示例:第二类修正贝赛尔函数
显示函数
K0、
K1 和
Kn 之间的关系。也会显示这些函数和其缩放版本之间的关系。
1. 定义两个步长值域变量:
2. 绘制函数 K0 和 K1。在绘图中添加二阶函数 Kn:
3. 绘制五阶和八阶函数 Kn:
| • Kn 函数的阶数越高,函数向右偏移越大。 • 任何阶数的 Kn 函数在 x=0 时趋近于无穷。 |
4. 通过微小改变 m 来绘制函数 Kn 以显示它们以同样的速率趋近于无穷:
5. 创建绘图来显示 K0(y)=Kn(0,y)。重新设置刻度值来放大 x 轴以便显示更多详细信息:
6. 创建绘图来显示 K1(y)=Kn(1,y)。重新设置刻度值来放大 x 轴以便显示更多详细信息:
7. 使用符号运算来显示每个函数和其缩放版本间的关系:
8. 创建绘图以显示:
第二类修正贝赛尔函数没有峰值。