortext Import Workbench .. 14
Creating a New Project Using Arbortext Import Workbench................................. 18
Create a Transformation.. 19
Run a Transformation Object .. 23
Arbortext Import Workbench, Supported Transformations 30

13

Launch Arbortext Import Workbench
To Launch Arbortext Import Workbench perform the following steps:

Update Arbortext Import Workbench Configuration
1. Choose File ▶▶Import ▶▶Import Workbench Configuration in Arbortext Editor.

Figure - 2.1

2. The Import Workbench Configuration window will open. This window shows the
path for home and the configuration directory. Here you will specify the path for
the Repository Directory. It is the directory where import related data is updated,
that is, the template directory (STDTemplates), TargetSchemas, and XSLT.

Figure - 2.2

14 Tutorial for Arbortext Import

• The repository path can be set either by manually giving the path in
Repository Directory:, or by clicking browse (...) to specify the location.

Figure - 2.3

• The generic repository used in this tutorial is <home>.

3. Once the path is set click Update.

Figure - 2.4

4. When you click Update, the application will prompt you for confirmation updates.
Click Yes to continue the configuration update procedure.

Getting Started with Arbortext Import 15

Figure - 2.5

5. The application will ask for further confirmation updates as in Figure 2.6. Click
Yes again to continue.

Figure - 2.6

6. This will result in enabling the New Import Project and Open Import Project
options in the Arbortext Editor File menu.

Creating New Import Project
1. Once the workbench configuration is successfully updated. In Arbortext Editor,
chooseFile ▶▶Import ▶▶New Import Project.

Figure - 2.7

2. The Browse For Folder window will open. To create a new import project, first
specify the location where you want to save the new project. For this purpose:

a. Create a new folder.

b. Enter a name for the newly created folder.

16 Tutorial for Arbortext Import

c. Click OK.

Figure - 2.8

3. As a result, an empty ImportProject.xyz opens in the Arbortext Import
Workbench. You can also open existing projects using the Arbortext Import
Workbench by selecting File ▶▶Import ▶▶Open Import Project.

Figure - 2.9

Getting Started with Arbortext Import 17

Loading the Example Project
An example project that can be loaded from the Arbortext Import Workbench is shipped
with Arbortext Import. To open the example project:

1. Select File ▶▶Open ▶▶Project from the Arbortext Import Workbench. The Select
Project window opens.

2. Specify the location where the example project is located: Arbortext-path
\lib\cpix\data\MyProjects\Examples.

3. Once Examples.xyz is specified click Open. The example project will replace
the already-opened project in the Arbortext Import Workbench.

Creating a New Project Using Arbortext
Import Workbench
You can also create a new project using Arbortext Import Workbench.

1. On the main window of Arbortext Import Workbench, click the File ▶▶New ▶▶
Project. The New Project dialog box is displayed as shown in Figure 2.10.

Figure - 2.10

2. In Project Name, highlighted in Figure 2.10, type the name of the project. You
should keep the project name short. A subdirectory will be created with the name of
the project, for example, “MyTestProject”.

3. The Project Location specifies the default location from where the new project can
be accessed. To change this location, click Browse and navigate to another
location.

4. Click OK to close the dialog box. An empty Arbortext Import Workbench is
displayed.

The list of transformations (if any) appears under the Transformations area and the
details of the transformations appear under Transformation Details. Each
transformation is a specific command to Arbortext Import to transform a given
source file (or set of source files indicated by wildcards, such as *.doc), using a
specified MapTemplate and options.

18 Tutorial for Arbortext Import

MapTemplates, which this tutorial will cover extensively later, contain the rules Arbortext
Import Workbench will use to transform existing content into XML.

Each time a file is referenced in a transformation, it is added to the list of the sample files
included in the project. MapTemplates and sample files are available in Source File: and
MapTemplate: under the Transformation Details pane of the Arbortext Import
Workbench.

Note
In the Arbortext Import Workbench, you can always select Manage Project Data from the
File menu to see a list of sample files and MapTemplates that are included in the current
project.

Create a Transformation
Now you are ready to create a transformation.

1. At the top of the Arbortext Import Workbench, you will see a New button just
under Transformations. Click this button to display the New Transformation
Wizard as shown in Figure 2.11.

Figure - 2.11

Note
Whether this wizard runs each time you click New is determined by the setting Use
New Transformation Wizard on the Tools menu in the Arbortext Import
Workbench.

Getting Started with Arbortext Import 19

2. The wizard will prompt you for a source file as highlighted in Figure 2.11. The
Source File is the initial document that is to be transformed.

• The Source File list shows any sample files that have been added to the
project to date.

• Find enables you to browse your hard drive for a source file. The sample
files are located at: Arbortext-path\samples\importexport .

Click Find to browse to the subdirectories and choose a Word
sample file, named such as, \word\articlemeaningfulxml.doc.

• URL is used to open the URL window as shown in Figure 2.12. Here you can
enter any URL of a source file to be transformed

• Click OK to continue.

Figure - 2.12

3. The sample source file will be included in the Source File. Click Next to continue
with the transformation process.

4. The next step is to choose a MapTemplate for your transformation. Select the
Custom /Other option for now, as shown in Figure 2.13.

5. Click Next.

Figure - 2.13

20 Tutorial for Arbortext Import

6. The Select to Direct Transformation window is displayed as shown in Figure
2.14. Note that all the standard templates are stored in the \Common subdirectory
of the <home>\STDTemplates directory.

• Find will automatically take you to this directory.

• Now choose your standard template for transforming a Word document into
ppXML. Choose Word2XMLJ.std; which specifies to use the Java Word
driver.

• If you click , the New MapTemplate Wizard will open. This wizard
can be used to create a new MapTemplate. Details of creating a new
MapTemplate using the MapTemplate wizard are given in Setting up a New
MapTemplate on page 48.

Figure - 2.14

Extensive use of the MapTemplate Editor will be further explained later in the
tutorial.

Note
The selection of the MapTemplate is directly dependent on the format of the source
file. For example, if the source file is a Word file, then a FrameMaker
transformation like MIF2XMLJ cannot be run on the file.

7. Click Next to display the Provide Transformation Nickname window.

8. The Provide Transformation Nickname window will prompt you to enter an
identifying Transformation Nickname. For example,

Getting Started with Arbortext Import 21

SampleWordTransformation or something similar as shown in Figure 2.15.
This will help remind you of the nature of this transformation.

Figure - 2.15

9. Click Next to continue.

10.At this point, you are presented with three options as highlighted in Figure 2.16.
You can select any of these options:

• Open/Edit MapTemplate—Opens the MapTemplate Editor to further edit
the selected template.

• Run Transformation When Complete— Immediately runs the
transformation using the preferences you just entered.

• Do Not Run Transformation When Complete—Does not run the
transformation, but will put the transformation, along with all your settings
into the transformation list on the main Arbortext Import Workbench.

22 Tutorial for Arbortext Import

For now select Do NOT Run Transformation When Complete.

Figure - 2.16

11. Click Finish to finish the transformation wizard.

12. The new transformation created will be added and displayed on the transformation
list of the project in the Arbortext Import Workbench. To save the created
transformation and the current project, select File ▶▶Save Project on the Arbortext
Import Workbench. The details of all the menus are given in 3 Arbortext Import
Workbench Interface on page 31.

Optionally, you can repeat this process to add more transformations for the following
sample files using the specified built-in templates:

• Arbortext-path\samples\importexport\html
\articleWhyConvert.htm, using the template Common\HTML2XMLJ.std.

• Arbortext-path\samples\importexport\frame
\sampledocument.mif, using the template Common\MIF2XML.std; which
is the Framemaker MIF driver.

Run a Transformation Object
Now, run the first transformation to transform a Word document into a simple XML
document using ppXML. (ppXML is explained in the Introduction to Pre Processing

Getting Started with Arbortext Import 23

XML (ppXML) section of the Arbortext Import Reference). The Arbortext Import
Workbench is shown in Figure 2.17.

Figure - 2.17

To run the transformation process, click Run Transformation on the main Arbortext
Import Workbench. This window contains important information that helps explain how a
transformation took place, and what modifications may be needed to correct the
transformation.

You will likely spend a lot of time using this Transformation window during the course
of your document conversions, and the fine-grained ability to debug a transformation is a
key part of the Arbortext Import methodology.

Console Output Display
The Transformation window shown in Figure 2.18 highlights the Console Output
Display tab, which displays the output of the transformation process. This tab has a
console that shows a series of output messages that give the status of the process. It also

24 Tutorial for Arbortext Import

highlights any errors and warnings that might come out during the transformation -
including errors in the validation of the resulting XML.

Figure - 2.18

Intermediate Results tree
The Intermediate Results tree on the left-hand side of the Transformation window as
highlighted in Figure 2.19, shows a list of all the files that were generated by running the
Transformation Object.

These files include the original source file, the final destination file, and intermediate files
that were produced such as debug files. In this case, the Transformation Object has only

Getting Started with Arbortext Import 25

one source file, and there were no intermediate files generated. For more on intermediate
files, see the subsequent chapters that describe MapTemplate pre & post-processing.

Figure - 2.19

Intermediate Results Display
For each file generated, the Intermediate Results Display tab as highlighted in the
Transformation window in Figure 2.20, can be used to quickly look at the file and see the
hierarchical nature of the relevant XML that was produced. This type of a view makes it
easy to debug how the transformation was done. Notice that this view includes both
attributes and text children of output XML.

26 Tutorial for Arbortext Import

Figure - 2.20

Several buttons on the top of the Intermediate Results Display tab make it easy for you
to further inspect the resulting XML.

• View launches your default XML viewer, typically Arbortext Editor.

• XSL allows you to view the XSLT applied to the XML. XSLTs are used for
transforming an XML file into various formats for publishing, including HTML or
another XML document. For more on applying XSLT as part of the transformation,
see the Pre and Post Processor Drivers section of the Arbortext Import Reference.

For files that are in ppXML format, as this particular XML is, ppRun.xsl is a
provided XSLT found in the <home>\XYZConfig\XSLT\ppXMLtoHTML. For
more on ppXML and the XSL, see the Introduction to Pre Processing XML
(ppXML) section of the Arbortext Import Reference.

• Detach is used to view the ppXML file displayed within the Intermediate
Results Display tab in a separate window. This feature can be useful when you
have multiple intermediate files, and you want to make a visual, side-by-side
comparison of the intermediate files.

Search
With a ppXML node selected in the Intermediate Results tree in the Transformation
window, click Search in the Intermediate Results Display tab to open a separate Search
window as shown in Figure 2.21. This window allows you to search you XML in
different ways, including using an XPath expression.

Figure - 2.21

The Search dialog box is displayed from a variety of windows in Arbortext Import
whenever you click Search. The dialog box provides the means to search the document
ppXML tree views shown in the MapTemplate Editor and the transformation results
window.

Getting Started with Arbortext Import 27

In most cases, you search through ppXML markup and text, but in the transformation
results window you can search through your final XML results.

When a match is found, it is selected and displayed in the corresponding document tree
view. Following are options available on the Search window:

• Search Expression— Type the text, element name, attribute name or XPath
expression to be used in the search (depending on Search Type option selected).
All search expressions are case sensitive.

• Search Type— This group of options determines how the Search Expression
will be interpreted:

– Search For Text— Search for a text string that matches the Search
Expression value. Only single text nodes are examined. Text that spans
descendent nodes is not recognized as a match.

– Search For Element— Search for an element that matches the Search
Expression value.

– Search For Attribute— Search for an attribute whose name matches the
Search Expression value. To search for an attribute with a specific value, type
the desired value in with value next to the option, otherwise any attribute will
be selected with matching names.

– XPath Search— Search using an XPath expression. With XPath expressions
you can search for text, elements, and attributes in a wide variety of methods.
One way to search for text using XPath is the expression:

//*[contains(text(),’search text’)],

where search text is the search string.

• Search from— This group allows you to specify the starting point for the search
process.

– Root Element— Click to begin the search at the root element at the top of the
document tree.

– Current Element—Click to begin the search at the currently selected node in
the document tree.

• Find— Click to begin your search. When Current Element is selected, click Find
to find subsequent matches in the document tree. Click this button again to search
forward from the last found node in the document tree.

• Close—Click to close this dialog box.

• Help—Click to display the help topic for this dialog box.

28 Tutorial for Arbortext Import

View As HTML
You can use the View As HTML tab to view the transformed file. You’ll see that the
ppRun.xsl file is already there in the XSL File, as highlighted in the Transformation
window shown in Figure 2.22.

Using Browse you can select any other required XSL file. You can click Reload

to view the ppXML transformed into HTML in the embedded browser
window. This enables you to quickly review your transformed document to see the kind
of XML you will get, and verify the transformed document to ensure it has all the
information you’ll need for further processing.

To locate a particular piece of text in the ppXML file:

1. You can select any text from the HTML file loaded in the embedded browser

2. Click the Locate Selected Text in XML

3. Select the Intermediate Result Display tab and you will see that the selected text
will be highlighted in the ppXML file in the Hierarchy Tree.

You can click Clear to clear any ppXML HTML view loaded in the embedded browser.

Figure - 2.22

Notice that in this first example, the Word document is transformed only into a simple
XML format. You did not extract any meaningful information or structure from the
ppXML. To see a more complete example, you might want to transform ppXML into a
real, semantic-based XML format such as DocBook, XML, Legal XML, or any custom
DTD or schema that you have. Arbortext Import comes with MapTemplates that you can
customize for your source content to transform documents into DocBook.

MapTemplatesFor more on the DocBook , see Overview of the DocBook MapTemplates
on page 82.

Getting Started with Arbortext Import 29

For more on using Arbortext Import Workbench to transform into your own custom DTD,
refer to the MapTemplate Editor,Working with MapObjects, and Text Parsing Rules
sections of the Arbortext Import Reference.

Arbortext Import Workbench, Supported
Transformations
Arbortext Import supports the following transformations:

• Transform to DocBook XML

• Word Document Transformations

• Docx (Word 2007 and 2010) Transformations

• Word ML Document Transformations

• HTML Document Transformations

• Text File Transformations

• Transform FrameMaker to XML

Note
For a complete list of supported formats, including post-release updates, refer to “Word
Processing Compatibility for Import feature of Arbortext Import/Export” in support.ptc.
com.

30 Tutorial for Arbortext Import

https://support.ptc.com/partners/hardware/current/support.htm
https://support.ptc.com/partners/hardware/current/support.htm

3
Arbortext Import Workbench

Interface

Overview.. 32
Transformations... 33
Mapping Tab .. 34
Advanced Details Tab.. 36
File Menu ... 39
Transformation Menu .. 40
Tools Menu .. 41
Help Menu ... 43

This section describes the Arbortext Import Workbench and its capabilities.

31

Overview
The first screen you see when you launch Arbortext Import, as explained in Launch
Arbortext Import Workbench on page 14, is the Arbortext Import Workbench main
window. The Arbortext Import Workbench is the window where you can create and
manage projects when a project consists of one or more individual transformations.

Each transformation in a project uses the following files:

• Source File – A sample source file that is being converted. Each source file in the
project is considered a sample source file that can be used in the MapTemplate
Editor.

• MapTemplate – The MapTemplate that will be used for converting the source
content.

• Destination File – The output file created by the transformation. Often you will use
the default value in this field, which is just the name of the source file with an
additional extension. For example, the default destination file for mydoc.doc is
mydoc.doc.xml.

Each transformation can be saved, debugged, and run again later.

A project is a way to group together one or more transformations. You should create your
own project for your own transformations.

32 Tutorial for Arbortext Import

Transformations
Arbortext Import Workbench shows you the list of transformations that are in this
particular project as shown in Figure 3.1.

Figure - 3.1

You can manipulate the transformations with the following buttons, as highlighted in
Figure 3.1.

• New – Creates a new transformation. If the menu item Use New Transformation
Wizard under the Tools menu is checked, this button launches the New
Transformation Wizard The New Transformation Wizard will guide you through
the selection of a source file, the selection or creation of a MapTemplates, and the
selection of a transformation nickname. If the menu item Use New Transformation
Wizard under the Tools menu is unchecked, you will have to fill this information
out directly in the Mapping tab for the newly created transformation.

• Clone – Clones the currently selected transformation. The cloned transformation is
identical to the original, with the text Clone of being added to the start of the
transformation.

Arbortext Import Workbench Interface 33

Note that any overridden options are also cloned.

• View – Opens the last run of the selected transformation in the Transformation
window. If the transformation has never been run, then you will see an error dialog
box when Arbortext Import tries to locate the results manifest file.

• Delete – Deletes the selected transformation. Awarning dialog box appears before
you are allowed to make the deletion.

• Run Transformation – Launches the selected transformation in the
Transformation window. Note that you can also launch the selected transformation
by double-clicking it.

Mapping Tab
The Mapping tab under the Transformation Details pane, as highlighted in Figure 3.2,
encloses the common options that must be specified for each and every transformation.

Figure - 3.2

The following options are available on the Mapping tab:

34 Tutorial for Arbortext Import

• Transformation Nickname— Edit the name of the selected transformation here.

• Source File— The source file that will be transformed. Note that multiple files in
the same directory can be entered using wildcard syntax, such as *.doc, *.xml.

– Find— Enables you to navigate to the source file on your local system.

– View—Opens the source file using the application associated with its
extension.

– URL— Enables you to type in a URL to download a file if the file resides on
the network server. Note that you must specify a destination file if you use a
URL-based source file. You cannot simply use the default destination provided
by the Arbortext Import Workbench main window.

• MapTemplate— The MapTemplate that will be used to direct the transformation.

The MapTemplate is specified by a package and a MapTemplate name, such as
Common\Word2XMLJ. The package is the directory where the MapTemplate is
stored, relative to the base MapTemplate directory, <home>\STDTemplates.
The MapTemplate name is just the file name without the *.std extension.

– Find— Enables you to navigate to and select another MapTemplate on your
local system.

– New—Creates a new MapTemplate. If the menu item Use New MapTemplate
Wizard under the Tools option is selected, this button launches the Use New
MapTemplate Wizard. The Use New MapTemplate Wizard will guide you
through the creation of a MapTemplate, including its name, the type of source
content it operates against, whether or not it should validate against a DTD or
schema, and so on. If the menu item Use New MapTemplate Wizard under the
Tools menu is unchecked, you will have to fill this information out directly in
the MapTemplate Editor.

– Edit— Launches the MapTemplate Editor for the particular MapTemplate
enabling you to modify the MapTemplate.

• Destination File— The file name of the converted file after the transformation
process. This has a Use Default Value checkbox next to it. If there are multiple
files in the source document (for example, *.doc), you can use the default file
name for outputs or you can specify a pattern for the output file name using the
following special items:

– "{Input}" — The full input file name and path.

– "{Output}" — The full output file name and path (this will be a generated
name for each step of the transformation).

– "{InputDirectory}" — The directory of the source file.

– "{OutputDirectory}” — The directory of the destination file.

– "{InputFileName}" — The input file name only, with no path information
(including extension).

Arbortext Import Workbench Interface 35

– "{OutputFileName}" — The output file name only with no path
information (including extension).

– "{InputFileNameNoExt}" — The input file name only with no path and
no extension.

– "{OutputFileNameNoExt}" — The output file name only with no path
and no extension.
Find enables you to navigate to a particular file that will act as the destination
location and name. Note that the selected file will be replaced by the output of
the selected transformation.

Advanced Details Tab
The Advanced Details tab enables you to specify additional options for each single
transformation. The options on this tab are:

• Run Preprocessing Driver— (DEFAULT: True) This checkbox determines if the
preprocessing drivers for the current MapTemplate should run. This is useful if you
are working with a large document and are constantly re-running the transformation
during development. Setting this checkbox to “unchecked” means that the
Preprocessing Drivers will not run each time; they will only run when necessary.
These options are shown in Figure 3.3.

– override— This button brings up the Edit Override Options dialog box. Use
this dialog box to override the options that are by default defined for the
Preprocessing Driver in the MapTemplate. The override options apply only for
the selected transformation.

This feature enables you to modify different preprocessor options for a given
MapTemplate without changing any of the options in the MapTemplate itself.
Doing so can be very useful if you are trying out a previously developed
MapTemplate on a different source file, and you want to experimentally change
its preprocessor options. If the experiment proves successful, and you want to

36 Tutorial for Arbortext Import

change the options for every single run of this MapTemplate, then you can
make the necessary changes inside the MapTemplate.

Figure - 3.3

• Run Main MapObject— Lets you turn off MapObject processing for a specific run
of a MapTemplate.

• Run Post-Processing Driver— Lets you turn off Post-Processing Drivers for a
specific transformation with a MapTemplate, similar to the way you can turn off
Preprocessing Drivers as discussed above.

– override— Lets you override specific Post-Processing options for the first
Post-Processing Driver in a MapTemplate, again for a single run of the
MapTemplate.

• Debugging Options— Turn on or off debugging logs for a given transformation.
Debugging logs can be quite large and should only be used when developing and
debugging a MapTemplate. Choosing Verbose option helps to record more
information than the information recorded in the usual debugging mode.

• Enable Debug Comments— Enables and disables comments during debugging.
These comments appear in MapTemplates.

Arbortext Import Workbench Interface 37

• More Options—Displays the Advanced Transformation Options dialog box, as
shown in Figure 3.4, which has several more options:

Figure - 3.4

– Transformation Status— Turns off processing of a single transformation. This
option is typically useful only in projects where you are running multiple
transformations (like when you select Run All from the Transformation menu
on the Arbortext Import Workbench main window), or when you are using the
Arbortext Import API.

– Document Security Options— If you have a document that requires a user
name or password to open or access the document.

– Miscellaneous Options— These options are useful in certain, very specialized
circumstances like:

· Optimize for Large Text Files—Use only when parsing very large text
files and not for processing documents (Word, FrameMaker, etc.). In this
case Arbortext Import uses a more sophisticated string handling approach
internally.

· Do Not Use Temp Directory for Intermediate Files—Rather than having
the intermediate XML files that are generated in a given transformation
appear in a temporary file under the project directory, Arbortext-
pathlib\cpix\data\MyProjects\Examples, you can specify the
temporary files location which can be stored in the same location as that of
the source file. This option is typically only used when publishing from
XML that has relative image paths, and not when converting a document to
XML.

· Do Not Create Temp Files—Under normal operation, Arbortext Import
creates temporary files during each step in a multi-step transformation. With

38 Tutorial for Arbortext Import

this option selected, however, the temporary files are not created, and
instead are passed in-memory.

File Menu
Following are descriptions of the Arbortext Import Workbench File menu choices:

Figure - 3.5

• New

– Transformation— Creates a new transformation. If Use New Transformation
Wizard on the Tools menu is checked, this transformation launches the New
Transformation Wizard The New Transformation Wizard guides you through
the selection of a source file, the selection or creation of a MapTemplate, and
the selection of a transformation nickname. If Use New Transformation
Wizard on the Tools menu is unchecked, you will have to fill this information
out directly in the Mapping tab for the newly-created transformation.

– Project—Displays the New Project dialog box, which prompts you for the
name of the project. Each project is stored in a subdirectory of this directory,
and each project has a manifest file called projectname.xyz.

– MapTemplate— Creates a new MapTemplate. If Use New MapTemplate
Wizard on the Tools menu is checked, this menu item launches the New
MapTemplate Wizard. The New MapTemplate Wizard guides you through the
creation of a MapTemplate, including creating the template name, identifying
the type of source content the MapTemplate will process, the document type
against which the resulting XML will be validated, and so on. If Use New
MapTemplate Wizard on the Tools menu is unchecked, you will have to fill
this information out directly in the MapTemplate Editor.

The new MapTemplate is automatically added to the project, and becomes available in
various lists (such as the Mapping tab, in the New Transformation Wizard, and so on).

• Open

– Source File—Opens the selected source file, using the application that is
associated with the source file extension. The opened file is automatically
added to the current project, making it available from various lists (such as the
Mapping Tab, in the New Transformation Wizard, and so on).

Arbortext Import Workbench Interface 39

– MapTemplate—Opens the selected MapTemplate, using the MapTemplate
Editor. The opened MapTemplate is automatically added to the current project,
making it available from various lists (such as the Mapping Tab, in the New
Transformation Wizard, and so on).

– Project—Opens an Arbortext Import project.

• Manage Project Data—Opens the Manage Project Data dialog box. This dialog
box enables you to add MapTemplates to and delete MapTemplates from the
current project. These MapTemplates and source files are then available in the
various lists (such as the Mapping tab, in the New Transformation Wizard, and so
on). This dialog box also enables you to add more than one source file and more
than one MapTemplate at a time.

• Save Project— Saves the currently opened project.

• Recent Projects— Lists recently saved projects. A given project can be opened by
selecting it.

• Exit— Closes Arbortext Import Workbench.

Transformation Menu
The following options are available on the Transformation menu:

Figure - 3.6

• Clone— Clones the currently selected transformation. The cloned transformation
is identical to the original, except that its transformation has the text Clone of in
the start of the transformation nickname.

Note that any overridden options are also cloned.

• View—Opens the last executed transformation in the transformation window. If
the transformation has never been run, then you will see an error dialog box as
Arbortext Import tries to locate the results manifest file.

• Run— Launches the selected transformation in the Transformation window.

• Advanced Details:

40 Tutorial for Arbortext Import

– Override Preprocessing Driver Settings—Opens the Edit Override Options
dialog box to override the options that are defined for the first Preprocessing
Driver in the MapTemplate. The override options only apply to the selected
transformation.

– Override Post-Processing Driver Settings—Opens the Edit Override
Options dialog box to override the options that are defined for the first Post-
Processing Driver in the MapTemplate. The override options only apply to the
selected transformation.

– More Options—Opens the Advanced Transformation Options dialog box to
let you modify various options for the selected transformation. For more
information see Advanced Details Tab on page 36.

• Run All—Runs all the transformations in the currently open project.

• Delete—Deletes the currently selected transformation. Awarning dialog box
appears before allowing you to make the deletion.

• Clear All—Deletes all the transformations in the project. Awarning dialog box
appears before you are allowed to make all the deletions.

Tools Menu
The Tools menu is similar to Figure 3.7.

Figure - 3.7

The following options are available on Tools menu:

• System Preferences Editor—Opens the System Preferences dialog box
allowing you to specify (and modify) how Arbortext Import calls its back-end Java
platform, which default project to open, and so on. The values in this dialog box
should only be rarely (if ever) changed.

– Home Directory—Base directory where Arbortext Import is located.

– Repository Directory— Base directory where projects, MapTemplates, and
XSLTs are stored.

Arbortext Import Workbench Interface 41

– Bin Directory—Base directory of the Arbortext Import back-end Java
platform.

– Java Virtual Machine Directory— Location of Java Run-time Environment
(JRE)

– Default Project – Project that is opened by Arbortext Import when it is first
run, or when it cannot find the last opened project. Normally, Arbortext Import
just opens the last project you were working with.

Figure - 3.8

• Use New Transformation Wizard—When checked, specifies whether the New
Transformation Wizard will be launched when you click New and when you click
the Transformation option in the New option of the File menu.

• Use New MapTemplate Wizard—When checked, specifies whether the New
MapTemplate Wizard will be launched when you click New on the MapTemplate
dialog box and when you click the MapTemplate option in the New option of the
File menu.

• Edit Config File—Define custom variables and paths that can be used in various
transformations and projects. Details of this feature are described in How to
Customize Configuration Files & Locations on page 164.

42 Tutorial for Arbortext Import

Help Menu
The following options are available on the Help menu:

Figure - 3.9

• Arbortext Import Workbench Help—Opens the help file Arbortext Import
Workbench online help.

• Reference—Opens the PDF version of the Arbortext Import Reference.

• Tutorial—Opens a PDF version of this Arbortext Import Tutorial.

• License Information—Opens a dialog box that shows your license information
for Arbortext Import, or a dialog box that enables you to navigate to the license file
itself.

• About Import—Opens the About Import dialog box, which shows the version of
the product you are using, the version of the .NET Framework it is running on, and
the open source and third-party software that is being used.

Arbortext Import Workbench Interface 43

4
Introduction to MapTemplates &

MapObjects

Overview of MapTemplates ... 46
The Three Main Sections of MapTemplates.. 46
Setting up a New MapTemplate .. 48
Pre and Post-Processing Drivers .. 52
Pre and Post-Processing Drivers Interface... 53
Overview of MapObjects ... 56
Main Functions of MapObjects.. 56
The Structure of a MapObject ... 56
Creating a new MapObject .. 58
MapObjects Details Pane.. 67

45

Overview of MapTemplates
MapTemplates define the rules through which the transformations take place producing
the destination file. They are a vital part of the transformation process.

The main functions of MapTemplate are:

• They direct the extraction of values from your source file

• They specify the creation of XML elements in the final document

• They define rules against sample files

Figure - 4.1

The Three Main Sections of
MapTemplates
MapTemplates contain three sections:

• Preprocessing — Prepares the input file for the main processing. Preprocessing is
often used to normalize non-structured content, for example, Microsoft Word,
HTML and FrameMaker to ppXML.

• Main processing — Contains the rules for a transformation. Main processing maps
ppXML to a schema or DTD. This section contains MapObjects that map elements
to elements.

• Post Processing — Includes XSLT or other external programs for further

46 Tutorial for Arbortext Import

transformation to the final output form. For example, this processing is necessary
for HTML output, SCORM content, or alternative XML formats (WAP or WML).

Figure - 4.2

MapTemplates can also create intermediate files that are needed for complex
transformations. Occasionally, more than one intermediate XML file is needed to get the
required details in the final output document.

The MapTemplate Editor enables you to edit and modify the MapTemplate rules. The
MapTemplate Editor is shown in Figure 4.3.

Figure - 4.3

The MapTemplate Editor is divided into three distinct panes:

• Sample Source File (left) pane — Displays the ppXML rendering of a particular
source file. It displays a hierarchical tree view of the source file in the Initial XML
Representation area as shown in Figure 4.3. The display consists of ppXML
markup, as converted by the corresponding preprocessing driver.

Introduction to MapTemplates & MapObjects 47

• MapObjects (middle) pane — Contains tabs for editing MapObjects, Source File,
Pre and Post drivers and MapTemplate Properties.

• Destination DTD/Schema (right) pane — Allows you to select, view, and clear the
target DTD and Schema.

Details of the MapTemplate Editor are given in theMapTemplate Editor section of the
Arbortext Import Reference.

Setting up a New MapTemplate
The tutorial will guide you through creating a new MapTemplate using Arbortext Import
Workbench.

Set the Environment to Create a New MapTemplate
1. Ensure that Arbortext Import Workbench is launched as explained in Launch
Arbortext Import Workbench on page 14.

2. Load a separate project as explained in Creating a New Project Using Arbortext
Import Workbench on page 18.

3. Open the sample Word document in Microsoft Word. Examine the document and
notice all the different formatting used in this document.

Create the New MapTemplate
1. Select File ▶▶NewMapTemplate on the main Arbortext Import Workbench as shown
in Figure 4.4.

Figure - 4.4

2. A New MapTemplate Wizard is opened. Specify the MapTemplate Name for
MapTemplate as in Figure 4.5. The new MapTemplate is created by default at
<home>\STDTemplates.

48 Tutorial for Arbortext Import

You can also save this MapTemplate at some other location using Browse.

Figure - 4.5

3. Specify name for the MapTemplate.

4. Click Next to continue.

5. In the next Specify New or Cloned MapTemplate window, you can either replicate
an existing MapTemplate by selecting Clone Pre-existing Template or you can
create new MapTemplate. Select Create New MapTemplate.

Figure - 4.6

6. Click Next to create a new MapTemplate.

Introduction to MapTemplates & MapObjects 49

7. In the Specify MapTemplate Driver window, select Word to XML Driver
(Java) from the Driver list as shown in Figure 4.7.

Figure - 4.7

8. Click Next.

9. Now the Specify MapTemplate Driver Options window is displayed. Here driver
options and the custom name of the driver can be modified as shown in Figure 4.8.
Details of these driver options are given in the Pre and Post Processor Drivers
section of the Arbortext Import Reference. Leave the default driver options as they
are.

Figure - 4.8

10. Click Next to continue.

11. In the next Specify MapTemplate Schema window you can select a particular
schema to identify layout rules of the output or destination file.

To specify a schema:

a. Select Use selected schema.

50 Tutorial for Arbortext Import

b. Click Select Schema as shown in Figure 4.9.

Figure - 4.9

c. The Select DTD / Schema window is opened as shown in Figure 4.10.

Figure - 4.10

d. You can either select a schema from the given list in the Available DTD /
Schemas: pane, or click Load New to navigate to your required schema.

In case of a new schema:

i. Select a main element by clicking Choose Main Element.

ii. Click OK.

e. You can also delete any selected schema using Delete.

f. Select DocBook from the available list.

g. Click OK.

12. Click Finish on the Specify MapTemplate Schema window. As a result, the
MapTemplate Editor window is opened.

Introduction to MapTemplates & MapObjects 51

13. In the left pane of the window, select the source document by clicking Browse.
Doing so will load the ppXML tree, representing the XML structure of the source
document in the left pane as shown in Figure 4.11.

14.Open the DTD / Schema menu and enable Turn Off All Groups and Qualifiers.
This will make the schema view clear in the right pane of the window as shown in
Figure 4.11.

Figure - 4.11

15. To save your newly created MapTemplate, select MapTemplate ▶▶Save
MapTemplate on the MapTemplate Editor.

16.You can now specify preprocessing rules, MapObjects, and post processing rules
on the MapTemplate Editor.

17. Choose the MapTemplate menu on the MapTemplate Editorand select Save and
Run to save any changes made in the MapTemplate.

18. Execute the transformation.

Pre and Post-Processing Drivers
Preprocessing and Post-Processing Drivers are auxiliary data transformations, applied
respectively before and after the MapObject processing for a given MapTemplate.

Both Preprocessing and Post-Processing drivers are listed in the Pre and Post Drivers tab
of the main window of the MapTemplate Editor. No restrictions exist on the number of
either type of drivers that are present in a MapTemplate, although in many cases a
MapTemplate contains only one Preprocessing Driver and no Post-Processing Drivers.

52 Tutorial for Arbortext Import

The MapTemplates which require no drivers are those which process XML files using
MapObjects only.

Preprocessing Drivers
A common use of a Preprocessing Driver is the conversion of a binary-based format (for
example, Microsoft Word *.doc files) into ppXMLthat can then either be published or
converted further using MapObjects.

Preprocessing options enable you to normalize content into ppXML for easier parsing.
Preprocessing calls Arbortext Import drivers to automatically convert files into ppXML.
There are preprocessing options for many different file types, including Word, RTF, and
HTML files.

Post-Processing Drivers
A Post-Processing Driver is often used to invoke a subsequent MapTemplate or XSL
transformation in a convenient and modular way. Examples include transforming to
HTML view at the end of a transformation. (For more details related to view as HTML
see View As HTML on page 29.)

Pre and Post-Processing Drivers
Interface
The Pre and Post Drivers tab located on the MapObject pane enables you to manage the
pre- and post-processing drivers used by your MapTemplate.

New pre-and post processing drivers can also be added using New Preprocessing Driver

or New Post-Processing Driver .

• When you click New Preprocessing Driver within the Preprocessing Drivers
area, a new Processing Driver Options dialog box is opened as shown in Figure

Introduction to MapTemplates & MapObjects 53

4.12. You can select any driver or stylesheet as a preprocessing driver from the
Driver list.

Figure - 4.12

• When you click New Post-Processing Driver within the Post-Processing Drivers
area, a new Processing Driver Options window is opened as shown in Figure
4.12. You can select any driver or stylesheet as a postprocessing driver from the
Driver list.

The driver options can be customized according to your requirements using the
MapTemplate Editor.

There are no material differences between preprocessing and post-processing drivers,

54 Tutorial for Arbortext Import

other than the fact that preprocessing is done before the MapObject processing and post-
processing is done after MapObject processing.

Figure - 4.13

To display the driver options, select a driver and click Edit Preprocessing Driver/Edit
Post-processing Driver or double-click on any driver.

When you select the driver options as stated before, a Processing Driver Options dialog
box is opened. Here, driver options can be added and excluded using different options.
Details of these driver options are given in the Pre and Post Processor Drivers section of
the Arbortext Import Reference.

Turning on and off single or multiple drivers
The MapTemplate Editor enables you to turn on and off single or multiple drivers by
selecting and deselecting them as shown in Figure 4.12. Using these options, you can
select or deselect any pre-post processing drivers.

Introduction to MapTemplates & MapObjects 55

Overview of MapObjects
MapObjects are the building blocks of MapTemplates, and serve as the cornerstone of
Arbortext Import’s ability to transform a free-form unstructured or semi-structured
document into XML.

MapObjects allow you to extract meaningful values out of unstructured content. That in
turn allows you to produce meaningful XML. The form of the final output depends
entirely on the function of your transformations and the nature of the source documents
that you want to transform.

Main Functions of MapObjects
MapObjects perform the following main functions:

• Programmatically select content (text, paragraphs, and so on) in the source
document

• Output one or more XML elements

• MapObjects are mapped one-to-one with the source elements (the XML elements
generated in the previous item).

• Optionally, a MapObject can also create a hierarchy above or below the source
element

• MapObjects that are reusable can be referenced from other MapTemplates

Figure - 4.14

The Structure of a MapObject
MapObjects contain three parts: input rules, output rules, and child MapObjects and rules.

56 Tutorial for Arbortext Import

Input Rules
Input rules are used to find specific content or markup within a source document. The
input selection is the content found by the input rules.

Input rules are the crux of MapObjects. They specify how the MapObject parses the
source files to get a certain value.

• The returned value is called the current selection.

• If the input is a text stream or document, then the current selection is called a text
selection.

• If the input is an XML document or stream, then the current selection is called an
element selection.

XML input rules can be applied to virtually any XML schema. The user interface of the
MapTemplate Editor is designed to work best with the ppXML, and generic enough that it
can be applied to any XML document structure. XML elements can be selected based on
attributes, and element text can be parsed.

Input rules have their own tab window in the MapObject Details area of the MapObjects
tab. On the Input Rules tab, there is a basic mapping type field (containing the values
based on predefined rules for ppXML fields), and an English description of the input
rules. In all cases, the input rules can be edited after their initial creation. That editing can
be done using the Map Input Wizardor by clicking Edit Input Rules on this tab.

Details regarding the input rules can be found in the XML Input Rules section of the
Arbortext Import Reference.

Output Rules
Once a selection has been done by selecting text or an XML element, a MapObject
usually creates at least one output XML element (the single XML element that is
produced is called the core output element) that appears in the destination XML file.
Output rules control the appearance and content of the output element.

A destination XML element might look something like this:

<PressRelease type="corporatenews" date="5/12/03">
text and child elements

</PressRelease>

Output rules specify how Arbortext Import constructs the output XML markup to include
elements, attributes, and text.

Output rules have their own tab in the MapObject Details area of the MapObjects tab.

Details regarding the Output rules can be viewed in the Output Rules section of the
Arbortext Import Reference.

Introduction to MapTemplates & MapObjects 57

Child MapObjects and Rules
After a MapObject processes input data to find and process content, it can call child
MapObjects that can further process the content inside the original selection. For
example, if PARAGRAPH has been selected by a MapObject, child MapObjects and rules
can then process the text inside the PARAGRAPH, as well as any inline elements, as
shown in Figure 4.15.

Figure - 4.15

Creating a new MapObject
The best way to understand how to create MapObjects is to create one. The tutorial will
now guide you through the steps to create new MapObjects and to apply input rules and
output rules to these MapObjects.

To set environment to create MapObject:

1. Ensure that Arbortext Import Workbench is started, a project and Word2XMLJ.
stdMapTemplate is open in the MapTemplate Editor with the source document
articleWhyConvert.doc loaded in the left pane, and the schema is loaded in
the right pane of the window.

2. To load the schema:

• Click Browse on the Destination DTD/Schema: pane that will show you the
list of target schemas and DTDs in the Select DTD/ Schema window.

• Select “DocBook” from the Available DTD/Schema list.

• Click OK to load the schema in the MapTemplate.

articleWhyConvert.doc is located in the following directory:

Arbortext-path\samples\importexport\word

58 Tutorial for Arbortext Import

This is the correct environment to create a new MapObject. At this point the
MapTemplate Editor will appear as shown in Figure 4.16.

Figure - 4.16

To create top level object:

1. Select the TEXTXMLSTREAM element in the left pane of the window from the
ppXML tree. This is the top element in the XML hierarchy.

2. Click Map Input to start the Map Input Wizard. The Map Input Wizard will guide
you through how to create a MapObject, and will guide you in defining the rules
for the MapObject.

Introduction to MapTemplates & MapObjects 59

3. On the first window of the wizard, appears as shown in Figure 4.17, ensure that the
Create New MapObject option is selected.

Figure - 4.17

4. Click Next.

5. On the next MapObject Properties window, specify the name of the MapObject.
You can also select the name of the MapObject similar to the name of the current
selected element in the source file, such as TEXTXMLSTREAM in this case.

60 Tutorial for Arbortext Import

Figure - 4.18

6. Click Next to move to the next window.

7. On the MapObject Basic Input Mapping window, ensure that the Basic Input
Mapping option is set to TEXTXMLSTREAM from the list as shown in Figure 4.19.

Figure - 4.19

8. Click Next.

Introduction to MapTemplates & MapObjects 61

9. On the MapObject Text Verification Editor window set the text input rules to
ensure that the MapObject only selects the source element whose text contains or
starts with a defined text string.

Figure - 4.20

10. Click Next.

62 Tutorial for Arbortext Import

11. On the MapObject Input Hierarchy Refinement window as shown in Figure 4.21,
you can specify the ancestor, descendant, and output relationship that a source
element must have in order for the MapObject to select the element.

Figure - 4.21

12. Click Next.

13.On the MapObject Advanced Rule Editor window you will see the input rules that

Introduction to MapTemplates & MapObjects 63

you have set so far. You can add and edit any XML rules here, but for now just
click Finish.

Figure - 4.22

The MapTemplate Editor will add the TEXTXMLSTREAM MapObject to the list, as
shown in Figure 4.23.

Figure - 4.23

You’ve created your first MapObject. Next, you will create five more MapObjects, using
the steps you just learned.

Create the HEAD MapObject
1. Select the HEAD element in the left pane.

64 Tutorial for Arbortext Import

2. Create a new MapObject using the following settings:

• MapObject Name: HEAD

• Basic Input Mapping: HEAD

3. Click Finish.

Create the BODY MapObject
1. Select the BODYelement in the left pane.

2. Create a new MapObject using the following settings:

• MapObject Name: BODY

• Basic Input Mapping: BODY

3. Click Finish.

Create the PARAGRAPH MapObject
1. Expand the BODYelement.

2. Select the third PARAGRAPH element in the left pane.

Figure - 4.24

3. Create a new MapObject using the following settings:

• MapObject Name: PARAGRAPH

• Basic Input Mapping: PARAGRAPH

4. On the MapObject Style Mapping window use following:

• Only Map Source Content with the Following Style: Normal

5. Click Next.

6. The MapObject Attribute Mappings window appears as shown in Figure 4.25. On
this screen, you can further refine attribute mappings by keeping track of the
current value of the attribute. (You will learn more about the MapObject Attribute

Introduction to MapTemplates & MapObjects 65

Mappings in Customizing the Top Level MapObjects on page 94.) Leave default
values as they are and click Finish.

Figure - 4.25

Create the SUBHEADING MapObject
1. Expand the BODYelement.

2. Select the second PARAGRAPH element in the left pane.

3. Create a new MapObject using the following settings:

• MapObject Name: SUBHEADING

• Basic Input Mapping: PARAGRAPH

4. On the MapObject Style Mapping window select the following:

• Only Map Source Content with the Following Style: Heading 2

5. On the MapObject Attribute Mappings window leave default values as they are
and click Finish.

Create the Heading MapObject
1. Expand the BODYelement.

2. Select the first PARAGRAPH element in the left pane.

3. Create a new MapObject using the following settings:

66 Tutorial for Arbortext Import

• MapObject Name: Heading

• Basic Input Mapping: PARAGRAPH

4. On the MapObject Style Mapping window, select the following:

• Only Map Source Content with the Following Style: Heading 1

5. On the MapObject Attribute Mappings window, leave default values as they are
and click Finish.

Now you have six MapObjects present in the MapObjects list (priority 0-5) as shown in
Figure 4.26.

Figure - 4.26

Click the MapTemplate menu and select Save MapTemplate to save your new
MapTemplate.

MapObjects Details Pane
This pane is on the lower half of the MapTemplate Editor. There are several tabs on this
pane that are used to edit and modify input, output rules, and MapObject properties.

MapObject Key Properties Tab
This tab enables you to specify the MapObject name (names should be unique), and set

Introduction to MapTemplates & MapObjects 67

the priority of the MapObjects in the list. The priority determines the order in which they
are called. 0 is the highest priority.

Figure - 4.27

This tab also enables you to define how you want to call MapObjects. You can check
Enable to specify that the MapObject is called when you are applying all MapObjects.
You can also deselect the Enable option for a MapObject, and good way to disable a
MapObject during MapTemplate development. Also, if you deselect the Apply Only
When Called option, you will have to explicitly call that particular MapObject either in
input rules or as a child MapObject.

Additionally, you can use MapObject Description/Explanations to annotate and
comment each MapObject.

Input Rules Tab
On the Input Rules tab, input rules are defined for the selected MapObjects. The input
rules of a MapObject are used to find specific content or markup within a source
document.

On the Input Rules tab, there is a list for input rules basic mapping and for an English
description of the input rules. In all cases, the input rules can be edited after their initial
creation by clicking Edit Input Rules as shown in Figure 4.28.

Details regarding the Input rules tab can be found in the MapTemplate Editor section of
the Arbortext Import Reference.

Figure - 4.28

68 Tutorial for Arbortext Import

Output Rules Tab
On the Output Rules tab, output rules are defined for the selected MapObjects. Once a
selection is found, the MapObject usually creates an output element. Output rules control
the appearance and content of the output element. Details regarding the Output Rules tab
can be found in theMapTemplate Editor section of the Arbortext Import Reference.

Figure - 4.29

Children Tab
This tab enables you to define rules for the child elements. The child elements section
enables you to control options related to the processing of child elements.

Figure - 4.30

The Child Text/CDATA Nodes section enables you to control options related to the
processing of child text and CDATA nodes.

Details regarding the Children tab can be found in theMapTemplate Editor section of the
Arbortext Import Reference.

Introduction to MapTemplates & MapObjects 69

5
File Processing Scenarios for
Arbortext Import Supported

Transformations
Introduction.. 72
Importing a Microsoft Word 2003 (.doc) document into XML.............................. 72
Importing a Microsoft Word 2007 or 2010 (.docx) document into XML 78
Importing an HTML document into XML ... 79
Importing a WordML document into XML.. 79

71

Introduction
This chapter explains scenarios to transform Microsoft Word 2003 (.doc), Microsoft
Word 2007 and 2010 (.docx), HTML, and WordML documents into XML. This chapter
explains the step by step procedure for the following transformations:

• Importing a Microsoft Word 2003 (.doc) document into XML

• Importing a Microsoft Word 2007 or 2010 (.docx) document into XML

• Importing an HTML document into XML

• Importing a WordML document into XML

Importing a Microsoft Word 2003 (.doc)
document into XML
With the help of Arbortext Import Workbench, you can import Microsoft Word 2003
documents (.doc files) into XML.

You will perform the following steps using the Arbortext Import Workbench window:

1. Create a new transformation.

2. Select the source Word (.doc) document.

3. Select the Word2XMLJ MapTemplate.

4. Execute the transformation.

Creating a new transformation in Arbortext Import
Workbench
To create a new transformation:

Select File ▶▶NewTransformation from the Arbortext Import Workbench.

72 Tutorial for Arbortext Import

Note
The new transformation can also be created using New on the main window, as shown in
Figure 5.1.

Figure - 5.1

Selecting the Source Document
Once you have selected Transformation, a New Transformation Wizard is opened in a
separate window.

To select a source file:

1. Click Find to browse for the source Word document (.doc). Use URL on this
window to give the exact path of a source file that is located on a network.

Figure - 5.2

File Processing Scenarios for Arbortext Import Supported
Transformations 73

2. Sample word documents are provided with the installation of Arbortext Import.
These are located in Arbortext-path\samples\importexport\word.

For this Word transformation example, select articleWhyConvert.doc from
that directory.

3. After selecting the Word source file, click Next to continue.

Selecting the Word2XMLJ Template
After selecting the source file, select the appropriate MapTemplate. In this procedure,
select Word2XMLJ.std.

1. Select Custom/Other on the Select Transformation window.

2. Click Next. The next MapTemplate selection window will appear, as shown in
Figure 5.3.

Figure - 5.3

3. Click Find to locate the MapTemplate. This will open the default location of
MapTemplates. That is, <home>\STDTemplates\Common.

74 Tutorial for Arbortext Import

4. Select the Word2XMLJ.stdMapTemplate.

Figure - 5.4

5. After selecting the Word2XMLJ MapTemplate, click Next.

6. The Provide Transformation Nickname window for defining the nickname of the
transformation is displayed. Here, you will see the default value for the
transformation nickname, created from the selected source file and the
MapTemplate names. You can change the nickname as you wish, but for now, leave
it as default.

Figure - 5.5

File Processing Scenarios for Arbortext Import Supported
Transformations 75

7. Click Next. The Run Transformation window is displayed.

Figure - 5.6

8. With the Run Transformation window, you can select any one of the options:

• Open/Edit MapTemplate—Opens the MapTemplate Editor to further edit
the selected template.

• Run Transformation When Complete— Immediately runs the
transformation using the preferences you just entered.

• Do Not Run Transformation When Complete—Does not run the
transformation, but will put the transformation, along with all your settings,
into the transformation list on the main window.

On the Run Transformation, select Do Not Run Transformation When Complete.

9. Click Finish The transformation wizard will return you to the Arbortext Import
Workbench main window with your created transformation.

Executing the Transformation
At this point, the Arbortext Import Workbench shows all the basic details related to the
newly created transformation as shown in Figure 5.7.

The transformation nickname, source file, selected MapTemplate, and path of the

76 Tutorial for Arbortext Import

destination file are specified in the text boxes on the Mapping tab under the
Transformation Details section on the Arbortext Import Workbench main window.

Figure - 5.7

You can also select your desired location and name for the destination file.

To specify your desired location for the destination file:

1. Deselect the Use Default Value option.

2. Click Find adjacent to the Destination File.

3. On the Save As window, browse for the location where you want to save the
destination file.

4. Enter the desired name for the destination file in the File name field.

5. Click Save. The Arbortext Import Workbench main window is dispolayed.

To run the transformation:

1. On the Arbortext Import Workbench main window, select the transformation you
have created.

File Processing Scenarios for Arbortext Import Supported
Transformations 77

2. Click Run Transformation as shown in Figure 5.7. When you click Run
transformation, the Transformation window will open showing all the processes
involved in the transformation as shown in Figure 5.8.

Figure - 5.8

Once the transformation is completed, an XML document will be created at the path
given in the Destination File. The Word document has been successfully transformed to
XML.

In the Transformation window three tabs are shown:

• Console Output Display

• Intermediate Results Display

• View As HTML

Each of these tabs is explained previously in Chapter 2.

Importing a Microsoft Word 2007 or 2010
(.docx) document into XML
Using Arbortext Import, you can import Microsoft Word 2007 and 2010 (.docx)
documents into XML. Perform the following steps for this transformation:

1. Create a new transformation as described in Creating a new transformation in
Arbortext Import Workbench on page 72.

78 Tutorial for Arbortext Import

2. Select the source .docx file as described in Selecting the Source Document on
page 73. In this case, select a .docxdocument from the following location:

Arbortext-path\lib\samples\importexport\docx.

3. Select the Docx2XMLJ template as described in Selecting the Word2XMLJ
Template on page 74. In this case, instead of selecting Word2XMLJ.std, select
the Docx2XMLJ.stdMapTemplate.

4. Execute the transformation as described in Executing the Transformation on page
76.

Importing an HTML document into XML
Using Arbortext Import, you can import HTML documents into XML. Perform the
following steps for this transformation:

1. Create a new transformation as described in Creating a new transformation in
Arbortext Import Workbench on page 72.

2. Select the source HTML file as described in Selecting the Source Document on
page 73. In this case, select an HTML document from the following location:

Arbortext-path\lib\samples\importexport\html.

3. Select the HTML2XMLJ MapTemplate as described in Selecting the Word2XMLJ
Template on page 74. In this case, instead of selecting Word2XMLJ.std, select
the HTML2XMLJ.stdMapTemplate.

4. Execute the transformation as described in Executing the Transformation on page
76.

Importing a WordML document into XML
Using Arbortext Import, you can import WordML documentd into XML. Perform the
following steps for this transformation:

1. Create a new transformation as described in Creating a new transformation in
Arbortext Import Workbench on page 72.

2. Select the source WordML file as described in Selecting the Source Document on
page 73. In this case, select a WordML document from the following location:

Arbortext-path\lib\samples\importexport\wordml.

3. Select the WordML2XML MapTemplate as described in Selecting the Word2XMLJ
Template on page 74. In this case, instead of selecting Word2XMLJ.std, select
theWordML2XML.stdMapTemplate.

4. Execute the transformation as described in Executing the Transformation on page
76.

File Processing Scenarios for Arbortext Import Supported
Transformations 79

6
Transforming Word, FrameMaker,

and HTML Documents into
DocBook

Introduction.. 82
Overview of the DocBook MapTemplates ... 82
How the Templates Work... 83
How to Customize the DocBook Template.. 87
Conclusion... 129

81

Introduction
Arbortext Import can transform existing content such as Word, PDF, FrameMaker, and
HTML documents into any target XML format. Arbortext Import is shipped along with
sample templates for DocBook documents. DocBook is a popular XML standard that is
used for technical documentation that has been adapted to be used in many other
industries. For more information on DocBook, refer to http://www.docbook.org.

The examples included with Arbortext Import are configured to transform sample
documents into DocBook. They are meant to be customized and used to transform your
own custom source files into DocBook. Because the DocBook templates touch many
aspects of doing conversions to XML, they can also serve as examples of how to build
templates for other XML targets.

Overview of the DocBook MapTemplates
This chapter and the DocBook MapTemplates serve as reference examples for the
transformation of contents into meaningful XML. Even if you are transforming Word,
FrameMaker, or HTML files into your custom DTD, examining the DocBook
MapTemplates will give you ideas on how to build your own MapObjects for common
constructs such as tables, images, and inline elements.

The DocBook MapTemplates are stored in the following directory:

<home>\STDTemplates

The templates included in this directory are:

• word2docbook.std— This MapTemplate (<home>\STDTemplates
\DocBook\word2docbook.std) is used to transform Microsoft Word 2003 (.
doc) content into DocBook. The MapObjects in this template are configured to
transform SampleDocument.doc (Arbortext-path\samples
\importexport\word\SampleDocument.doc) into DocBook.

• html2docbook.std— This MapTemplate (<home>\STDTemplates
\DocBook\html2docbook.std) is used to transform HTML (.htm) content
into DocBook. The MapObjects in this template are configured to transform
articleWhyConvert.htm (Arbortext-path\samples
\importexport\html\articleWhyConvert.htm) into DocBook.

• mif2docbook.std— This MapTemplate (<home>\STDTemplates
\DocBook\mif2docbook.std) is used to transform Adobe FrameMaker (.
mif) content into DocBook. The MapObjects in this template are configured to
transform sampledocument.mif (Arbortext-path\samples
\importexport\frame\sampledocument.mif) into DocBook.

• docx-to-axdocbook.std— This MapTemplate (<home>
\STDTemplates\ArbortextSamples\docx-to-axdocbook.std) is
used to transform Microsoft Word .docx content into axdocbook.

82 Tutorial for Arbortext Import

http://www.docbook.org

• pdf-to-asdocbook.std— This MapTemplate (<home>\STDTemplates
\ArbortextSamples\pdf-to-asdocbook.std) is used to transform
Adobe PDF (.pdf) content into asdocbook.

• wordml-to-axdocbook.std— This MapTemplate (<home>
\STDTemplates\ArbortextSamples\wordml-to-axdocbook.std)
is used to transform WordML (.xml) content into axdocbook.

• import2axdocbook.std— This MapTemplate (<home>\STDTemplates
\ArbortextSamples\import2axdocbook.std) is used to convert sample
Microsoft Word (.doc) files into ppXML and then convert the ppXML elements
to axdocbook.

• importmif2axdocbook.std— This MapTemplate (<home>
\STDTemplates\ArbortextSamples\importmif2axdocbook.std)
is used to convert a sample FrameMaker (.mif) file to ppXML and then convert
the ppXML elements to axdocbook.

Each of these templates is configured to transform a given set of files into DocBook. To
transform your own files, you will have to customize the templates.

This tutorial will guide you step-by-step through customizing the word2docbook.std
template for the sample file articleWhyConvertTutorial.doc (Arbortext-
path\samples\importexport\word).

How the Templates Work
The DocBook MapTemplate contains a preprocessing rule that transforms its source
format (for example, .doc for Word files) into ppXML. Then, each DocBook
MapTemplate has a set of MapObjects that transforms specific elements in the ppXML
(PARAGRAPH, TABLE, etc.) into chapter titles, section titles, and other DocBook
related elements for the output document.

To examine the Word-to-DocBook MapTemplate:

1. Open the Arbortext Import Workbench main window.

2. Select File ▶▶Open ▶▶MapTemplate.

Figure - 6.1

3. Browse to and open the word2docbook.stdMapTemplate. The MapTemplate
Editor opens.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 83

4. In the MapTemplate Editor, you can select the Pre and Post Drivers tab to see the
pre and post processing drivers. In the word2docbook MapTemplate, you will see
that the Word to XML Driver (Java) is used, as highlighted in Figure 6.2.

Figure - 6.2

5. When you double click on the preprocessing driver, you will see the details of the
driver and the various options that have been set for this in Processing Driver
Options window, as highlighted in Figure 6.3. For details on Processing Driver
Options see the Pre and Post Processor Drivers section of the Arbortext Import
Reference.

84 Tutorial for Arbortext Import

Figure - 6.3

Note
Other similar templates, such as html2docbook or mif2docbook, have
preprocessing drivers that transform the source file format into ppXML.

6. In the MapTemplate Editor, you can click the MapTemplate Properties tab, where
you will see that the operation is set to Use MapObject Priority as shown in Figure
6.4.

To transform the ppXML into DocBook, select the Use MapObject Priority option.
This option means that after the preprocessing driver produces ppXML, the
MapObjects will run in order, starting from the top most element in the ppXML to
the last one, for each that matches this source element. Then, for each child of this
source element, the process is repeated. This process is continued recursively in the
source document.

Figure - 6.4

7. The lower half of the MapObjects tab shows the MapObject Details. The Input
Rules sub-tab can be selected to show the input rules. Whenever a MapObject is

Transforming Word, FrameMaker, and HTML Documents into
DocBook 85

selected in the MapObjects grid at the top of the MapObjects tab, the Input Rules
tab shows the details of the input rules, as highlighted in Figure 6.5.

Figure - 6.5

Each MapObject has input rules, the rules that are to be followed to match ppXML
elements of the source file to a particular MapObject. For example, the chapter_
title MapObject has been set up with rules to find the chapter titles in the ppXML,
as highlighted in Figure 6.5. Details regarding the input rules can be viewed in the
XML Input Rules section of the Arbortext Import Reference.

For example, selecting the chapter_title MapObject in the word2docbook
MapTemplate shows:

SELECT element(s):
(which has an attribute 'NodeName' with a value of 'PARAGRAPH ')
AND (which has some text contained within it.)
AND ((whose Style attribute CONTAINS 'Heading 1')
OR (whose Style attribute CONTAINS 'chapter title'))

This means that the only PARAGRAPH whose Style is “Heading 1” or “chapter
title” in the ppXML(or in the ppXML representation of the source document) will
match this MapObject.

8. Each MapObject has output rules that specify the elements to be emitted into the
output XML. In the case of chapter_title, a <chapter> element and a <title> element
would be emitted as valid DocBook, as highlighted in Figure 6.6. To see the output

86 Tutorial for Arbortext Import

rules, select the Output Rules sub-tab in the MapObject Details area of the
MapObjects tab.

Figure - 6.6

The output rules for this MapObject create a hierarchy shown in the Output
Hierarchy window of the Output Rules tab.

• If a paragraph matches the input rules, the MapObject outputs a <title>
element based on the current PARAGRAPH.

• The <title> element is placed under the <chapter> element that is created
before the title element (if one does not already exist).

• If Always Create item from theWhen list is selected, a new chapter is
always created.

• The chapter element is always created underneath a <book> element.

Details regarding the Output Rules tab can be viewed in theMapTemplate Editor
section of the Arbortext Import Reference.

How to Customize the DocBook Template
To customize the templates to work with other source files, you should save the template
with a new name and change the input rules to match the appropriate elements in your
source document. If the template is working fine, you probably won’t need to modify the
output rules. The steps to customize DocBook templates are:

1. Create a new template based on the existing template.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 87

2. Customize the template according to your requirements.

3. Run the template against the document.

4. Customize the Top Level MapObjects for your source document including:

• Bookinfo — book title, subtitle, and publisher name. This means
customizing the book_title and book_subtitle MapObjects.

5. Customize the Chapter and Section MapObjects

• Chapters and parts — the chapter_title MapObject. (And if your book
contains parts, then the part_title MapObject.)

• Sections and subsections — the sect1_title, sect2_title, sect3_title
MapObjects.

6. Customize the List Objects.

7. Customize the Table and Image MapObjects.

8. Add or Customize other remaining MapObjects.

9. Validate by rerunning the transform. Examine the output, refining the template if
necessary.

The goal of this chapter is to create a template that will handle many documents. If
writers have used similar constructs in all of the documents, then the goal is to create one
template that handles all of these, meaning minimal work is needed once the output is
created. Arbortext Import may not be able to get 100% styled DocBook content from a
Word document if the creators of the Word documents did not use consistent practices
when creating the Word documents.

Creating a New Template Based on Existing
DocBook Template
To create a new template based on one of the DocBook templates, you should start with a
new transformation in the Arbortext Import Workbench. Identify a sample source
document you want to work with and customize the MapTemplate according to that
document. In this tutorial you will use the following data:

• Source Document — articleWhyConvertTutorial.doc located at:
Arbortext-path\samples\importexport\word.

• Transformation template to match the source — Because this is a Word document,
you will be modifying the word2docbook.std located at :<home>
\STDTemplates\DocBook.

Use the following procedure to create a new MapTemplate based on an existing template:

1. From the main Arbortext Import Workbench window, click New. The New
Transformation wizard will appear, and you will be prompted for the name of the
source file.

88 Tutorial for Arbortext Import

2. Choose articleWhyConvertTutorial.doc from the source file available
list. (Select Find if the file isn’t in the list of source files that have already been
added to the project.) Click Next.

3. In the next window of the wizard, you will be asked for the MapTemplate you want
to use. Choose Custom / Other and click Next.

4. This will take you to the next Select MapTemplate to Direct Transformation
window. This window contains a Find button that lets you find an existing
MapTemplate and a New button that lets you create a new MapTemplate as
explained in Setting up a New MapTemplate on page 48.

For this example, select New.

5. The new template wizard is opened, and you will be prompted to specify
MapTemplate name and location. The default location is: <home>
\STDTemplates. For this example, create a subdirectory of STDTemplates
called “tutorial”. To do this:

a. Click Browse next to MapTemplate Location. Once you have created the new
directory, its name will be shown under MapTemplate Location.

b. Provide the name of this new template in MapTemplate Name. Only use the
first part of the file name, such as article2docbook, as the .std
extension will automatically be appended to the name under MapTemplate
Location.

6. Click Next.

7. The next window in the wizard is Specify New or Cloned MapTemplate. In this
window, you can specify that the template should be based on (be a “clone of”) an
existing template.

• Select the option Clone Existing Template.

• Click Find to locate the existing template.

• Select word2docbook.std located at: <home>\STDTemplates
\DocBook.

8. Clicking Finish to end the New MapTemplate wizard. The New Transformation
Wizard will be displayed with the new template name selected.

9. Click Next. You will be prompted to specify a nickname for this transformation.
You can specify CustomExample or something descriptive.

10. Click Next. Awizard prompting you to run this new transformation will be shown.
Do not run the transformation, as we want to customize this cloned template. Select
Do NOT Run Transformation When Complete.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 89

11.When you click Finish, the new transformation will be shown in the project main
window, along with the source file: articleWhyConvertTutorial.doc,
nickname: CustomExample, and the MapTemplate: article2docbook.

Figure - 6.7

12. Click Edit next to MapTemplate. The MapTemplate Editor is opened with a new
template that is currently a complete clone of the word2docbook template,
including its preprocessing drivers and MapObjects.

Customizing the Template
On the left side of the MapTemplate Editor there is a Sample Source File pane. There
will not be any Initial XML Representation tree.

To load the ppXML initial representation, choose articleWhyConvertTutorial.
doc from the file list. You can also browse to the source file location using browse (...).
You will see the ppXML generated from this file. (This generation occurs only once.
Subsequently it is available in the MapTemplate Editor).

On the right side of the MapTemplate Editor, you will see a Destination DTD/Schema
pane. The DocBook DTD is selected, and a tree-like view of the DocBook DTD is shown.
If this is not what you see, click DTD browse (...) and find the DocBook DTD on your
local machine. It should be available in Arbortext-path\doctypes\docbook.
Arbortext Import will take a few seconds to transform it into an internal compiled format,
and you will be prompted to choose main element for this DTD.

90 Tutorial for Arbortext Import

For this example, choose book. The MapTemplate window will appear as shown in
Figure 6.8.

Figure - 6.8

In the middle main pane of the MapTemplate Editor, you will see multiple tabs. The
Source File tab shows an HTML view of the ppXML for this document that is very
similar to the original Word document.

To locate any text in the ppXML tree:

1. In the source file HTML view, select a part of any PARAGRAPH.

2. Click Locate Selected Text and the desired PARAGRAPH will be found in the
source file tree in the left hand pane, as shown in Figure 6.9.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 91

The tree can show you the style used, font formatting, and so on, which are all in the
attributes of the PARAGRAPH. This will be important during the mapping process.

Figure - 6.9

The Pre and Post drivers tab contains the preprocessing rule that transforms the binary
Word file (.doc file) into ppXML using various options.

To see preprocessing driver options, double-click the preprocessing driver. There are
several important options that the DocBook templates use, and other templates may or
may not use. For example:

• Include Lists— This option is set to false. This is because the DocBook template
relies on the style and formatting properties of PARAGRAPHs, rather than relying
on actual elements in the ppXML. A list in DocBook might include more than a
simple Word list paragraph.

• Use CALs Table Format— This option is set to true. This causes the TABLE
element in the ppXML to follow the CALS table, that makes it easy to map to
DocBook (CALS table model: http://www.oasis-open.org/specs/a502.htm). This
means that the element will have the descendants TGROUP, COLUMN, THEAD,
and TBODY in addition to the regular descendants of ROW, CELL, and para. It
means that rowspan and colspan attributes on CELL will follow the CALS model
that DocBook uses.

Details of the driver options are given in the Pre and Post Processor Drivers section of
the Arbortext Import Reference.

Run the Template Against the Document
Before you customize the rules to examine what this template does when run against
articleWhyConvertTutorial.doc, save the template against the document. To do this,
select Save and Run from the MapTemplate menu of the MapTemplate Editor. The Save

92 Tutorial for Arbortext Import

and Run command saves the current template and runs it against the currently selected
source file. (In this case, articleWhyConvertTutorial.doc), bringing up the
Transformation window, as shown in Figure 6.10. The Transformation window is
explained in Run a Transformation Object on page 23

You will see that this window has an Intermediate Results tree on the left that contains a
source file (articleWhyConvertTutorial.doc) with two XML files underneath
it.

• The first of these is the ppXML file. If you click on this file, the ppXML id
displayed in the Intermediate Results Display tab.

• The second file is the output XML after applying the MapObjects
(articleWhyConvertTutorial.doc.xml in the destination directory).

If you examine the XML file created where the source file is placed, you will see:

• The top level element is <book>.

• There is no <title> and <subtitle> for the book.

• There is only one chapter, with a title of “Tutorial: Why Convert Documents into
XML”.

• There are a number of <para> elements and <sect1> element in the chapter.

Figure - 6.10

Let us assume that we want a book element that contains a “title”, “subtitle” and multiple
chapters; each section of this chapter can become its own chapter. This means that you
will have to change the input rules for each of the relevant MapObjects. In general, you

Transforming Word, FrameMaker, and HTML Documents into
DocBook 93

do not have to change many of the output rules as they are already set up to produce valid
DocBook.

Customizing the Top Level MapObjects
Now it is time to start customizing the MapObjects. To customize the top level
MapObjects:

1. Open the MapTemplate Editor.

2. Select the first MapObject BookParagraphs from the MapObjects middle pane that
has basic mapping type of TEXTXMLSTREAM.

3. Select the top-most element TEXTXMLSTREAM in a ppXML document from the
left pane.

When you select the BookParagraphs MapObject, Arbortext Import will fill in the details.
Examine the Input Rules sub-tab in the MapObjects tab. The Input Rules tab should say:

SELECT element(s):
whose name equals 'TEXTXMLSTREAM'

This means that this MapObject will always select TEXTXMLSTREAM. The output
rules shown in the Output Rules tab under the MapObjects tab for this particular
MapObject show that it only outputs a “core” element name of “book”. This is because; it
is the top-level element in DocBook.

There is no need to change this element. However, this source file
(articleWhyConvertTutorial.doc) contains a title; which is currently being
treated as a chapter title, rather than a book title. This means that the PARAGRAPH with
the title “Tutorial: Why Convert Documents into XML?” has a style attribute of “Heading
1”, as shown in the following Figure 6.11. If you look at Figure 6.10 then you will see

94 Tutorial for Arbortext Import

that there is no tag for book title as the style attributes are matching the chapter_title
MapObject rather than the book_title_para MapObject.

Figure - 6.11

To locate the chapter title PARAGRAPH element:

1. Select a portion of the title in the HTML view of the Source File tab.

2. Click Locate Selected Text.

3. Select the MapObject tab.

4. Choose the chapter_title MapObject.

If you examine the input rules for chapter_title MapObject, you will see the following:

SELECT element(s):
(which has an attribute 'NodeName' with a value of 'PARAGRAPH ')
AND (which has some text contained within it.)
AND ((whose Style attribute CONTAINS 'Heading 1')
OR (whose Style attribute CONTAINS 'chapter title'))

If you examine the input rule for the book_title_para MapObject, you will see the
following:

SELECT element(s):
(whose name equals 'PARAGRAPH ')
AND (which has some text contained within it.)
AND ((whose Style attribute CONTAINS 'Title')
AND (NOT (whose Style attribute CONTAINS 'Subtitle')))

Transforming Word, FrameMaker, and HTML Documents into
DocBook 95

Customizing book_title MapObject:
To output the first title as a book title, the input rules for the book_title_para must be
changed. Also, the order of the MapObjects should be reversed so the book_title
MapObject runs against the PARAGRAPH first, and the chapter_title MapObject only
runs on a PARAGRAPH if it does not match book_title.

You can easily find your required MapObject by arranging MapObjects in alphabetical
order. To do this, select MapObject from the MapObjects grid’s header on the
MapObjects tab.

To customize the book_title MapObject:

1. Select the first PARAGRAPH in the source tree in the sample Source File pane.

2. Select the book_title_para MapObject in the MapObjects grid.

3. Click Map Input under the MapObject grid. This will open the Map Input Wizard
to guide you through the process of updating rules for the currently selected
MapObject. The Map Input Wizard is explained in Creating a new MapObject on
page 58.

Figure - 6.12

4. For the input wizard, you can select the following for each window:

• MapObject Specification— Rather than creating a new MapObject, you
want to update the input rules of the currently selected MapObject (book_
title_para).

a. Select Overwrite Input Rules of Currently Selected MapObject option.

b. Click Next.

96 Tutorial for Arbortext Import

• Basic Input Mapping

a. Ensure that PARAGRAPH is set here.

b. Click Next.

• MapObject Style Mapping— This will ask you if you want to set particular
style.

a. In this case, the style selected will be “Heading 1”. Ensure that Heading
is selected.

b. Click Next.

• MapObject Attribute Mappings— In this case, the style is the main
distinguishing characteristic.

As no other PARAGRAPH in this document uses that style, you don’t need
any other input rule. Click Finish on this window.

The following input rules should be displayed for the book_title MapObject:

SELECT element(s):
(whose name equals 'PARAGRAPH ')
AND (whose Style attribute EQUALS 'Heading 1')

Before running the transformation, change the order of book_title_para so it comes before
“chapter_title”. To change the order:

1. Select the MapObject Key Properties tab in the MapObject Details area of the
MapObjects middle pane.

2. Using Priority, change the value from 4 to 3. Notice that the rest of the numbers are
automatically resorted.

Figure - 6.13

Transforming Word, FrameMaker, and HTML Documents into
DocBook 97

After changing the order, test your changes by running the transformation again. For this,
click MapTemplate ▶▶Save and Run. In the DocBook XML, you’ll see a <book> with a
<bookinfo> element, a <title> element underneath the <bookinfo>, and some <chapter>
elements after the <bookinfo> element. You will also see some additional <para>
elements in the <bookinfo> tag under the <title>.

Customizing book_subtitle_para MapObject:
Now you will work the subtitle PARAGRAPH text “An Arbortext Whitepaper for the
Tutorial”. To customize the subtitle:

1. Find the text “An Arbortext Whitepaper for the Tutorial” in the HTML view of the
source file.

2. Click Locate Selected Text.

3. Go to the book_subtitle_para MapObject on the MapObjects grid as shown in
Figure 6.14.

4. Run the Map Input Wizard by clicking Map Input.

Figure - 6.14

5. Perform the following steps on each window of the Map Input Wizard:

• MapObject Specification—Once again, rather than creating a new
MapObject, update the input rules of the currently selected MapObject
(book_subtitle_para).

a. Select Overwrite Input Rules of Currently Selected MapObject option.

b. Click Next.

• Basic Input Mapping

a. Ensure that PARAGRAPH is set here.

98 Tutorial for Arbortext Import

b. Click Next.

• MapObject Style Mapping— This will ask you if you want to set any
particular style.

a. In this case, the style selected will be Normal. Ensure Normal is
selected.

b. Click Next.

• MapObject Attribute Mappings— In this case, you will see that the
distinguishing characteristic of the subtitle paragraph is that it is italicized.
This is indicated by the emphasis-italics, whose value is true.

a. Select emphasis-italics from the list.

b. Select the MapObject Should Track This Attribute option.

c. Change Type of check to IS_TRUE. Doing so checks that the value of
the attribute is true.

d. Click Next.

• You will see the MapObject Text Verification Editor. We are not relying on
any of the text inside the subtitle PARAGRAPH for identification. Click
Next.

• You will see the MapObject Input Hierarchy Refinement window. This
window is used to view the hierarchy of the Input document (ppXML), and
in a special case, enables you to specify what ancestors must exist in the
output document (in this case, the DocBook) at the current insertion point for
this MapObject.

This is important because the input rules for the subtitle are: Style should be
“normal” and the PARAGRAPH must be italicized. It is certainly possible
that there can be another paragraph somewhere else in the source document
that is italicized and Normal (although not true in this document). Therefore,
you will apply these rules only if you are at the subtitle. How can you
determine this?

One way is:

Transforming Word, FrameMaker, and HTML Documents into
DocBook 99

a. The subtitle occurs after the title. The title will be under bookinfo in the
output. In the Only match if Output XML has Specified Ancestry box,
type in bookinfo, as shown in Figure 6.15.

Figure - 6.15

b. Click Next.

100 Tutorial for Arbortext Import

• The next window is MapObject Advanced Rule Editor. Here, you will see
the XML input rules hierarchy. These additional qualifier rules are required
only for exceptional cases. Click Finish without making any change.

Figure - 6.16

You will see the following input rules for the book_subttitle_para:

SELECT element(s):
(whose name equals 'PARAGRAPH ')
AND (whose Style attribute EQUALS 'Normal')
AND (STDCurrent.emphasis-italic IS_TRUE .)
AND (. IF_OUTPUT_ANCESTOR STDConstant.bookinfo)

6. Now select MapTemplate ▶▶Save and Run to test your changes. You will now see
in your DocBook XML two <subtitle> elements under <bookinfo> element, the
first having text “An Arbortext Whitepaper for the Tutorial” and the second being
empty. You will also see one additional <para> element under <bookinfo>, after the
two subtitles and before the <chapter> element.

You must now decide what to do with the empty subtitle and the additional para.

To get rid from these two paras from the XML you will have to create two new
MapObjects.

• blank_para_bookinfo MapObject

• publishername MapObject

Transforming Word, FrameMaker, and HTML Documents into
DocBook 101

Creating blank_para_bookinfo MapObject:
Use the following procedure to create a new MapObject to be used for a blank subtitle
appearing inside <bookinfo>.

1. Select any empty paragraph in the source document’s ppXML tree on the left.
PARAGRAPH (4) is used in this example.

2. Click Map Input.

3. On the Map Input Wizard using the following steps:

• MapObject Specification

a. Choose Create New MapObject (the default).

b. Click Next.

• MapObject Properties

a. Enter name, such as “blank_para_bookinfo”.

b. Click Next.

• Basic Input Mapping

a. This should be PARAGRAPH, that is the default.

b. Click Next.

• MapObject Style Mapping

a. On this window, select Don’t Look for a Particular Style.

b. Click Next.

• MapObject Attribute Mappings

On this window, you can simply click Next without selecting any attributes.

• MapObject Input Hierarchy Mapping

a. On this window, select Only Match If Output XML has Specified
Ancestry.

b. In this text box, type in bookinfo, since this MapObject will only apply
under bookinfo element.

c. Click Next.

• MapObject Advanced Rules Editor—On this window, you will see the
input rules that have been created so far. These are the AND rules with three
children: NAME_EQUALS, STYLE_EQUALS and IF_OUTPUT_ANCESTOR
(bookinfo). These input rules will select any PARAGRAPH which is being
processed when the insertion point in the Output XML is inside bookinfo.

We want this MapObject only to work on “blank” paragraphs.

a. Choose AND in the XML Rule Hierarchy.

102 Tutorial for Arbortext Import

b. Click Add Child XML Rule .

c. Now change the Rule Match Type list to NOT.

d. Again click Add Child XML Rule to add a child rule to the NOT.

e. Change the matchtype to HASTEXT.

It is possible for a PARAGRAPH not to have any text, but still have child
elements, such as IMAGE. (Although this particular source document
doesn’t have this scenario.)

f. Add another child of AND.

g. Change its matchtype to NOT.

h. Add a child to NOT called HASCHILDELEMENTS.

• Click Finish.

Figure - 6.17

When you click Finish in the Map Input wizard, you will see the following input
rules. If your input rules do not match, you can click Edit Input Rules, and the
input rules editor will open where you can modify the input rules.

SELECT element(s):
(whose name equals 'PARAGRAPH ')
AND (. IF_OUTPUT_ANCESTOR STDConstant.bookinfo)
AND (NOT (which has some text contained within it.))
AND (NOT (. HASCHILDELEMENTS .))

Transforming Word, FrameMaker, and HTML Documents into
DocBook 103

4. Set its priority higher than the book_subtitle_para MapObject using the MapObject
Key Properties tab.

5. If you run the transformation again by selecting MapTemplate ▶▶Save and Run,
will see that the blank subtitle inside the bookinfo is now the element blank_para_
bookinfo, and there are two more blank_para_bookinfo elements under
<bookinfo>. These two are created for the other two empty paragraphs in the
source document, one before the text “By Arbortext” and the other after it.

6. To change what is output by a rule, we will need to change the output rules so the
blank_para_bookinfo elements do not appear in output.

a. Select the blank_para_bookinfo.

b. Navigate to its Output Rules tab.

c. Select Suppress All Output Steps option located above the Output Hierarchy.

d. Go to the Children tab.

e. Select Ignore All under the Child Text/CDATA Nodes.

Figure - 6.18

7. To confirm that the blank_para_bookinfo is removed from the output, select
MapTemplate ▶▶Save and Run.

Creating publishername MapObject:
According to the DocBook DTD, there should not be any para in the bookinfo. However,
here you will notice that there is still one para in <bookinfo>. You can get rid of it by
creating a new MapObject that is called publishername.

To create publishername MapObject:

104 Tutorial for Arbortext Import

1. Select the text “By Arbortext” in the Source File tab.

2. Click Locate Selected Text. The paragraph containing “By Arbortext” is
highlighted in the ppXML representation tree.

3. Click Map Input.

4. On the Map Input Wizard, perform the following steps:

• MapObject Specification

a. Select Create New MapObject.

b. Click Next.

• MapObject Properties

a. Enter a name, such as publishername. "publishername" lowercase is
a valid DocBook tag. By choosing the right MapObject name the correct
output element can be chosen. If you enter any other name, then you will
need to change the output rules to output the <publishername> element.

b. Click Next.

• Basic Input Mapping

a. Ensure that PARAGRAPH is set here.

b. Click Next.

• MapObject Style Mapping— This will ask you if you want to set any
particular style.

a. In this case, the style selected will be Normal. Ensure Normal is
selected.

b. Click Next.

• MapObject Attribute Mappings

Click Next.

• MapObject Text Verification Editor—Here, we are relying on the text in
publishername PARAGRAPH for identification.

a. On this window, select the Element Text option.

b. Select CONTAINS from the list.

c. Select the Text option.

d. Type in By Arbortext.

e. Click Next.

• MapObject Input Hierarchy Refinement

Here, in the Only match if Output XML has Specified Ancestry box, type in
bookinfo.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 105

• Click Finish.

5. To see that there is no more <para> element in the output, select MapTemplate ▶▶
Save and Run.

Figure - 6.19

Customizing the Chapter and Section MapObjects

Customizing chapter_title MapObject:
The next important thing is getting the chapter headings correctly for the document that
contains one chapter with a few sections. However, to keep the perspective of working
with a book, each of the headings should actually be its own chapter.

To do this, we have to modify the rules for the chapter_title MapObject.

1. Find a PARAGRAPH in the ppXML on the left that has one of the headings, such
as the paragraph that says “Introduction”.

a. Find the chapter title para in the HTML view of the source file.

b. Click Locate Selected Text to select the PARAGRAPH in the ppXML file tree
on the left.

You will notice by opening this PARAGRAPH and looking at its attributes that the
Style attribute is “Heading 2”, that is how chapter titles will be distinguished. You
can also distinguish them based upon the formatting. You will notice that the font-
size is 14, and both emphasis-bold and emphasis-italic attributes are “true” for
chapter headings.

2. Find the “chapter_title” MapObject in the main MapObjects grid, select it.

3. With this MapObject selected, and one of the chapter heading PARAGRAPH’s on
the left selected, click Map Input that will open the Map Input Wizard.

106 Tutorial for Arbortext Import

4. The wizard will guide you through setting up the input rules for this MapObject.
The following steps should be performed:

• MapObject Specification:

– Choose Overwrite Input Rules of Currently Selected MapObject
(chapter_title: if chapter_title is not the MapObject selected, cancel the
wizard, find it, and re-run “MapInput”).

– Click Next.

• Basic Input Mapping:

– This should be a PARAGRAPH, which is set by default.

– Click Next.

• MapObject Style Mapping:

– On this window, it should automatically have the style attribute selected
Only Map Content with the Following Style, and Heading 2 should
also be selected.

– Click Next.

• MapObject Attribute Mappings: On this window, you can select individual
attributes which will be used in addition to the style.In our case, as the
“Style” is enough to distinguish chapter title paragraphs, it is instructive to
select a few of these:

– Choose font-size, and select MapObject Should Track This Attribute.
This means an input rule will be created for font-size.

– On the Type of Check, you can choose STRING EQUALS and the
current value of font-size (14.0) will be filled. This means that the only
PARAGRAPHs that have font-size 14 will match the criteria.

– Now choose emphasis-bold, and select MapObject Should Track This
Attribute.

– For Type of Check, choose IS_TRUE. This input rule means that only
PARAGRAPH’s that have emphasis-bold=”true” will match the criteria.

– Do the same for emphasis-italic.

• When you have tracked these three attributes, you can click Finish.

The input rules for the “chapter_title” MapObject will be modified based upon your
selections. On the Input Rules tab you should see an English description of:

SELECT element(s):
(whose name equals 'PARAGRAPH ')
AND (whose Style attribute EQUALS 'Heading 2')
AND (STDCurrent.emphasis-bold IS_TRUE .)
AND (STDCurrent.emphasis-italic IS_TRUE .)
AND (which has an attribute 'font-size' with a value of '14.0')

Transforming Word, FrameMaker, and HTML Documents into
DocBook 107

5. Now, test the new chapter title rules by selecting MapTemplate ▶▶Save and Run.

You will now see four chapters appeared in the XML hierarchy: one for
“Introduction”, second for “Some of SampleCompany Products”, third for “Why
Create/Convert Documents to XML?” and fourth for “Conclusion”.

To learn how to edit input rules, perform the following steps.

If you want to remove any input rule:

1. Click Edit Input Rules, and a widow displaying XML Rules similar to those shown
in Figure 6.20 will open.

Figure - 6.20

2. Suppose you want to remove input rule related to font-size then you will select the
STRING_EQUALS rule

3. Click Delete above the rules hierarchy, and this rule will be removed.

4. Click OK, the resulting input rules English description will be as below:

SELECT element(s):
(whose name equals 'PARAGRAPH ')
AND (whose Style attribute EQUALS 'Heading 2')
AND (STDCurrent.emphasis-bold IS_TRUE .)
AND (STDCurrent.emphasis-italic IS_TRUE .)

108 Tutorial for Arbortext Import

This will be a good example of how to modify input rules once they are created.

Now examine the output rules for the chapter_title MapObject. You will see in the output
hierarchy string as “/book/chapter/title”. These are shown in the Output Hierarchy tree.

Figure - 6.21

If you select any element , you will see its details:

• title— This is the “core” output step. This means that the content of the
PARAGRAPH will end up inside the “title” element. It has a creation type setting
of “always” and a creation location of “under parent only”, which means that every
time a PARAGRAPH is found that matches our input rules, then a “title” element
will be created in our output XML, and it will always be created underneath its
“parent”, which in this tree is “chapter”.

• chapter— This is the “parent” output step. It has a creation type of Always
Create, which means that every time a matching PARAGRAPH is found,
Arbortext Import will create a <chapter> element in the output XML, and it will
always create it under the parent output step of this one (which is book).

Figure - 6.22

• book— this is the “ancestor” output step. It has aWhen setting of Create Only
If Necessary, and “Where” setting of “Top of Document” which means that a
<book> element will only be created if there is not one in the output XML
document. If there is already one, then Arbortext Import will move the insertion

Transforming Word, FrameMaker, and HTML Documents into
DocBook 109

point to just under <book>, and will insert “<chapter>” element underneath
<book>, and then create <title> element underneath “chapter”.

Figure - 6.23

You do not need to change either the Output Hierarchy of the chapter_title, or the output
rules of any of the existing DocBook MapObjects, since they have been created to
conform to the DocBook XML DTD.

However, if you were creating a MapTemplate to go to your own custom DTD, then you
would need to create output rules that are consistent to that DTD.

Customizing sect1_title MapObject:
You will notice that in source document inside the third chapter there are some extra
headings, that use the “Heading 3” style, and are meant to be sections within the chapters.
You can find the sect1_title MapObject, and you will notice that its initial input rules set
to:

SELECT element(s):
(which has an attribute 'NodeName' with a value of 'PARAGRAPH ')
AND (which has some text contained within it.)
AND ((whose Style attribute CONTAINS 'Heading 2')
OR (whose Style attribute CONTAINS 'sect1 title'))

Find the “subsection” titles (“Initial Reasons”, “Subsequent Reasons” and “Final
Reasons”) in the source document, and run the Map Input wizard, so the sect1_title
MapObject can meet the following input rules:

SELECT element(s):
(whose name equals 'PARAGRAPH ')
AND (whose Style attribute EQUALS 'Heading 3')

To do this:

1. Select the subsection title PARAGRAPH in the source tree in the Sample Source
File pane.

2. Select the sect1_title MapObject in the MapObjects tab.

110 Tutorial for Arbortext Import

3. Click Map Input, that will bring up the Map Input Wizard.

4. The following steps should be done on each window of the Map Input Wizard:

• MapObject Specification: Once again, rather than creating a new
MapObject, we want to update the input rules of the currently selected
MapObject, that is sect1_title.

– Select option Overwrite Input Rules of Currently Selected MapObject.

– Click Next.

• Basic Input Mapping:

– Ensure that “PARAGRAPH” is set here.

– Click Next.

• MapObject Style Mapping: This will ask you if you want to set any
particular style.

– In this case, the style selected will be “Heading 3”, so make sure that this
is selected.

– Click Next.

• MapObject Attribute Mappings: In this case, the style is the main
distinguishing characteristic, as no other PARAGRAPHs in this document
use that style. We do not need any other input rule. You can click Finish on
this window of the wizard.

5. Also, because we do not plan to have any sub-subsections in this document, we can
“disable” the sect2_title MapObject.

To disable any MapObject:

• Select the MapObject.

• On its Key Properties tab, deselect the Enabled option.

6. If you Save and Run the template again, it will now transform <sect1> elements
within the third <chapter>, each of which has a <title> element and content within
it.

Similarly, to enable and customize sections within sections (sect2) and (sect3), the same
procedure can be followed within the DocBook framework.

Customizing the List Objects
The next step in customizing the DocBook template is to customize the rules for lists. By
examining the driver options of word2docbook template, you will see that Include Lists
is set to False. This is because the DocBook templates look at the formatting of a Word
paragraph to determine, should it be a list paragraph or not, and then the corresponding
output XML is formed. In ppXML, if Include Lists is set to False for a Word

Transforming Word, FrameMaker, and HTML Documents into
DocBook 111

document, then PARAGRAPHs which are Word lists paragraphs, will have a label
attribute distinguishing them as lists.

Lists may be nested, and the default DocBook templates have the following list related
objects.

• bullet_list_item1— this MapObject finds the beginning of a first level list. If you
examine its input rules, you will see that it uses the style, the left indent and the
label attribute.

• bullet_list_item2— this MapObject finds the beginning of a second level nested
list. The input rules also use a combination of styles, left indent and the label
attribute.

• bullet_list_item3— this MapObject finds the beginning of a third level nested list.

• list1_continue— this MapObject is used to distinguish those paragraphs which are
indented and should be part of a first level list item, but are not list paras
themselves in Microsoft Word.

Using this basic set of objects as starting point, you can build most types of list structures
easily. In the document we are using (articleWhyConvertTutorial.doc), there
are “numbered lists”.

When you run the standard DocBook template against this document, this list comes
under the <itemizedlist> element, that is not correct.

Before customizing the input rules for this section the following key terms are to be
explained:

• rulesubject: The rulesubject is the value that will be compared.

• ruleobject: The ruleobject is what we use for comparison. It is often a constant
value. The ruleobject specifies the target MapObjects to apply.

For example:

• Rulesubject: STDCurrent.font-size

• Rule Match Type: GREATER_THAN

• Ruleobject: STDConstant.15

In this example, the rule MATCHTYPE is GREATER_THAN, the rulesubject is
STDCurrent.font-size and the ruleobject is STDConstant.15.

• STDCurrent— STDCurrent is a prefix that can be used in either a rulesubject or
ruleobject. It means that the rulesubject or ruleobject refers to the current element.
For example, STDCurrent.font refers to the font-attribute of the current element

• STDConstant— this prefix can only be used in a ruleobject, and it is used to
enter a constant value as the suffix. It is used often in comparison rules.

112 Tutorial for Arbortext Import

Let’s modify the input rules for first level, second level and third level nested lists to
output “ordered lists”. The way to distinguish an ordered list is to either look inside the
label attribute, or to use the type attribute on a list <PARAGRAPH>.

The type attribute is “UL” for an unordered list (bulleted list) and “OL” for a numbered
list. The type attribute is either on the LIST element in ppXML, or on the
<PARAGRAPH> element if Include Lists is set to “False”, as it is in this case.

To customize the list MapObjects:

1. Clone bullet_list_item1, bullet_list_item2 and bullet_list_item3, by using Copy and
Paste to make clones of the MapObjects.

2. Using the MapObject Key properties tab change the name of all three copied
MapObjects as ordered_list_level1, ordered_list_level2 and ordered_list_level3
respectively.

3. Modify the input rules for these three copied MapObjects. For this purpose:

• Select the MapObject in the MapObject grid.

• Select its Input Rules tab.

• Click Edit Input Rules.

• The MapObject Input Rules window opens. Here, add a new rule with the
following setting:

– Rules Match Type: STRING_EQUALS.

To specify the rulesubject, select rulesubject from the Rule Parameters
section and on Parameters Details for rulesubject section select
following:

– rulesubject type: STDCurrent

– rulesubject value: SourceAttribute

– Enter Source Attribute as type.

To specify the ruleobject, select ruleobject from the Rule Parameters
section and on Parameters Details for ruleobject section select
following:

– ruleobject type: STDConstant

– ruleobject value: $enter_text$

– Enter String Value as OL.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 113

This should distinguish the orderedlist paragraphs from the normal
itemizedlist paragraphs.

Figure - 6.24

4. In the output rules, change the output name for these three objects from
“itemizedlist” to “orderedlist”.

5. It is important that each ordered list MapObject should appear before the
corresponding bulleted list MapObject in the MapObject order, its rules are more

114 Tutorial for Arbortext Import

restrictive. Change the priority of these three MapObjects so they are greater than
bulleted list MapObjects.

Figure - 6.25

Transforming Word, FrameMaker, and HTML Documents into
DocBook 115

6. To test your modifications Save and Run the MapTemplate, as a result the
Intermediate Results Display will look like Figure 6.26.

Figure - 6.26

Customizing the Table and Image MapObjects
The DocBook templates shouldn’t need to be customized for tables. The <informaltable>
element is used by default for each table. However, if a table has a caption after it, you
might want to call this a <formaltable>, that consists of both a title and a table. In this
source document (articleWhyConvertTutorial.doc), there is a table along with
a title after it.

This can be implemented by creating a GRAMMAR_SEQUENCE of a table followed by
a table_title.

Before proceeding further for this section the following key terms are to be explained:

• GRAMMAR_SEQUENCE— This rule operates on a contiguous set of input XML
elements; elements that are next to each other, and form a sequence. These could be
child elements of the current element, child nodes (such as attributes) or sibling
elements. This is the main rule used for grammatically defining a hierarchy.

• #SEQUENCE# — The basic input mapping type for an advanced XML rule is
“#SEQUENCE#”

116 Tutorial for Arbortext Import

• STDObject — The “STDOBJECT Token Grammar Rule” enables you to refer to
another MapObject within the input rules of a given MapObject. This is very useful
when you want to encapsulate functionality into a reusable object. An example
encapsulating the month parsing into a MapObject, called Month is given in the
Text Parsing Rules section of the Arbortext Import Reference.

• APPLY — This rule enables you to call another MapObject to take over
processing, it is often used in combination with an “OR” rule. The “APPLY” rule
then returns true or false depending on what its child MapObject returned.

To create a GRAMMAR_SEQUENCE of a table followed by a table_title, first you have
to create table_title MapObject. To create the table_title MapObject:

1. Select the table’s caption in the Source File HTML view.

2. Click Locate Selected Text. It will find the <PARAGRAPH> in the ppXML tree
to the left of the window.

3. Once the caption is highlighted, click Map Input.

4. Perform the following steps on each window of the Map Input Wizard:

• MapObject Specification:

– Select the Create New MapObject option.

– Click Next.

• MapObject Properties:

– In the MapObject Name box type in table_title.

– Click Next.

• Basic Input Mapping:

– This will be PARAGRAPH.

– Click Next.

• MapObject Style Mapping: The caption in this document has a style of
Caption, that is OK, click Next.

• MapObject Attribute Mappings: There is no attribute that we need to map,
since the style and the content will be enough. Click Next.

• Text Verification: You will notice that the content of this paragraph will
distinguish it from the content of a figure caption. The table title should
always start with the word “Table” here.

– Select the Element Text option.

– Choose STARTSWITH as a rule.

– Select the Text option.

– Type the word Table.

• You can click Finish.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 117

When you are done with the Map Input Wizard, you should see rules as follows in
the English Description:

SELECT element(s):
(whose name equals 'PARAGRAPH ')
AND (whose Style attribute EQUALS 'Caption')
AND (STDCurrent.Text STARTSWITH STDConstant.Table)

5. Before moving to the SEQUENCE for formal_table, we should see if this
MapObject works.

However, there is another MapObject that looks for the Caption style, called
“caption”, and if this table_title MapObject comes after the caption MapObject in
the MapObject order, then it will not run because the caption MapObject will match
the caption in the source document. Change the order using the MapObject Key
Properties tab to change the order of the caption object. For example, if the
caption MapObject has priority 23, then this table_title MapObject should have
priority 22 or high (lesser the number higher the priority).

6. If you run the transformation by selecting Save and Run, you should get a single
table_title. You can quickly find an elementby using Search. To do this:

• Click on the final destination file.

• Select Search, which brings up the Search dialog box, as explained in
Search on page 27.

• Enter the XPath to find the table_title element as //table_title. If the
MapObject is set up correctly, you will see an <informaltable> element
followed by a <table_title> element in the hierarchy pane.

We are now ready to create a GRAMMAR_SEQUENCE for formal_table.

1. First, find the informaltable MapObject, and select it.

2. Then, with the informaltable MapObject selected, create a new MapObject by
clicking on New from the MapObject grid. This new MapObject will appear in the
MapObject order just before informaltable. This is important because we don’t
want the informaltable MapObject to catch formal tables as well. We will place the
formaltable MapObject first.

3. Change the name of this new MapObject to formal_table using the MapObject Key
Properties tab.

4. Change the input rules basic mapping type of this MapObject to #SEQUENCE#
from the Input Rules Basic Mapping list options under the Input Rules tab as
highlighted in Figure 6.27. This will change the text description of the input rules
to say:

118 Tutorial for Arbortext Import

Select a SEQUENCE OF SIBLINGS/CONSECUTIVE ELEMENTS,

Figure - 6.27

5. You must now populate the sequence. This can be done by editing the input rules
from Edit Input Rules. In the XML Rule Hierarchy , you will see a single XML
Rule of matchtype GRAMMAR_SEQUENCE.

6. Click the GRAMMAR_SEQUENCE rule, and look at its parameters in the Rule
Parameters section. When you click the parameter, you can see and edit its value.
Click the sequencetype, and insure that SIBLINGS is selected. This specifies that
you are looking for a SEQUENCE of sibling elements, namely a table followed by
a table title.

7. Now add a child XML rule to the GRAMMAR_SEQUENCE rule. This can be
done using Add Child XML Rule, while GRAMMAR_SEQUENCE rule is selected
in the hierarchy. This will create a new XML rule as a child of the GRAMMAR_
SEQUENCE with the type of ANY.

8. The first step of the sequence is a table. We will create a rule with a matchtype of
APPLYand a ruleobject of STDOBJECT, and MapObject selected as
informaltable. To do this:

• Select the newly created rule.

• Change the Rule Match Type of the rule to APPLY.

• Then click its ruleobject parameter. You will see the Parameter Details for
ruleobject section in the lower right of the window. Here, the rule prefix for
Summary should be automatically set to STDObejct.

• Select MapObject using MapObject browse (...).

• Select informaltable MapObject on the Choose MapObject dialog box.

• Click OK.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 119

9. Now similarly add an APPLY rule with ruleobject of STDOBJECT, and table_title
selected as MapObject. The resulting MapObject Input Rules window is similar
that shown in Figure 6.28.

Figure - 6.28

10. Click OK.

11. You have updated input rules for the newly created MapObject but the output rules
still need to be modified.

• Select the Output Rules tab.

• Select the Output Step tab, where you will see some default MapObject
name.

• Change the name of the newly created MapObject to formal_table.

12.Now Save and Run the transformation and you will see a formal_table element in
the DocBook XML.

13. Since formal_table and table_title elements are not there in the DocBook schema,
you will now disable formal_table and table_title MapObjects. Do this by
deselecting the Enabled option for the two MapObjects in the MapObject Key
Properties tab.

14. Save and Run the transformation again.

120 Tutorial for Arbortext Import

Now customize input XML rules for IMAGE elements. You will notice that there is a
mediaobject MapObject that finds a ppXML paragraph with an “Image” in it, followed by
zero or more occurrences of a para that is a caption.

In the default DocBook templates, the caption comes after the IMAGE. However, in our
sample tutorial document (articleWhyConvertTutorial.doc), the captions
come before the IMAGE. The change can be made by selecting mediaobject MapObject
in the MapObject grid and modifying its input XML rules.To do this:

1. Select mediaobject MapObject from the grid.

2. Click Edit Input Rules.

3. Now use the up and down buttons to rearrange the child XML Rules of the
GRAMMAR_SEQUENCE XML Rule as shown in Figure 6.29.

Figure - 6.29

After modifying these, the English description should come out:

Select a SEQUENCE OF SIBLINGS/CONSECUTIVE ELEMENTS,
beginning with 1 occurrence of an element:
(which matches the input rules for mapobject: caption)
ending with 0 or more occurrences of an element:
(which matches the input rules for mapobject: blank_paragraph)
followed by 1 occurrence of an element:
((which matches the input rules for mapobject: image_object)

Transforming Word, FrameMaker, and HTML Documents into
DocBook 121

OR (which matches the input rules for mapobject: image_para))

Adding or Customizing Remaining Other Objects
Remaining objects are customized in the same way as other objects. In the ppXML, when
a <PARAGRAPH> is matched by a MapObject, the MapObject will then pass on each of
the child nodes of the <PARAGRAPH>. The child nodes may be child elements or child
Text/CDATA nodes. By default, the child elements are passed on to all MapObject rules
in order, until one is found that matches. Child Text/CDATA nodes are treated in the same
way , and their content is copied to the output. Both of these approaches will place their
results inside the core Output Step. If a <PARAGRAPH> in ppXML maps to a <para> in
DocBook, then all of the children of <PARAGRAPH> in the ppXML will by default
appear under <para> in DocBook.

Before proceeding further in this section, the following key terms are defined:

• SPECIALTEXT — A <SPECIALTEXT> element describes a specific run of text
within a <PARAGRAPH> that has different formatting than the <PARAGRAPH>
itself.

• MARKER— A <MARKER> is a possible destination in a file; usually a Word
Bookmark.

The most common inline element in ppXML is <SPECIALTEXT>. The DocBook
templates should map <SPECIALTEXT> elements that are bold or italicized to
<emphasis> elements in DocBook. Similarly, <SPECIALTEXT> elements which are
super or sub scripted (indicated by the emphasis-superscript=true, or emphasis-subscript=
true attributes in the ppXML), should be mapped to super or sub elements in DocBook.
Other inline elements include LINKs, FIELDs and MARKER elements, representing
Microsoft Word fields and bookmarks.

By default, the Arbortext Import templates for DocBook contains the include Fields
option that is set to false, that means that FIELD elements will not be produced in the
ppXML. You can however, change it. For example, in our sample document
(articleWhyConvertTutorial.doc) all table and figure captions, and references
use Microsoft Word FIELDs of several types:

• TheSEQfield is used to auto-generate a number for the Figure or Table.

• TheREFfield is used to refer to the a Figure or Table from the content.

To add these items to DocBook, we must strip the “Figure”, or “Table” at the beginning
of each caption, and tell the FIELD that has the SEQ in it to not output anything.
Moreover we need to be sure that the bookmark id for each caption is added to the caption
para, and that the REF field translates into a DocBook xref element correctly. To do this,
perform the following steps:

1. Ensure that in the preprocessing “Word to XML Driver (Java)” the “IncludeFields”
and “IncludeBookmarks” options are set to true. For details consult the Pre and

122 Tutorial for Arbortext Import

Post Processor Drivers section in the Arbortext Import Reference. By default these
option are set to true. If they are not set to true:

• Set these options to true.

• Save the template.

• Choose Rerun Initial Preprocessing Driver Transformation from the
Source File menu item so the source file ppXML on the left hand side of the
editor shows the updated options.

To confirm that option “IncludeBookmarks” is true:

• Click Search in the editor’s left pane.

• Type in the following Search Expression //MARKER.

• Select XPath Search.

• Click Find, it should find the first MARKER that is right before a FIELD
element whose fieldcode attribute includes SEQ.

2. Let us create a MapObject that recognizes this field (which uses fieldcode SEQ).

• Select the FIELD element on the left hand side, and start the Map Input
Wizard.

– Create a new MapObject, call it seq_field.

– Basic Input mapping should be FIELD by default.

– You will see the MapObject Field Data Mapping wizard, which guides
you through creating input rules for FIELD elements in ppXML. In this
case the field name should be SEQ by default. It will have an identifier of
Figure as shown in Figure 6.30, because the original field code that we
have contains this. Here, we want our MapObject to catch either table or
figure caption FIELDS, you can delete this Identifier.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 123

– Click Finish.

Figure - 6.30

The input rules will be created as follows:

SELECT element(s):
(whose name equals 'FIELD ')
AND (which has an attribute 'FieldName' with a value of 'SEQ ')
AND (whose FieldArgument CONTAINS'')
AND (STDField.* EXISTS .)
AND (whose * CONTAINS 'MERGEFORMAT')

• If you run the transformation again, you should see several seq_field in your
output DocBook XML (it will not validate of course, because seq_field is not
a valid DocBook element). In fact, you should find one for each figure and
table caption that uses it.

• We will soon change the output rules for this object to not output any
elements, but leave them as they are for the moment, because we want to
process MARKER.

3. Let us now create a MapObject for MARKER using following steps.

• Select MARKER on the left hand side.

• Click Map Input for the Map Input Wizard to open.

• Create a new MapObject for processing the MARKER element.

– The name of this MapObject should be marker.

– The basic mapping type will be MARKER. No other input rules are needed
so finish here.

124 Tutorial for Arbortext Import

The output rules for Marker will be a bit different, we want to get the value of the
MARKER’s name attribute, that points to the Word bookmark that the MARKER
represents. To do this:

a. Select the Output Rules tab.

b. Select the Step Details sub-tab.

c. Click Edit in the Output Attributes.

d. The Edit Output Attribute window opens. From this window perform
following steps:

• Create a new attribute called id.

• Give it an Output Attribute Rule of Input.

• Select Source Element Attribute.

• type the name of the source attribute as name from which the id attribute
will get its value.

• Click OK.

Figure - 6.31

e. Click Edit in the Output Tag/Element on the Step Details.

f. Set Output Tag/Element to No Output.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 125

g. We have set not to output an element for MARKER, but it should output an
attribute. Where will the attribute go if there is no element? It will go on
whatever element the current insertion point is. That should be the element,
created by the “PARAGRAPH” ppXML element, or “para” which is the caption
para in the source document.

h. Go ahead and run with this MapObject enabled, and examine the results. You
should see the “id” attribute on para (you can search for //@id in the XPath
window on the results).

i. Now you set seq_field MapObject equal to Suppress All Output Steps from
the Output Rules.

j. Set Child Text/CDATA Nodes to Ignore All from the Children tab.

These two settings will automatically get rid of the seq_field in the output.

4. The only thing left to do is, to strip the text that says “Figure x:” or “Table x:” from
the beginning of the captions. To do this:

a. Select the “caption” MapObject from the grid.

b. Click Advanced on the Children tab and Advanced Children Details is
opened.

c. You will see a field as Strip the Following Text (Regexp) from first Text Node
for text to strip.

d. You can type in a regular expression, in this case it will be “Figure\s:\s” that
means to look for the word “Figure” followed by a whitespace character (\s)
followed by one colon (:) followed by a whitespace character (\s).

e. Try it, and if it works, you can do the same for the tabel_title MapObject, using
“Table\s:\s”. (As you have disabled the tabel_title MapObject, apply this rule
after enabling apply the tabel_title MapObject.)

126 Tutorial for Arbortext Import

f. After selecting MapTemplate ▶▶Save and Run you will see the text “Figure : ”
and “Table : ” are stripped from the output.

Figure - 6.32

Note
Enabling the tabel_title MapObject and applying the strip text rule is just for
illustration purposes. Disable tabel_title MapObject again before proceeding
further.

5. Now you will create a MapObject for the REF field, and map it to DocBook’s xref
element. To do this:

a. Find the FIELD element (search for \\FIELD XPATH) that is of fieldcode=
REF or type=3 (these are the text in the paragraphs which refer to Figure 1 or
Figure 2). You will see that the fieldcode attribute of the FIELD element in the
ppXML is “REF _xxxxxx” where _xxxxx is the name of the bookmark in
Word.

b. Start the Map Input Wizard by clicking Map Input.

c. Using the Map Input Wizard:

i. Create a new MapObject, and call it xref.

ii. It’s basic mapping type will be FIELD.

iii. On the MapObject Field Data Mapping, delete the Bookmark name from
the “Bookmark”.

iv. Click Finish.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 127

You will see that there is still an input rule that looks at the FieldArgument;
you can delete this input rule from the input rules editor, and then your input
rules description should be:

SELECT element(s):
(whose name equals 'FIELD ')
AND (which has an attribute 'FieldName' with a value of 'REF ')
AND (whose FieldArgument CONTAINS '')
AND (STDField.\h EXISTS .)

v. Now you will go to the xref MapObject’s Output Rules tab, and create an
attribute on the xref element that is called “linkend”, and its Output
Attribute rule should be “Input Field” that this means that the input fields
go to the output fields (attributes). You will then choose “fieldarguments”.

vi. Furthermore, xref elements in DocBook are not allowed to have any text
inside them. Go to the Children tab, and select Do Not Apply MapObjects.

vii. If you run it by selecting MapTemplate ▶▶Save and Run, you will find xref
elements in several places, wherever there was a reference to a figure in the
normal text.

Validating the Final DocBook Template
At this point you will have to validate your final DocBook template. For this purpose:

1. Select the MapTemplate Properties tab.

2. Click More MapObject Options. A new Options window is opened just as Figure
6.33.

Figure - 6.33

3. Here, selectWrite Schema/DTD and Validate.

4. Select Document Type Definition (DTD) under Validation Details.

128 Tutorial for Arbortext Import

5. Browse to the location where your validating DTD is located (Arbortext-path
\doctypes\axdocbook\axdocbook.dtd).

6. Click OK.

7. Run the template by selecting MapTemplate ▶▶Save and Run. On the
Transformation window you will see no validation errors.

Conclusion
This chapter shows how to customize the DocBook templates for Microsoft Word. The
DocBook templates for HTML and MIF are the same as the Word templates, and the
exact same methods used here can be used for those transformations as well. Furthermore,
even if you are building your own MapTemplates, you can use the same method as
described here.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 129

A
Text Files

Parsing Text Files using Text Rules
Goals
The goals of this appendix are to:

• Get experience by creating MapTemplates that can parse text files

• Get experience by using SIMPLE Text input rules such as:

– Line

– Text Match

– Regular Expression

– Fixed Length

– HTMLTag

• Get experience by using TOKEN GRAMMAR Text input rules

• Understand how to create MapObjects, child MapObjects

• Understand how to use output rules

Overview
This chapter will enable you to create MapObjects that parse text input files, and produce
XML output. You can use the sample text input file, included in the installation under
Arbortext-path\samples\importexport\text.

131

The following two files should be in this directory:

• patients_extra.txt

• patients_extra.dtd

The following Figure A.1.1 shows the sample file that is opened in Notepad. This is an
extremely useful file to demonstrate the different types of text parsing rules.

Once you understand how to use these text-parsing rules, you can use them in the context
of parsing, for example, your own Microsoft Word or HTML files to extract key
informations.

Figure - A.1.1

This sample text file contains a number of lines and information that spans on multiple
lines. It is basically a simulation of a patient record file.

There are two trials, each of which has one or more patient records. Each patient record
has one line that contains character based information about the patient: Name, Gender,
Occupation Available and Readings, that include heart rate, temperature and blood
pressure, and one line that contains comments about the patient.

Tutorial: Destination XML File
Suppose we want to create an XML file for this that looks like the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE PatientData SYSTEM "C:\Arbortext\samples\text\patients_extra.dtd">
<PatientData>
<Trial number=1800>
<PatientRecord>

132 Tutorial for Arbortext Import

<PatientName>Joe Blow</PatientName>
<PatientGender>M</PatientGender>
<PatientOccupation available=yes>Computer Programmer</PatientOccupation>
<PatientReadings>
<HeartRate>124</HeartRate>
<Temperature>098</Temperature>
<BloodPressure>124</BloodPressure>
</PatientReadings>
<Comments>
Joe is a very unusual candidate he has cancer and his birthdate is 12/14/76.
</Comments>
</PatientRecord>
<!- MORE PATIENT RECORDS >
</Trial>
<Trial number=1800>
<!- ONE OR MORE PATIENTRECORDS >
</Trial>
</PatientData>

Following is an example of the target XML we want. This is a relatively simple DTD.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT PatientData (Trial*)>
<!ELEMENT Trial (PatientRecord*)>
<!ATTLIST Trial number CDATA #IMPLIED>
<!ELEMENT PatientRecord (PatientName, PatientGender, PatientOccupation,
PatientReadings, Comments)>
<!ELEMENT PatientName (#PCDATA)>
<!ELEMENT PatientOccupation (#PCDATA)>
<!ELEMENT PatientOccupation available (Y | N | y | n | yes | no) #IMPLIED>
<!ELEMENT PatientGender (#PCDATA)>
<!ELEMENT Comments (#PCDATA)>
<!ELEMENT BirthDate (#PCDATA)>
<!ELEMENT Condition (#PCDATA)>
<!ELEMENT PatientReadings (HeartRate?, Temperature?, BloodPressure?)>
<!ELEMENT HeartRate (#PCDATA)>
<!ELEMENT Temperature (#PCDATA)>
<!ELEMENT BloodPressure (#PCDATA)>

This appendix walks step by step through the process of using simple and advanced text
input rules to parse the text file to create the desired XML file.

Create a new MapTemplate
If you have already created a new project, then you can open and reuse it. If not, then
launch Arbortext Import, and choose New from the File menu on the main Arbortext
Import Workbench window. Further select Project, and give a name to the new project,

Transforming Word, FrameMaker, and HTML Documents into
DocBook 133

such as “tutorial”, as explained in Creating a New Project Using Arbortext Import
Workbench on page 18.

The first thing to do is to create new transformation. The procedure in detail is explained
in Create a Transformation on page 19.

Choose the source file patients_extra.txt from Arbortext-path\samples
\importexport\text.

While creating transformation through the wizard, it will ask for a MapTemplate, where
you should click New, and it will launch the New MapTemplate Wizard.

Create a new subfolder of STDTemplates called "Tutorials" by clicking Browse, and then
give a name to the template, such as textParsingTutorialPatients, as shown in
Figure A.1.2.

Figure - A.1.2

The template should not be based on existing template. Select the Create New
MapTemplate option on the next window and click Next to continue.

On the Specify MapTemplate Driver window, you should choose “None” from the list,
because we are parsing the text file directly, and do not need a driver (the drivers typically
parse a file, such as a Word document into ppXML, that we don’t need to do here).

Now when you click Finish, it will take you back to the New Transformation Wizard,
along with the name of the new MapTemplate that was just created. Click Next, on the
next window add a nickname for this new transformation, such as patients_extra_
textParsingTutorialPatients, and click Finish on the wizard.

After completing all the steps on the wizard, a new transformation of patients_

134 Tutorial for Arbortext Import

extra_textParsingTutorialPatients is present in the Arbortext Import
Workbench as shown in Figure A.1.3.

Figure - A.1.3

You can then edit the MapTemplate by clicking Edit next to the MapTemplate name in the

Transforming Word, FrameMaker, and HTML Documents into
DocBook 135

Transformation Details section of this screen. The MapTemplate Editor window is
shown in Figure A.1.4.

Figure - A.1.4

The MapTemplate Editor is displayed with no source file selected on the left, and no
target DTD showing on the right. On the top right of MapTemplate Editor, you will see
Destination DTD/Schema.

Click Browse on the Destination DTD/Schema pane, that will show you the list of target
schemas/DTD’s that have been parsed to date in a new window. Click Load New, and
find patients_extra.dtd from the same directory where the source file was located
(Arbortext-path\samples\importexport\text).

This will cause the product to compile this DTD into the Arbortext Import internal
format. Once this is done, click Choose Main Element, and in the opened window
choose “PatientData”. Click OK, and select patient_extra in the list of Abailable DTD/
Schema, and click OK.

In the left most pane of the Sample Source File, you can choose the patients_
extra.txt file from the list of source files. The product will try to convert this
document using a generic template to ppXML, but since we don’t convert text files into
ppXML, no XML tree will be displayed. You can click the Source File tab, that shows
the source file in an embedded Internet Explorer window. You can click Reload, and you

136 Tutorial for Arbortext Import

will see the source text file in the HTML window. You can use this for reference while
parsing, as highlighted in Figure A.1.5.

Figure - A.1.5

Now click the Pre and Post Drivers tab. We are dealing with a text file, so we do not
need any preprocessing. (Preprocessing drivers are generally used to transform Word,
PDF, HTML files into ppXMLthat can then be parsed.) However, we need a main
element that can start the MapTemplate transformation. The root element in our output
XML is PatientData, so it makes sense to create a MapObject that understands how to
create an output element of PatientData. We have not created any MapObjects yet, so we
can’t assign a main element at this point.

Let us start with defining text parsing MapObjects. The first thing we need to do is to
create a MapObject to start our parsing at the top of the file.

Create a Main MapObject
Click the MapObjects tab in the MapTemplate Editor. Then click New under the
MapObjects tab. This will create a new MapObject that will be the first MapObject in our
MapObjects tree, along with a default name of NewMapObject1.

First of all, we will change the name of the object to the top level object in our target
DTD, that is “PatientData”. This can be done on the MapObject Key Properties tab in
the MapObject Details section of the window.

Secondly, we will change the source type, that is set to XML by default, to input text,
because we will be parsing a text file. This is done by selecting #PASSTHRU#(text) from
the Input Rules Basic Mapping list in the Input Rules tab. This will display a warning

Transforming Word, FrameMaker, and HTML Documents into
DocBook 137

dialog box about changing the basic mapping type from an XML based type to a text
parsing type. To disable this warning, go to the MapObject editing options by choosing
MapObject Editing Options from the Tools menu, and set the Default New MapObjects
to text.

If you look at our target XML (shown earlier), and our target DTD, <PatientData> is the
top level element of our Target XML, but it doesn’t have any text or attributes.

This means that the input rules for this MapObject should select all of the source text, and
pass it on to its child MapObjects for further processing. The PatientData MapObject does
not perform any processing of the text itself.

Click Edit Input Rules on the Input Rules tab, and as a result, the MapObject Input
Rules window will open. You will notice that by default, the Input Rule Type is "Select
Current Text", that is the default for the basic mapping type of “#PASSTHRU#(text)”.
This means that when this input rule runs against our source file (patients_extra.
txt), it will select all of the text in the file. Click OK in the MapObject Input Rules
window. After completing the steps for a text input file, the MapTemplate Editor will
appear as shown in Figure A.1.6.

Figure - A.1.6

Now let us look at the output rules for this MapObject. First, click the Output Rules tab,
the MapObject is already selected in the Output: box, and click Edit Output Attributes/
Rules to get access to these three output rules:

• Output Tag Name tab

• Output Value tab

• Output Attributes tab

138 Tutorial for Arbortext Import

The MapObject Output Rules window is shown in Figure A.1.7.

Figure - A.1.7

Unlike XML Rules, which might have an output hierarchy, each text parsing MapObject
creates only one output XML element.

If you click the Output Tag Name tab as shown in Figure A.1.7, you will see the name of
the element that is created by this MapObject. This tab enables you to change the name of
the output element. By default, the output name of the XML element is the same as the
name of the MapObject “PatientData”. There is no need to change the default values on
this tab.

If we look at the Output Value tab, the default is No Output Rule specified. This is OK
because the <PatientData> element in our target output file doesn’t have any text nodes
underneath it. It contains only child elements, that will be produced by MapObjects on
their own. The same is true for the Output Attributes tab; the default works fine, because
there are no attributes needed in the <PatientData> output element

Setting the Main MapObject and Testing
Before we move further, we can test our MapTemplate to see if it parses the source file
correctly so far. Logically, it should create XML that has a <PatientData> element with no
output value, and no attributes or children.

Before we run the MapTemplate, we need to specify a Main MapObject. Click the
MapTemplate Properties tab, change the MapObject properties to be Use Main
MapObject, and select the “PatientData” MapObject from the list which we just created.

You can now choose Save and Run from the MapTemplate menu in the MapTemplate
Editor, and the Transformation window will appear. When the transformation is
completed, the results of this MapTemplate running against the source file
patients_extra.txt should be displayed.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 139

You should see a PatientData element, and no other output in the Transformation
window.

Creating and Configuring the Child MapObject: Trial
Our output requires that we have <Trial> elements as children of the <PatientData>
element. So, let us create a child MapObject for Trial. This is done by clicking Child on
top of the editor, as highlighted in Figure A.1.8.

Figure - A.1.8

When you click this button, you will see the New Child MapObject dialog box. This
dialog box asks if you really want to create a new MapObject, or if you want to refer to an
existing MapObject. If the MapObject already exists, we could create a reference to it
here. In this case, we want to create a full instance of a new MapObject.

This will create a new child MapObject, that has a default name of NewMapObject2.

Because the goal of this MapObject is to create an output element called <Trial>, we will

140 Tutorial for Arbortext Import

change the name of child MapObject to “Trial”. That change can be made on the
MapObject Key Properties tab.

Figure - A.1.9

Now go back to the PatientData MapObject, and click Edit Child MapObjects… under
the Children tab. You will see the Trial MapObject listed as the only child of PatientData.
The MapObject Children window will appear as shown in Figure A.1.10.

The MinOccurs and MaxOccurs values tell you how many times this child can appear. In
our example, there can be any number of trials within a file, so a MinOccurs value of 0,

Transforming Word, FrameMaker, and HTML Documents into
DocBook 141

and MaxOccurs value of unbounded is fine. The Pass Type defaults to None, and the
Insert type defaults to None. Both of those values are also fine.

Figure - A.1.10

We are now ready to work on the Trial MapObject.

Select the Trial object in the MapTemplate Editor window, as highlighted in Figure
A.1.9. On the Input Rules tab, change the Input Rules Basic Mapping type by choosing
#TEXTPARSING# in the list. You will need to do this for all text parsing MapObjects in
this tutorial.

If you look at our original source file, one source file can contain multiple Trial sections.
We need to configure input rules in the Trial MapObject that can parse out a single trial.

142 Tutorial for Arbortext Import

Using the terminology of Arbortext Import, we want the Trial MapObject to find an input
selection that looks like the highlighted section in Figure A.1.11.

Figure - A.1.11

This can be done by adding input rules that can parse the source file appropriately. In this
example, we will use a simple text rule of type "Text Match"; which is a rule that matches
a Start token and an End token (Think of each token as simply a word, specified string or
regular expression). Each Trial begins with the word "Trial", and ends with the word
"Trial" or at the <eof> (End of File).

To do this, click Edit Input Rules to open the MapObject Input Rules window, and select
Simple Text from the Input Rule Type: list options. In the Rule Specific: pane, you will
see different types of simple text rules, each of which is referred to as a matchtype.
Choose the Text Match matchtype, and you will see that you can type in Start and End
tokens, and can select any option from Inclusion Pattern: options.

Type in "Trial" as the Start token:, type in "Trial" as the End token:, and choose an
Inclusion Pattern: of "includestart". An inclusion pattern tells the MapObject whether the
start token, the end token, or both the start and end tokens should be considered as part of
the found selection. In this case, we want to include the start token, because the word
“Trial” is considered a part of the current Trial text, but not the end token (because that is

Transforming Word, FrameMaker, and HTML Documents into
DocBook 143

considered part of the next trial section). After these steps, the MapObject Input Rules
window is displayed.

Figure - A.1.12

Now, when we have configured the input rules for this MapObject, click the Output
Rules tab, and then Edit Output Attributes/Rules that will open the MapObject Output
Rules window. Here, you can click the Output Tag Name tab. Since the name of the
output element should be <Trial>, the same as the name of the MapObject, we do not
need to change the default.

If you look at the Output Value tab, you will see that the No Output Rule specified
option is selected. To test our MapTemplate at this point, let us set an output rule. Click
the Apply Output Rule option, and then choose a rule from the list options as Passthru
Input Text. This will enable us to see the selection made by the input rules of the Trial
MapObject. Click OK.

Before moving further, we can test our MapTemplate to see that if the source file is
parsed correctly. Logically, it should create an XML that has a <PatientData> element,
along with two child <Trial> elements, one for each trial in the file.

Now you can select Save and Run from MapTemplate menu item to run the
transformation. This will display the Transformation window for this template in the
console view.

Once the transformation is completed, you will notice that on the left there is one
destination file, called patients_extra.txt.xml. Select this file, and you will see

144 Tutorial for Arbortext Import

that the file is displayed in the Intermediate Results Display tab. If you expand the
PatientData top level element, you should see two Trial elements below it, each of that
contains all of the text in each Trial. If you see both Trial elements, then this was a
successful run of the MapTemplate as shown in Figure A.1.13.

Figure - A.1.13

Parsing the Trial Number
Now we know that our MapTemplate is parsing the file into Trials correctly, we can start
with parsing within a Trial. Note that the first line of a trial is the Trial Number, that if
you examine the source file in Figure A.1.11 is “173456” for the first trial, and “1800” for
the second Trial.

Creating TrialNumberLine MapObject
First, let us create a child MapObject of Trial called TrialNumberLine to parse out this
line.

Go back to the MapTemplate Editor, and select the Trial MapObject. Once you have
selected this Trial MapObject, click Child.

You will see the New Child MapObject dialog box. You should create a full instance of a
new MapObject again, that will be added with a default name. Change the name (on the
MapObject Key Properties) to TrialNumberLine.
ChildrenSelect the Trial MapObject, and go back to the tab (click Edit Child MapObjects
that opens the MapObject Children window) of the Trial MapObject. The child
MapObjects dialog box should list the newly created MapObject, that is
TrialNumberLine. In this case, we want at least one TrialNumberLine per Trial. For

Transforming Word, FrameMaker, and HTML Documents into
DocBook 145

minimum and maximum values, set the MinOccurs and MaxOccurs equal to 1. (Uncheck
the Unbounded option, and enter the MaxOccurs value.)

Once you have completed these steps, select the TrialNumberLine object in the
MapObjects grid (you will see that you will have expand Trial MapObject to see
TrialNumberLine), and under the Input Rules tab, once again, change the rule to
#TEXTPARSING#. Click Edit Input Rules to set the input rule type to “Simple Text”,
and choose line as the matchtype. This means it will parse out the whole line.

Now set MapObject output rules (by clicking Edit Output Attributes/Rules under the
Output Rules tab), click the Output Value tab, and set the output rule for the MapObject
to “Passthru Input Text”.

Now, if you save the MapTemplate and run it again, you will see that each Trial has a
TrialNumberLine element, as shown in Figure A.1.14 (this extracts the line with the
number in it, rather than the number itself). We will further parse this to extract just the
number piece within the line. You should see only 1 TrialNumberLine per Trial; if you
see multiple TrialNumberLine elements in a single Trial in your Output XML, then you
forgot to set the minOccurs and maxOccurs to 1 in the Child MapObjects dialog box for
Trial.

Figure - A.1.14

Creating TrialNumber MapObject
Now we have the Trial Number in a line, and we can further parse it to extract just the
number. Let’s reopen the MapTemplate and create a child MapObject of TrialNumberLine
called TrialNumber. Let’s set the minOccurs and the maxOccurs to 1 in the Child

146 Tutorial for Arbortext Import

MapObjects dialog box of TrialNumberLine. The Number MapObject becomes a child
MapObject of TrialNumberLine MapObject, as shown in Figure A.1.15.

Figure - A.1.15

Now select this new MapObject in the MapObjects tree, and set its basic mapping type by
choosing #TEXTPARSING# in the Input Rules Basic Mapping.

The Input Rule Type (after clicking Edit Input Rules) should be set to “Simple Text”. Let
us use a regular expression to parse out the number. Regular expression is a well defined
language for parsing character data; you can specify which characters will occur in a
sequence. The character to find a single digit is the escape character \d. The way to say
that there can be one or more digits in a row is to insert a plus sign (+) after the character,
like \d+. We will also place parens around it, like (\d+)

From the matchtypes listed, select Regular Expression, and type in the regular
expression (\d+). This shows you how to use a simple regular expression to extract a
value from a string of text. You can also test your regular expression at this point by
clicking Test Reg. Exp. In the new window, enter a sample text, and click Run Test to
verify your regular expression.

You also need to set the output value for the TrialNumber Map Object. On the Output
Value tab for the TrailNumber MapObject, select "Input" for the Apply Output Rule, and
choose the Regular Exp. Paren option.

Then type in 1 in the text box, which means that we want the first set of parenthesis in our

Transforming Word, FrameMaker, and HTML Documents into
DocBook 147

regular expression. In our case, the regular expression was: (\d+) which only has one
set of parenthesis.

Figure - A.1.16

If you save the template and run it again, you will see that the TrialNumber is extracted.

Now we have parsed the TrialNumber element, there is no need to save the
TrialNumberLine element, as this element was simply a convenient way to parse out the
TrialNumber.

Go back to the MapObjects, select the TrialNumberLine MapObject, and go to the
Output Element Name tab (by clicking Edit Output Attributes/Rules), and then select
the option: Do Not Output This Tag.

Also, switch to the Output Value tab, and set the output value of this MapObject to No
Output Rule Specified. Now if you run the same template again, you will see the
TrialNumberLine is removed from the output XML.

You see that if you choose the Do Not Output This Tag on the Output Value of a
MapObject, then that MapObject will still execute. It will still process its input rules, and
pass on the found input selection to its child MapObjects. The only difference is that it
will not output any element. This means that any child elements that child MapObjects
produces will become children of the parent of the MapObjectthat has Do Not Output
This Tag set. In our case, the parent of TrialNumberLine was Trial, so the children of
TrialNumberLine (there is only one TrialNumber here) will become children of Trial in
the output.

Creating TrialNumber Attribute
Now for a little more processing, if you look at our desired output schema, we want the
TrialNumber to be an attribute of the Trial object, rather than a child element. To
accomplish this, click Trial MapObject’s Edit Output Attributes/Rules, and select the
Output Attributes tab. It will be blank.

Click New Output Attribute . The output attribute name should be "number" in the
Output Attribute Name: box. But what output attribute rule we will use to get the value
of the number?

148 Tutorial for Arbortext Import

The number actually resides in a child MapObject, the TrialNumber MapObject. There is
an Output Attribute Rule called "Child Result", that you can select. The Output
Attribute Rule should be “Child Result” as shown in Figure A.1.17.

Figure - A.1.17

This Output Attribute Rule (Child Result) means that the value of this attribute should
not come from Trial MapObject, but instead from one of the child MapObjects. In this
case, we want to choose the TrialNumber MapObject (which in reality is a child of the
TrialNumberLine MapObject, that is a child of the current MapObject Trial).

If you click Select Child (under the Rule Specifies: as highlighted in Figure A.1.17), you

Transforming Word, FrameMaker, and HTML Documents into
DocBook 149

will see the Choose MapObject dialog box as shown in Figure A.1.18. Select the
"TrialNumber" MapObject from this list, and click OK.

Figure - A.1.18

In short, the Trial MapObject should produce an output element (called <Trial>), along
with an attribute called “number”. The number attribute should get its value from a child
element, called <TrialNumber>. By default, when you get a value from a child element,
then that element and its output is no longer needed (unless you specify the Still keep
Output Data in Child MapObject, as shown in Figure A.1.17).

Now if you run the template, you should get the <Trial> element, along with the
appropriate attribute (number) added to it. You will now notice that both the
<TrialNumberLine> and <TrialNumber> elements have been removed, and our output
matches very closely to the output we want to get in our final XML.

We have now successfully transformed each <Trial> element, along with its number
attribute. We will move to the PatientRecord element next, which is the crux of this
transformation. So far, we have used several simple text rules, including line based input
rule, text based matching input rule, and regular expression based input rules. We have
also used some output rules, including extracting the value of an attribute from a child
element, and not outputting certain elements. By not outputting certain elements, we have
seen that sometimes you can have MapObjects that are very useful for parsing, but don’t
need to appear them in the output, such as TrialNumberLine and TrialNumber in our
example. This is a very useful technique that you can use often. Remember, a MapObject
at its core, is a set of parsing rules that can be re used in various contexts.

Keeping the concept of a MapObject as a reusable set of parsing rules and output rules,
we will now get into slightly more advanced text based parsing, that can be done using
TOKEN GRAMMAR text rules.

150 Tutorial for Arbortext Import

The Patient Record Element
If you recall, the individual <PatientRecord> elements are the heart of our output. Note
that from our target schema, a <PatientRecord> element should look like the following
data:

<PatientRecord>
<PatientName>Joe Blow</PatientName>
<PatientGender>M</PatientGender>
<PatientOccupation available=yes>Computer Programmer</PatientOccupation>
<PatientReadings>
<HeartRate>H124</HeartRate>
<Temperature>T098</Temperature>
<BloodPressure>BP124</BloodPressure>
</PatientReadings>
<Comments>
Joe is a very unusual candidate he has cancer and his
birthdate is 12/14/76.</Comments>
</PatientRecord>

A single <PatientRecord> element in the Output
If we examine our source file again, a PatientRecord consists of a line that contains values
about the patient (patient name, gender, etc.), followed by a line that has a description or
comments about the patient.

There are many different ways in which we can parse this PatientRecord. However, to
keep things simple, let us create two Child MapObjects of a PatientRecord, each of which
uses the Line simple text input rule to parse. The first one will be called PatientInfoLine,
that parses the first line of a PatientRecord, and the second one will be called
CommentsLine, that parses the second line.

The first step is to create a PatientRecord child MapObject of Trial. Do this by opening
the MapTemplate again. We will show you another way to create a MapObject, and
referring it from the child MapObjects tab.

Click New (and not Child), and a new MapObject will be created at first level of the
MapObjects grid with a default name.

You can now go to this MapObject in the grid of the MapTemplate Editor, and select it.
The advantage of placing this MapObject at the top level of the tree is that it can be
reusable. MapObjects at the top level of the tree can be referenced from anywhere within
the template, and can also refer other MapObjects.

Now change the name of this MapObject to PatientRecord, and change its basic mapping
type by choosing #TEXTPARSING#.

You will see that no nput rules are defined yet, because a PatientRecord is defined as
consisting of a PatientInfoLine and a CommentsLine, and we will not be ready to work on
the input rules for this MapObject unless these other two MapObjects have been created.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 151

We will now make this new MapObject “PatientRecord”, child of the Trial MapObject,
because a Trial consists of one or more PatientRecords.

Now click the Trial MapObject, and bring up its MapObjects Children window. You will
see the TrialNumberLine MapObject listed as a child on this window.

Click New Child MapObject (Reference) . You will be prompted whether to use an
existing MapObject, or to create a new one. This time we want to choose Add Reference
to a Pre-existing MapObject.

After clicking OK, you will get the Choose MapObject prompt, that will show the
MapObjects you can select.

You will notice that only top level MapObjects are shown. Choose the newly created
PatientRecord MapObject from this Choose MapObject dialog box. This makes it
possible to start reusing MapObjects across different projects. When you choose
PatientRecord, and click OK, a new child will be added to the list of child MapObjects of
the Trial MapObject.

You will also notice in the MapObjects tree that PatientRecord has been added under Trial
along with an R, which means that this is actually a reference to a MapObject that is
defined elsewhere. In our case, it is defined above as shown in Figure A.1.19.

Figure - A.1.19

These two parts of the tree (PatientRecord at the top level with the normal MapObject,
and PatientRecord located in the tree underneath Trial along with R) refer to the same
underlying MapObject. You will notice that we have not set a MinOccurs or MaxOccurs
value for this new child of Trial. In our source file, there can be any number of
PatientRecords in a Trial. Let us set the MinOccurs to 1, to say that there must be at least
one, and the MaxOccurs to unbounded, to say that there can be any number of these.
Remember, you can do this by selecting the parent Object (Trial), and clicking Edit Child
MapObjects under the Children tab.

152 Tutorial for Arbortext Import

Why the “MinOccurs” and “MaxOccurs” are set in the child MapObjects tab of the parent
MapObject (Trial in this case) rather than being set in the PatientRecord MapObject
itself? This is because we can reuse the PatientRecord MapObject by referring to it from
another element; in that case the rules for how many times the PatientRecord can occur
may be different.

Creating MapObject for the Line Parsing and
Referring to Them
We are now going to create two MapObjects that we will refer from PatientRecord. We
will define a PatientRecord as a sequence of these two objects:

• PatientInfoLine MapObject

• CommentsLine MapObject

This type of sequence is referred to as a GRAMMATICAL DEFINITION of the source
input that is, if the parser finds a PatientInfoLine object followed by a CommentsLine
object, then it has found a PatientRecord Object. If however, it only finds a
PatientInfoLine object, or only a CommentsLine Object, then this doesn’t work, and the
PatientRecord will not be found.

Let us create these two MapObjects.

First click the PatientRecord MapObject, and look at its input rules. They are still set to
the default. This is fine; we will define the input rules after we have created the other two
MapObjects: PatientInfoLine and CommentsLine.

Creating PatientInfoLine
These two new MapObjects should also be top level MapObjects, because they need to be
referred to by the PatientRecord MapObject, that can be created using New at the top of
the MapObjects grid.

Click the newly created MapObject. Change its name to PatientInfoLine, and its basic
mapping type by selecting #TEXTPARSING#.

This MapObject will simply parse the first line of a patient record, and then pass it on to
child MapObjects to do the actual parsing of the line into its various components (like
PatientName and PatientGender).

Set the Input Rule Type list item (using Edit Input Rules) to “Simple Text”, and choose
the Line input rule matchtype.

Notice that this MapObject is on the top level of the tree inside the grid rather than
appearing underneath the PatientRecord. This is because we don’t want to pass the
PatientRecord selection to this object; rather we want to use this object to find the
PatientRecord selection. This will become clear when we go back, and define the input
rules for PatientRecord in a moment.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 153

First, let us finish up with the PatientInfoLine MapObject. Go to the Output Value tab,
and set the output rule for the value of this element to “Passthru Input Text”.

Creating CommentsLine
Now similarly, create a CommentsLine top level MapObject with an input rule type of
simple text, and the Line input rule selected. This can be done by New at the top of the
MapObjects grid. This will add a new top level MapObject with a default name. Change
the default name to CommentsLine, change the source type to input text by selecting
“#TEXTPARSING#” under input rules, set the input rule type to "Simple Text", and set
the rule matchtype to Line.

You might have noticed that in our output DTD, there is neither the <PatientInfoLine>
element nor the CommentsLine MapObject , the actual purpose of CommentsLine
MapObject is to produce an output element called <Comments>.

Once again, we are using a technique of using MapObjects as parsing objects, that may or
may not appear in the output.

After you have created a top level CommentsLine Object, click Edit Output Attributes/
Rules under the Output Rules tab, and you will see the default view. Change the
selection to Output Tag Name Determination Rule, choose the output rule called
“Constant”, and type in the name we want it to output as Comments in the Constant
Output Value box.

Figure - A.1.20

You will also set the Output Value of the CommentsLine object to “Passthru Input Text”
(in the same way we set the Output value of the PatientInfoLine MapObject, by clicking
the Output Value tab, and setting the output rule to "Passthru Input Text").

154 Tutorial for Arbortext Import

We are now ready to work with the input rules for the PatientRecord.

Set GRAMMATICAL Input Rules for the Patient
Record
A GRAMMATICAL input rule set is different than the simple input rules, we have been
using to date. We will now go back to the (R) PatientRecord MapObject, and select the
“#TOKENGRAMMAR#” option for the basic mapping type of input rules. These are also
explained in the Text Parsing Rules section of the Arbortext Import Reference.

There are no GRAMMATICAL rules defined yet. Remember that our definition of a
PatientRecord is a SEQUENCE of PatientInfoLine Object, followed by a
PatientComments Object.

A SEQUENCE is a type of GRAMMAR input rule that is used often in parsing
documents.

For PatientRecord MapObject input rules, click Edit Input Rules, and select ‘Token
Grammar” from Input Rule Type options. As a result you will see a section for Grammar

Hierarchy, that is empty. If you click Add Child Token Grammar Rule , you will see
that a single Token Grammar Rule of rule type SEQUENCE has been added to the
Grammar Hierarchy. You will see that the Rule Type list option is automatically filled in
as “SEQUENCE+”.

The “+” means that a sequence can have child elements. In fact, a SEQUENCE must have
child elements because it is a sequence of something followed by something else.

Notice that there is a custom name box that lets you type a name for this grammar rule.
You can leave it blank for now.

Now again, with SEQUENCE selected, click Add Child Token Grammar Rule again, and
you will notice that a new child “Grammar Rule” is added. The type is again set to
SEQUENCE+ by default, but this time we want to change it to the first item in our
sequence. In the Rule Type list options, choose “STDOBJECT+”, because the first item
in our sequence is going to be the MapObject called PatientInfoLine that we have created
above. STDOBJECT is the old name for MapObjects, and it is still used internally by the
Arbortext Import.

Notice that though we have set the first item in our sequence to be a MapObject, we have
not yet defined which MapObject it is. Click (…) in Rule Data, and choose a MapObject
from the dialog box that will be PatientInfoLine.

On your return to the input rule, you will see that the MapObject name has been filled in
to the MapObject you just selected. It is also worth changing the Custom Name of this
“Grammar Rule” to PatientInfoLine, so that it is shown in the rule tree. The Custom
Name is a label used to refer to a specific “Token Grammar Rule”. In our sequence, for
example, we might want to refer to either the first or second part of the sequence by
name.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 155

Now add another item in our sequence, by clicking Add Sibling Token Grammar Rule

, and add another Grammar Rule that will be a child rule of SEQUENCE. Change the
Rule Type to be STDOBJECT+, and choose the MapObject CommentsLine. You also
want to give it a custom name that is descriptive, such as commentsline, as shown in
Figure A.1.21.

Figure - A.1.21

You have now defined the PatientRecord with a TOKEN GRAMMAR input rule to be the
following:

• A SEQUENCE of two items

– Item #1 in the sequence is a MapObject called PatientInfoLine

– Item #2 in the sequence is a MapObject called CommentsLine

In addition to defining a TOKEN GRAMMAR input rule, you have also seen how to
define top level MapObjects that can be referred to within other MapObjects: both in the
MapObjects’s Children tab, and within “Token Grammar” input rules.

You will now save the template, and try out your grammatical rules to see how they work!

156 Tutorial for Arbortext Import

Running the Template with Patient Records
Now go to the main window of the Arbortext Import Workbench, and click Run
Transformation again. When the Transformation window is appeared, you will notice
that we have parsed the file into <Trial> and <PatientRecord> elements. The
<PatientRecord> element has two children: <PatientInfoLine> and <Comments>. The
template has successfully parsed out Patient Records. The transformation window shows
the output as shown in Figure A.1.22.

Figure - A.1.22

Create Remaining MapObjects for PatientInfoLine
If your template has successfully performed this parsing, then we are almost done. We
now have to parse the <PatientInfoLine> element into the building blocks of a Patient
Record:

• PatientName

• PatientGender

• PatientOccupation

• PatientReadings

– HeartRate

– Temperature

Transforming Word, FrameMaker, and HTML Documents into
DocBook 157

– BloodPressure

Because PatientInfoLine has already parsed out a line, we can simply pass this line down
to the child MapObjects, that should be named after these elements.

Because we really do not need to reference these objects elsewhere, you can simply go to
the PatientInfoLine MapObject, bring up its MapObjects Children window, and then
create full instance of child MapObjects for PatientName, PatientGender,
PatientOccupation and PatientReadings. Each of these has a minOccurs of 1 and a
maxOccurs of 1, and you can change their names here in this window using Child
MapObject Name: box, as shown in Figure A.1.23. Once they have been created and
modified, you can click OK, and then edit the input rules for each one individually.

Figure - A.1.23

Now let us create the input rules for each of these MapObjects. You will have to change
the basic mapping type to “#TEXTPARSING#” for each of them before bringing up the
input rules editor.

The PatientName in our source file consists of the first 10 characters of the
PatientInfoLine. The PatientName MapObject should be set to its basic mapping type by
choosing ‘#TEXTPARSING#”, by applying Input Rule Type of “Simple Text”, and a
matchtype of Fixed Length of Char. Length A.1.

The Output Value of the PatientName object should be set to “Passthru Input Text”.

158 Tutorial for Arbortext Import

The PatientGender is a single character of M or F. The Apply input rule should again be
set to “Simple Text”, and the rule matchtype should be Fixed Length again, this time with
a value of 1 character.

Now suppose, we wanted to map the M that occurs in the source file to the word Male in
the output, and the F to the word Female. We can set an Output Value output rule to do
this.

Start by clicking Edit Output Attributes/Rules, select the Output Value tab, and then
select “Lookup Map” as the Apply Output Rule: type.

You can now type in the mappings of M to Male, and F to Female. After typing in the
first line, press enter, and the cursor will be on the next line, as shown in Figure A.1.24.

Figure - A.1.24

This is an example of how to map source text values into output values. This list can be as
long as you want it to be. You can also delete specific mappings as needed.

The next MapObject, that is PatientOccupation is a bit tricky. In the source file, if the next
character is Y, then the next few characters up to H are considered part of the occupation.
If there is an N, then there is no occupation, and H is right after the N. This is an example
of a conditional rule that is quite common in COBOL files and older files.

The following regular expression will produce this effect:

([YN])([^\n]*)(H)

This regular expression is really a sequence of characters:

• A SEQUENCE of characters

– Start with either a Y or an N ([YN])

– Followed by any character that is not a new line, zero or more times([^\n]*)

Transforming Word, FrameMaker, and HTML Documents into
DocBook 159

– Followed by H

So, for PatientOccupation, you should do the following:

• Set the source type to input text by selecting “#TEXTPARSING#” in the Input
Rules Basic Mapping box, and click Edit Input Rules.

• Set the Input Rule Type list option to “Simple Text”.

• Choose the rule matchtype Regular Expression.

• Type the regular expression into the Regular Expression text box: ([YN])([^
\n]*)(H)

You may wonder, how we can use a complex regular expression like this to get the
appropriate values we need for our output element. Remember that the output element we
want looks like this:

<PatientOccupation available="Y">Computer Programmer </PatientOccupation>

or, if there is no occupation, like this:

<PatientOccupation available="N"></PatientOccupation>

The key is the parenthesis in the regular expression, which defines sub-expressions. Our
regular expression has three sets of parenthesis (called subexpressions or parens):

• First sub-expression: ([YN])

• Second sub-expression: ([^\n]*)

• Third sub-expression: (H)

You can select any of these sub expressions as the value for the Output Value or an
Output Attribute of the current element. So, we should:

• For the Output value, get the value from the second parenthesis, that will be blank
if there is no such value (Apply Output Rule should be set to “Input”, select
Regular Exp. Paren and type in ’2’).

• Create an Output attribute, called available that gets its value from the first
parenthesis (Go to the Output Attributes tab of the Output Rules Editor dialog
box, add a new attribute with Output Attribute Name: of “available”, and Output
Attribute Rule of type “Input”, and then select Regular Exp. Paren and type in
‘1’).

In both cases, the output rule is set to type Input, and the Input is taken from a numerical
sub-expression (identified by parenthesis #) of the regular expression.

The PatientReadings element can be parsed using the TOKEN GRAMMAR. If you
examine the PatientReadings, as in the following example:

“Joe Blow MYComputerProgrammerH124T098BP124”

You will notice that the readings portion (H124T098BP124) is a sequence of characters
that we could parse using one big regular expression, or we could parse using smaller

160 Tutorial for Arbortext Import

MapObjects, and using a “TOKEN GRAMMAR’ rule of SEQUENCE. If we follow this
approach, then PatientReadings consists of:

• A SEQUENCE of:

– HeartRate

– Temperature

– BloodPressure

We would need to define top level MapObjects for HeartRate, Temperature and
BloodPressure, and then define the PatientReadings input rules. You can do this as below:

• HeartRate— Create a new top level MapObject called HeartRate. Its basic
mapping type should be “#TEXTPARSING#”, input rules type should be "Simple
Text", and the matchtype should be "Regular Expression". The Regular Expression
to use should be (\d+), that is a sequence of digits. Notice that we don’t have H
here, because H has already been consumed by the PatientOccupation MapObject.

The Output value of the HeartRate object should be set to Input, and use a regular
expression paren# 1.

• Temperature— Similar, except that regular expression should be T(\d+), and
output rule should also point to paren#1 of the regular expression.

• BloodPressure— Similar, except that regular expression should be BP(\d+), and
output rule should also point to parent#1 of the regular expression.

Now we can create the sequence in the PatientReadings MapObject. Set the basic
mapping type by choosing “#TOKENGRAMMAR#”, then apply input rule type to
"Token Grammar". Start with a Token Grammar SEQUENCE rule, along with three
children, each of type STDOBJECT+, one for each MapObject. Also enter Custom
Names for each of the items in the sequence. The method for doing this is identical to the
step-by-step directions, we gave for creating the PatientRecord input rules, that consisted
of a SEQUENCE of two other MapObjects.

The Output Value of the PatientReadings MapObject should be set to No Output Rule
Specified, because all it does is to contain the output elements created by the three
MapObjects: HeartRate, Temperature and BloodPressure.

Some Cleanup Items
If you save the MapTemplate, and run it again, you will see the results in the
Transformation window. You will notice that we are almost done, but there are some
discrepancies between this XML and our intended XML.

One thing we can do to find these discrepancies is to validate the resulting XML against a

Transforming Word, FrameMaker, and HTML Documents into
DocBook 161

DTD. To assign a DTD file, go to the MapTemplate Properties tab, and click More
MapObject Options. This will display the advanced settings for the template.

Figure - A.1.25

These settings show you how you can control the XML that is output. Under the
Validation tab you will see the ability to enter a public system file for DTD or XSD
(XML schema file) used to validate the resulting XML.

SelectWrite Schema/DTD and Validate, and under the Validation Details select
Document Type Definition (DTD) as type, and click Browse, and then find the DTD file
locally (patients_extra.dtd).

If you save and run the transformation, you will see a list of parsing errors in the console
error window. In particular, the errors are related to:

• PatientInfoLine, which we used to get a line, but do not exist in our output DTD

• The Trial element shouldn’t have any text nodes

We can fix these relatively quickly:

• Choose the Trial MapObject, and go to the Output Value tab. Set the option to No
Output Rule Specified, that will get rid of the extra text under Trial.

162 Tutorial for Arbortext Import

• Choose the PatientInfoLine MapObject, and go to the Output Tag Name tab. Set
the option Do Not Output This Tag. Also go to the Output Value tab, and set the
option to No Output Rule Specified.

Figure - A.1.26

After resolving all validation parsing errors, you will have a valid XML document that
conforms to the DTD, and have no errors. Final result will be as shown in Figure A.1.26.

Conclusion
This tutorial walked you through the process of creating a new MapTemplate, and using
text parsing rules (both "Simple Text" and "Token Grammar" input rules) to parse a
source file, and then convert it into meaningful XML. The source file was a sample
included with the Arbortext Import, called patients_extra.txt, and the
"meaningful XML" is defined by the DTD that also comes with the sample files.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 163

How to Customize Configuration Files &
Locations
Introduction
You can define customized variables and paths to reuse in multiple projects,
transformations, and MapTemplates.

Variables can be used for relative paths of MapTemplates during transformations, and can
also be used to call child MapObjects. Rather than defining the absolute path of
MapTemplates, user will be able to define the variable which points to directory
containing MapTemplates, and then eventually use that variable to access the particular
MapTemplate. If the location of the MapTemplates changes, the user just needs to update
the value of the variable rather than updating the paths from the multiple projects,
transformations and MapObjects.

Paths can be used to locate the MapTemplates during transformations. If the path of
MapTemplates directory is defined, then you will only provide the name of MapTemplate
during the transformation rather than providing the complete path. You will be able to
define multiple paths. If MapTemplates with same name are located in more than one
path, then the MapTemplate located at first instance will be used for transformation.

How Edit Config File works
You can use this feature by selecting the option Edit Config File within the Tools menu.
This feature uses an XML file to save variables and paths. This XML file is created as
<home>\STDTemplates\config.xml.

This Config.xml file contains all the information about the variables and paths. You
can edit the Config.xml file using the Edit Config File window, or simply by opening
this .xml file in edit mode.

When you select Edit Config File from the Tools menu, a window will open as shown in
Figure A.2.1.

164 Tutorial for Arbortext Import

Edit Config File Interface Overview

Figure - A.2.1

The Edit Config File window contains two sections: List Of Variables and List Of Paths.
List Of Variables contains the list of all variables defined in that config.xml file. The
name of the variable is shown under Name, and its value is shown under the Value. The
following buttons are available in this section:

• Add Variable is used to define a new variable.

• Remove is used to remove the selected variable.

• Edit is used to edit the selected variable.

List Of Paths: contains the list of all paths defined in that config.xml file. The
following buttons are available in this section:

• Add Path is used to define new path.

• Remove is used to remove the selected path.

• Edit is used to edit the selected path.

How to use Edit Config File
With the help of the Edit Config File window, you can add variables and paths easily.

Adding Variables to the file
Use the following steps to add a variable:

Transforming Word, FrameMaker, and HTML Documents into
DocBook 165

1. Click Add Variable. A small window similar to the highlighted one in Figure A.2.2
opens.

Figure - A.2.2

2. Enter a variable name in Name, and value in Value. (Value will be the path of
directory which contains MapTemplate)

3. Click OK.

4. You will be back on the main Edit Config File window, where you will see the
newly added variable under the List Of Variables.

5. Click Cancel, if you don’t want to add a variable. Doing so will clear both the
name and value, and you will be back to the main Edit Config File window.

6. Now close the Edit Config File window.

7. On the main Arbortext Import Workbench window, type in MapTemplate as %
Name of Variable%\Name of MapTemplate.

Example:

Suppose you have a MapTemplate abcTemplate.std, saved in temp directory located
at E:\temp, and you want to have a variable named as var1. For the variable name you
will type var1, and for the value you will type E:\temp, and click OK. Close the Edit
Config File window.

Now on the main Arbortext Import Workbench window, set the value in MapTemplate to
%var1%\abcTemplate

When you run the transformation, Arbortext Import transformation engine will resolve
the variables value, and locate the MapTemplate accordingly, and then execute the
transformation.

166 Tutorial for Arbortext Import

Using this method you can define many variables, and use them within the main window
during transformations by giving their names and MapTemplates.

Adding Paths to the file
Us the following steps to add a path:

1. Click Add Path, it will open a small window as shown in Figure A.2.3.

Figure - A.2.3

2. Type the required path in Enter Path, and click OK.

3. You will be back on the main Edit Config File window, where you will see the
newly added path under the List Of Paths.

4. Click Cancel, if you don’t want to add path. It will clear the path, and you will be
back to the main Edit Config File window.

5. Now close the Edit Config File window.

6. On the main Arbortext Import window, type in the MapTemplate name.

Example:

Suppose you have a MapTemplate abcTemplate.std, saved in temp directory located
at E:\temp, and you want to add its path. For the Enter Path value, you will type E:
\temp and click OK. Close the Edit Config File window. Alternatively, you can also type
a variable name, for example %var1% in the path dialog box. The variable needs to be
defined before using it in paths.

Now on the main Arbortext Import Workbench window, you can provide the name of
the MapTemplate. For example, abcTemplate instead of the complete path.

Transforming Word, FrameMaker, and HTML Documents into
DocBook 167

When you run the transformation, the Arbortext Import transformation engine will search
the MapTemplate on the available paths, and execute the transformation.

Using this method you can define multiple paths, and use them within the main window
during transformations. In case of multiple paths, the transformation engine will check for
the specified MapTemplate in all the paths starting from first to last, and stop searching
where it finds that template, and complete the transformation.

Note
While typing the MapTemplate name in the main Arbortext Import Workbench, don’t
enter it with .std postfix; just give name of MapTemplate without .std.

168 Tutorial for Arbortext Import

Index

A
add child XML rule, 103, 119
Advanced Details Tab, 36

B
Basic Mapping Type, 57, 94, 118, 124,
127, 137–138, 142, 147, 151, 153, 155,
158, 161

C
Children Tab, 69, 104, 126, 145, 152
Console Output
Display, 24, 78

contacting technical support, 6

D
Destination DTD, 48, 90, 136
DocBook Templates
Customizing DocBook Templates, 88

Driver Options, 48, 50, 54–55, 92, 111

E
Edit Child MapObjects, 141, 145, 152

F
Field Code, 123

H
HTMLView

Display, 29, 78

I
Inclusion Pattern, 143
information resources, 5
input rules basic mapping, 68, 118, 137,
147
Input Rules basic mapping, 160
Intermediate Result
Display, 26–27, 78, 93, 144

M
Map Input, 59, 96, 111, 117, 124
Map Templates
DocBook MapTemplates, 82

MapObject Rules
Input Rules Output rules, 86

MapObjects
Creating MapObjects, 58
Customizing the List MapObjects, 111

MapTemplate Editor
Pre and Post Drivers, 52–53, 84, 137

MapTemplates
DocBook MapTemplates, 29, 83

N
New Child, 140, 145, 152
New Project, 18

O
Output Hierarchy, 87, 139

169

P
ppXML, 11, 23
Pre and Post Options
Include Lists, Use CALS table Model,
92

Pre-Processed XML, 11
product support contact information, 6

R
resources for more information, 5

S
Source Element Attribute, 125
Source File, 20
support contact information, 6

T
Transformation
Run Transformation, 19

Transformation Object
Run Transformation Object, 23

Transformation Wizard, 19

X
XML Rule Hierarchy, 102, 119

170 Tutorial for Arbortext Import

	About This Guide
	Prerequisite Knowledge
	Technical Support
	Documentation for PTC Products
	Global Services
	Comments
	Documentation Conventions

	Preface: About Arbortext Import Documentation
	Guide to Documentation
	Guide to This Document
	Goals
	A Quick Tutorial

	Getting Started with Arbortext Import
	Launch Arbortext Import Workbench
	Creating a New Project Using Arbortext Import Workbench
	Create a Transformation
	Run a Transformation Object
	Arbortext Import Workbench, Supported Transformations

	Arbortext Import Workbench Interface
	Overview
	Transformations
	Mapping Tab
	Advanced Details Tab
	File Menu
	Transformation Menu
	Tools Menu
	Help Menu

	Introduction to MapTemplates & MapObjects
	Overview of MapTemplates
	The Three Main Sections of MapTemplates
	Setting up a New MapTemplate
	Pre and Post-Processing Drivers
	Pre and Post-Processing Drivers Interface
	Overview of MapObjects
	Main Functions of MapObjects
	The Structure of a MapObject
	Creating a new MapObject
	MapObjects Details Pane

	File Processing Scenarios for Arbortext Import Supported Transformations
	Introduction
	Importing a Microsoft Word 2003 (.doc) document into XML
	Importing a Microsoft Word 2007 or 2010 (.docx) document into XML
	Importing an HTML document into XML
	Importing a WordML document into XML

	Transforming Word, FrameMaker, and HTML Documents into DocBook
	Introduction
	Overview of the DocBook MapTemplates
	How the Templates Work
	How to Customize the DocBook Template
	Conclusion

	Text Files
	Parsing Text Files using Text Rules
	How to Customize Configuration Files & Locations

